Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885

Size: px
Start display at page:

Download "Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885"

Transcription

1 toyotaka.sakai@gmail.com

2 Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885 cool heads but warm hearts warm hearts cool heads hearts warm cool heads warm hearts 2

3

4

5 5

6

7 (for all) R = (, ) R + = [0, ) x X x X x [0, ) x R + 0 x < x R + 0 x < (1) x X y Y (x, y) X Y (2) 5 R + 2 R (5, 2) (5, 2) R + R

8 8

9 x R + m R 1 x m 2 m 3 (x, m) R + R (x, m) (x, m ) (x, m) (x, m ) (x, m) (x, m ) (x, m) (x, m ) (x, m) (x, m ) (x, m) (x, m ) (x, m) (x, m ) (x, m) (x, m ) x p 1 1 M px + m = M (1.1) (x, m) R + R B(p, M) = {(x, m) R + R : px + m = M} (1.2) 1 m 2 3 9

10 1 ( ). B(p, M) (x, m ) (x, m ) (x, m ) B(p, M) (1.3) (x, m ) (x, m) (x, m) B(p, M) (1.4) (p, M) (p, M) (x, m ) (x (p, M), m (p, M)) (1.5) x (p, M) m (p, M) x, m m (p, M) px (p, M) + m (p, M) = M (1.6) m (p, M) = M px (p, M) (1.7) x (p, M) m (p, M) x x (p, M)

11 x R + (x, 0) (0, V (x)) (1.8) V (x) (1.8) x V (x) x V V (0) = 0 (1.9) V > 0 (1.10) V < 0 (1.11) (1.9) (1.10) (1.11) 2 ( ). R + R (x, m), (x, m ) R + R (x, m) (x, m ) V (x) + m V (x ) + m (1.12) U(x, m) = V (x) + m 11

12 V x 1.1: V 12

13 V x 1.2: V 13

14 (x, m ) (x, m ) B(p, M) (1.13) (x, m ) (x, m) (x, m) B(p, M) (1.14) (x, m ) B(p, M) (1.15) V (x ) + m V (x) + m (x, m) B(p, M) (1.16) (x, m ) px + m = M V (x) + m m = M px x V (x) + M px x V (x) + M px V (x) p = 0 (1.17) (1.17) M V (x) + M px x M (1.17) V 1 V (x) = p (1.18) x = V 1 (V (x)) = V 1 (p) (1.19) x (p, M) = V 1 (p) (1.20) (1.20) M x (p, M) M M x (p) = V 1 (p) (1.21) 14

15 x. U(x, m) = V (x) + m (1.22) (1.22) 20 15

16 1.2 M x px U(x, M px) = V (x) + M px = V (0) +M + V (x) px = U(0, M + V (x) px) }{{} =0 (1.23) (x, M px) }{{} x px (0, M + V (x) px) }{{} v(x) px (1.24) x px V (x) px V (x) px (1.25) V (x (p)) px (p) x (p) 0 V (x)dx = V (x (p)) V (0) = V (x (p)) (1.26) }{{} =0 V (x (p)) px (p) = x (p) 0 V (x)dx px (p) (1.27) 1.3 i = 1, 2,..., I i i x i R + V i 5 p 5 x

17 V p x (p) 1.3: V (x (p)) px (p) 17

18 (x i (p)) I (x 1(p), x 2(p),..., x I (p)) D(p) I x i (p) = I V i 1 (p) (1.28) D i x i (p) px i (p) CS(p) = I ( ) V i (x i (p)) px i (p) (1.29) 1 18

19 x 2 x 1 p CS(p) D 1.4: 19

20

21 2 2.1 y C(y) C C(0) = 0 (2.1) C (y) > 0 (2.2) C (y) > 0 (2.3) (2.1) (2.2) (2.3) C (y) y y π(y) = py }{{} C(y) }{{} (2.4) π 1 21

22 C y 2.1: C 22

23 2 p π (y) = p C (y) = 0 (2.5) p = C (y) (2.6) 1 1 (2.6) 2 23

24 C p y 2.2: 24

25 (2.6) C C 1 C 1 (p) = C 1 (C (y)) = y (2.7) y (p) C 1 (p) (2.8) y (p) p y y (p) π(y (p)) = py (p) C(y (p)) (2.9) C(y (p)) = C(y (p)) C(0) = }{{} =0 π(y (p)) = py (p) y (p) 0 y (p) 0 C (y)dy (2.10) C (y)dy (2.11) 2.3 j = 1, 2,..., J j j y j R + C j π j p (yj (p)) J j=1 (y1(p), y2(p),..., yj (p)) (2.8) J J Y (p) yj (p) = C j 1 (p) (2.12) j=1 Y p j y j (p) P S(p) J j=1 j=1 ( ) pyj (p) C j (yj (p)) (2.13)

