わが国株式市場のモデルフリー・インプライド・ボラティリティ

Size: px
Start display at page:

Download "わが国株式市場のモデルフリー・インプライド・ボラティリティ"

Transcription

1 IMES DISCUSSION PAPER SERIES Discussion Paper No. 9-J-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

2

3 IMES Discussion Paper Series 9-J * = BSIV MFIV MFIV MFIV 5 MFIV (1) MFIV () MFIV (3) MFIV 1 (4) MFIV VIX JEL classification: G1 G13 G14 * yoshihiko.sugihara@boj.or.jp

4 1 implied volatility : IV = = Black-Scholes implied volatility : BSIV = BSIV BSIV = model free implied volatility : MFIV MFIV 199 Neuberger [199] Dupire [199] Demeterfi et al. [1999] Britten-Jones and Neuberger [] Jiang and Tian [5, 7] Carr and Lee [7a] MFIV MFIV BSIV 5 MFIV MFIV 1

5 1 MFIV VIX VIX MFIV 1 VIX 1 Jiang and Tian [7] VIX MFIV 3 Jiang and Tian [7] MFIV MFIV Nishina et al. [6] Maghrebi [7] [8] Nishina et al. [6] Maghrebi [7] VIX 1 MFIV MFIV [8] VIX 1 MFIV Jiang and Tian [7] MFIV 1 HV HV HV 3 VIX S&P5 1 VIX 6 VIX CBOE [9]

6 [8] Jiang and Tian [7] MFIV VIX MFIV 1 MFIV [8] Jiang and Tian [7] 1 6 MFIV MFIV MFIV 1 MFIV 3 4 MFIV 1 MFIV 3 MFIV 1 t S t t = σ{s u ; u t} S t ds t /S t S t t t T S t,t S t,t = 1 T T t t ( dsu S u ) = 1 T T t t 1 S u d[s, S] u. (1) 3

7 1/(T t) 4 S t,t t S t,t S t,t MFIVar MFIVol σ MFIVar σ MFIVol σ MFIVar = E Q [ S t,t ], () [ ] σ MFIVol = E Q S t,t. (3) Q MFIVar MFIVol σ MFIVol σ MFIVar, (4) MFIVar MFIVol MFIVar VIX MFIVol 3 MFIVar MFIVol MFIVar () K τ (= T t) P (τ, K) C(τ, K) t τ B(t, T ) 4 4

8 1 5 σ MFIVar(t, T ) ( F (t,t ) P (τ, K) dk + τb(t, T ) K F (t,t ) ) C(τ, K) dk. (5) K F (t, T ) t T F (t, T ) = S t /B(t, T ) (5) OTM OTM (5) MFIVol Carr and Lee [7a,b] 6 τ σ MFIVol π P (τ, F (t, T )) + C(τ, F (t, T )) τ F (t, T )B(t, T ) + 1 B(t, T ) π 8τF (t, T ) + K>F (t,t ) K<F (t,t ) I 1 (ln I (ln K F (t,t ) K F (t,t ) ) I 1 ( ln K K ) I ( ln K K K F (t,t ) K F (t,t ) ) P (τ, K)dK ) C(τ, K)dK. (6) 5 (5)

9 I ν ν 1 I ν (x) = = 1 ( x ) ν+n n!γ(ν + n + 1) n= 1 ( x ) ν π πγ(ν + 1 ) cosh(x cos θ) sin ν θdθ, (ν >.5) Γ Fitz and Gatheral [5] (6) ATM BSIV 3 BSIV MFIV MFIV BSIV MFIV BSIV BSIV BSIV MFIV 1 3 MFIV (5) (6) MFIV MFIV (5) (6) Jiang and Tian [7] VIX 6

10 1 BSIV MFIV BSIV MFIV Jiang and Tian Jiang and Tian [7] BSIV BSIV = (5) (6) MFIV BSIV F (t, T ) 7 BSIV 3 BSIV 7 (5) F (t, T ) 1 BSIV F (t, T ) 7

11 1 MFIVar 被積分関数値 1.4E-5 1.E-5 1.E-5 8.E-6 6.E-6 4.E-6.E-6 フォワードATM.E+ 11, 13, 15, 17, 19, 1, 権利行使価格 ( 円 ) MFIVar ATM MFIVar OTM (5) (6) MFIV Jiang and Tian [7] K