26 C p y (p) 2.3: py (p) C(y (p)) 26

27 y 2 y 1 S p P S(p) 2.4: 27

28 z y = F (z) F F (0) = 0 (2.14) F > 0 (2.15) F < 0 (2.16) (2.14) z y (2.15) (2.16) z c y p c c z y y = F (z) (2.17) 28

29 y z F F 1 (y) = z (2.18) y z F 1 (y) z c cz (2.18) cf 1 (y) (2.19) C(y) cf 1 (y) (2.20) C y 4 C (y) = cf 1 (y) > 0 (2.21) 4 29

30

31 3 3.1 p I x i (p ) = J yj (p ) (3.1) j=1 D S D(p) S(p) I x i (p) (3.2) J yj (p) (3.3) j=1 p p ((x i (p )) I, (y j (p )) Jj=1, p ) (3.4) V i (x i (p )) = p i = 1, 2,..., I (3.5) C j(y j (p )) = p j = 1, 2,..., J (3.6) 31

32 x 2 y 2 y 1 S x 1 p D 3.1: 32

33 3.2 ( ) (x i ) I, (y j ) J j=1 (3.7) I x i J y j (3.8) j=1 ( ) (x i ) I, (y j ) J j=1 I V i(x i ) J j=1 C j(y j ) SS((x i ) I, (y j ) J j=1) I J V i (x i ) C j (y j ) (3.9) j=1 ( ) (x i ) I, (y j ) J j=1 I x i < J y j (3.10) j=1 max I V i (x i ) J C j (y j ) (3.11) j=1 sub to I J x i = y j (3.12) j=1 33

34 L((x i ) I, (y j ) J j=1, λ) = I J J V i (x i ) C j (y j ) + λ( y j j=1 j=1 I x i ) (3.13) L((x i ) I, (y j ) J j=1, λ) x i = V i (x i ) λ = 0 i = 1, 2,..., I (3.14) L((x i ) I, (y j ) J j=1, λ) = C y j(y j ) + λ = 0 j = 1, 2,..., J j (3.15) L((x i ) I, (y j ) J j=1, λ) J I = y j x i = 0 λ (3.16) j=1 V i (x i ) = λ i = 1, 2,..., I (3.17) C j(y j ) = λ j = 1, 2,..., J (3.18) I J x i = y j (3.19) j=1 ( ) (x i ) I, (y j ) J j=1, λ 34

35 ((x i (p )) I, (y j (p )) Jj=1, ) p V i (x i (p )) = p i = 1, 2,..., I (3.20) C j(y j (p )) = p j = 1, 2,..., J (3.21) I J x i (p ) = yj (p ) (3.22) j=1 ((x i (p )) I, (y j (p )) Jj=1, ) p ( ) (x i (p )) I, (yj (p )) J j=1 V i C j I x i (p ) = J yj (p ) (3.23) j=1 I p x i (p ) = p I J x i (p ) = p yj (p ) = j=1 J p yj (p ) (3.24) j=1 35

36 SS((x i (p )) I, (yj (p )) J j=1) (3.25) I J = V i (x i (p )) C j (yj (p )) (3.26) = = I V i (x i (p )) I j=1 I p x i (p ) + ( ) V i (x i (p )) p x i (p ) + J p yj (p ) j=1 J j=1 J C j (yj (p )) (3.27) j=1 ( ) p yj (p) C j (yj (p )) (3.28) =CS(p ) + P S(p ) (3.29) (3.9) p 3.3 T > 0 D(r 1 ) = S(r 2 ) (3.30) r 1 = r 2 + T (3.31) (r 1, r 2 ) 36

37 x 2 y 2 y 1 S x 1 p CS(p ) P S(p ) D 3.2: 37

38 r 1 S T r 2 D D(r 1 ) = S(r 2 ) 3.3: T r 1, r 2 38

39 t 1 + t 2 = T (t 1, t 2 ) (t 1, t 2 ) = (T, 0) (t 1, t 2 ) = (0, T ) 1 t 1 1 t 2 p p + t 1 p t 2 t 1 + t 2 = T D(p + t 1 ) = S(p t 2 ) (3.32) (p + t 1 ) = (p t 2 ) + T (3.33) (3.30, 3.31) (r 1, r 2 ) (3.32, 3.33) (p + t 1, p t 2 ) (3.30, 3.31) p + t 1 = r 1 (3.34) p t 2 = r 2 (3.35) T r 1, r 2 t 1 + t 2 = T (t 1, t 2 ) (t 1, t 2 ) p r 1 (= p + t 1 ) r 2 (= p t 2 ) t 1 + t 2 = T (t 1, t 2 ) p (3.34, 3.35) r 1 r 2 (T, 0) (0, T ) ( ) SS (x i (p + t 1 ) I, (yj (p t 2 )) J j=1 = CS(r 1 ) + T D(r 1 ) + P S(r 2 ) (3.36) 39

40 1 (3.36) (3.38) (3.41) (3.41) (3.42) 2 D(r 1 ) = S(r 2 ) (3.37)

41 ( ) SS (x i (r 1 ) I, (yj (r 2 )) J j=1 (3.38) I J = V i (x i (r 1 )) C j (yj (r 2 )) (3.39) = = j=1 I V i (x i (r 1 )) r 1 I I x i (r 1 ) + r 1 J C j (yj (r 2 )) + r 2 j=1 I x i (r 1 ) J yj (r 2 ) r 2 j=1 ( ) V i (x i (r 1 )) r 1 x i (r 1 ) + r 1 D(r 1 ) r 2 S(r 2 ) J ( ) + r 2 yj (r 2 ) C j (yj (r 2 )) j=1 J yj (r 2 ) (3.40) j=1 (3.41) =CS(r 1 ) + (r 1 r 2 )D(r 1 ) + P S(r 2 ) (3.42) =CS(r 1 ) + T D(r 1 ) + P S(r 2 ) (3.43) 41

42 r 1 CS(r 1 ) S p t 1 T t 2 r 2 P S(r 2 ) D D(r 1 ) = S(r 2 ) 3.4: 42

43 4 4.1 Y P p = P (Y ) (4.1) D(p) I x i (p) (4.2) p D X = D(p) X = Y Y = D(p) Y p = P (Y ) Y = D(p) Y = D(P (Y )) (4.3) P D P P < D(p) = a p a > 0 Y = a p p = a Y P (Y ) = a Y 4.2 y J j = 1, 2,..., J j C j j y j 1 P D (y 1, y 2,..., y J ) (4.4) 43

44 y Y = y 1 + y y J (4.5) j J = 4 j Y j = Y x j (4.6) Y 2 = x 1 + x 3 + x 4 (4.7) π j (y j Y j ) = P (y j + Y j ) y }{{} j C j (y j ) }{{} (4.8) π j (y j Y j ) Y j y j j π j(y j Y j ) = dp (y j + Y j ) y j dy j } {{ } C j(y j ) = 0 (4.9) }{{} dp (y j + Y j ) y j } dy {{ j } = C j(y j ) }{{} (4.10) df(a)g(a) da = f (a)g(a) + f(a)g (a) (4.11) (4.10) dp (y j + Y j ) y j dy j =P (y j + Y j ) y j + P (y j + Y j ) 1 (4.12) =P (y j + Y j ) y j + P (y j + Y j ) (4.13) P (y j + Y j ) y j + P (y j + Y j ) = C }{{} j(y j ) }{{} (4.14) 44

45 y j j y j P (4.14) P < 0 P (y j + Y j ) y j + P (y j + Y j ) < P (y j + Y j ) (4.15) 4.3 P (y j + Y j ) y j y j P (y j + Y j ) y j P (y j + Y j ) P (y j + Y j ) = 0 P < 0 P P (y j + Y j ) = 0 j y j P (y j + Y j ) P (y j + Y j ) y j + P (y j + Y j ) = C j(y j ) (4.16) y j = y j P (y j + Y j ) = 0 P (y j + Y j ) = C j(y j ) (4.17) y j = y j 45

46 (y 1, y 2,..., y J ) Y = y 1 + y y J P (Y ) = C j(y j ) (4.18) j 2. P (Y ) = a Y C j (y j ) = cy j Y p j C (y j ) = c p = C j(y j ) = c p = P (Y ) = a Y c = p = a Y Y = a c p = c (4.19) Y = a c (4.20) P (y j + Y j ) y j + P (y j + Y j ) = C j(y j ) (4.21) 1 j Y P (Y ) Y + P (Y ) = C (Y ) (4.22) Y Y Y Y 46

47 a p = 1 2 a c CS c PS a c a 4.1: 47

48 3. P (Y ) = a Y C(Y ) = cy Y p (4.21) }{{} 1 Y + (a Y ) = c (4.23) =P (Y ) Y Y = a c 2 p = P (Y ) = a Y = a a c 2 = a + c 2 (4.24) p = a + c 2 Y = a c 2 (4.25) (4.26) (yj ) J j=1 = (y1, y2,..., yj ) j Y j y j π j (y j Y j) = P (y j + Y j) y j C j (y j ) (4.27) (y j ) J j=1 = (y 1, y 2,..., y J ) j y j 2 J = 2 48

49 (y j ) J j=1 P (Y ) = a Y C j (y j ) = cy j (4.14) P (y j + Y j ) y j + P (y j + Y j ) = C j(y j ) (4.28) Y = y j + Y j = y 1 + y y J da (y 1 + y y J ) dy j y j + a (y 1 + y y J ) = dcy j dy j (4.29) 1 y j + a (y 1 + y y J ) = c (4.30) y j + a (y 1 + y y J ) = c (4.31) a Y c = y j (4.32) (4.32) (y j ) J j=1 (y j ) J j=1 j y j = a Y c (4.33) a Y c a Y c Y j y j = Y J Y J = a Y c (4.34) J + 1 Y = Y + Y J J = a c (4.35) Y = J (a c) J + 1 (4.36) 49

50 p P (Y ) = a Y (4.37) = a J (a c) (4.38) J + 1 J = (1 J J + 1 ) a + = ( J + 1 J + 1 = 1 J + 1 a + J + 1 c (4.39) J J + 1 ) a + J J + 1 c (4.40) J J + 1 c (4.41) p = 1 J + 1 a + J J + 1 c (4.42) Y = J (a c) J + 1 (4.43) J Y p J = 1 p = a c = a + c 2 Y = 1 a c (a c) = (4.44) (4.45) J J p = 1 J + 1 Y = }{{} 0 J J + 1 }{{} 1 a + J J + 1 }{{} 1 c 0 a + 1 c = c (4.46) (a c) 1 (a c) = a c (4.47) 50

51 4.6 X(p) = a p 2 j = 1, 2 p j (p 1, p 2 ) 1 c c (p 1, p 2 ) p 1 < p 2 1 X(p 1 ) = a p 1 2 p 2 < p 1 2 X(p 2 ) = a p 2 1 p 1 = p 2 X(p 1) = a p p 1 < p 2 p 1 = p 2 π 1 (p 1, p 2 ) = p 1 (a p 1 ) c (a p 1 ) (4.48) π 2 (p 1, p 2 ) = 0 (4.49) π 1 (p 1, p 2 ) = π 2 (p 1, p 2 ) = p 1 (a p 1 ) 2 (4.50) p 1 > p 2 π 1 (p 1, p 2 ) = 0 (4.51) π 2 (p 1, p 2 ) = p 2 (a p 2 ) c (a p 2 ) (4.52) 51

52 a CS p = 1 J+1 a + J J+1 c c PS a c a 4.2: 52

53 (p 1, p 2) j = 1, 2 p j < c p j c j = 1, 2 p 1 > p 2 > c 1 1 p 2 > p 1 > c 2 p 2 > p 1 > c 2 2 p 1 > p 2 > c 1 p 1 = p 2 > c 1 2 p 1 (a p 1 ) 2 j = 1, 2 ε > 0 p 2 > p 1 = p 1 ε > c (4.53) p 1 p 1 = p 2 = c

54 54

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

h1_h4.ai

h1_h4.ai 01 02 03 04 05 PS RC RC CSR CSR CSR 10 11 14 15 400 350 300 250 200 150 100 50 0 2011/12 2012/02 2012/04 2012/06 2012/08 2012/10 2012/12 2013/02 2013/04 2013/06 2013/08 2013/10 2013/12 2014/02 2014/04

More information

1 (utility) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utility) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) max x 1,x 2 u(

1 (utility) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utility) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) max x 1,x 2 u( 1 (utilit) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utilit) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) x 1,x 2 u(x 1, x 2 ) s.t. P 1 x 1 + P 2 x 2 (1) (P i :, : ) u(x 1,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

Taro13-第6章(まとめ).PDF

Taro13-第6章(まとめ).PDF % % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1

More information

金融商品取引業の業規制

金融商品取引業の業規制 2009 3 11 2 8 Cf. 4 60 11 1 2 3 4 5 4 56 1 318 44 2 7 147 2005 3 395 5 2006 4 2 34 35 2003 5 1 1 8 3 2 8 1 8 3 15 16 Cf. 1-1 42 1-1 40 2 20 2 21 2 16 14 2 15 8 3 1 2 15 6 10 1-1 45 6 44 3 1 8 3 1 4 16

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2 CSR -

2 CSR - 20312-1819 2 CSR - 3 1 2 3 ( ) 4 - A 5 B C 5. 6 7 8 9 8. - 9. - 58 9 8 25 16, 7 5 2,500 ( ) 0751,920 07125,2000815,700 10 11 10. - - 12 13 - - 14 13. - - 15 1 61 171228 1843 16F 1 80 25 55 ( 3-21-5 http://akan-nt.or.jp

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

(1)2004年度 日本地理

(1)2004年度 日本地理 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12-5.0-5.1-1.4 4.2 8.6 12.4 16.9 19.5 16.6 10.8 3.3-2.0 6.6 16.6 16.6 18.6 21.3 23.8 26.6 28.5 28.2 27.2 24.9 21.7 18.4 22.7 5 1 2 3 4 5 6 7 8 9 10 11 12 2.2 3.5 7.7 11.1

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

Microsoft Word - ランチョンプレゼンテーション詳細.doc

Microsoft Word - ランチョンプレゼンテーション詳細.doc PS1-1-1 PS1-1-2 PS1-1-3 PS1-1-4 PS1-1-5 PS1-1-6 PS1-1-7 PS1-1-8 PS1-1-9 1 25 12:4514:18 25 12:4513:15 B PS1-1-10 PS1-2-1 PS1-2-2 PS1-2-3 PS1-2-4 PS1-2-5 PS1-2-6 25 13:1513:36 B PS1-2-7 PS1-3-1 PS1-3-2

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

(1) (2) 27 7 15 (1) (2), E-mail: bessho@econ.keio.ac.jp 1 2 1.1......................................... 2 1.2............................... 2 1.3............................... 3 1.4............................

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

untitled

untitled 00 H)!!!!!! f 0 9 y0yf0 a 0af0y 0a 6f0f0y 70y6f0f0a 7>0 f 0 f 0y 0 9 0y y 9y 0 y 6 y y 0 y97 f 0 f 0a 0 9 0a a 9a 0 a 6 a a 0 a97 () () () 0 a 0 y6 y y 0

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

ランダムウォークの確率の漸化式と初期条件

ランダムウォークの確率の漸化式と初期条件 B L03(2019-04-25 Thu) : Time-stamp: 2019-04-25 Thu 09:16 JST hig X(t), t, t x p(x, t). p(x, t). ( ) L03 B(2019) 1 / 25 : L02-Q1 Quiz : 1 X(3) = 1 10 (3 + 3 + + ( 3)) = 1., E[X(3)] 1. 2 S 2 = 1 10 1 ((3

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

05›ª“è†E‘¼›Y”†(P47-P62).qx

05›ª“è†E‘¼›Y”†(P47-P62).qx z z z z z pz z x ux z ux z subject Ixp z I p z z z z z L ux z Ixp z L u u i p z i u x z i I xp z x z u u ux z uip z z u u z ui z z u u z z z z u ui z Iuz u u i u z u x x z i z i Ix u x u x z i z i x z

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

実解析的方法とはどのようなものか

実解析的方法とはどのようなものか (1) ENCOUNTER with MATHEMATICS 2001 10 26 (2) 1807 J. B. J. Fourier 1 2π f(x) f(x) = n= c n (f) = 1 2π c n (f)e inx (1) π π f(t)e int dt Fourier 2 R f(x) f(x) = F[f](ξ)= 1 2π F [f](ξ)e ixξ dξ f(t)e iξx

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

( ) FAS87 FAS FAS87 v = 1 i 1 + i

( ) FAS87 FAS FAS87 v = 1 i 1 + i ( ) ( 7 6 ) ( ) 1 6 1 18 FAS87 FAS87 7 1 FAS87 v = 1 i 1 + i 10 14 6 6-1 - 7 73 2 N (m) N L m a N (m) L m a N m a (m) N 73 9 99 18 4-2 - 4 143 2 145 3 37 4 37 4 40 6 40 6 41 10 41 10 13 10 14 4 24 3 145

More information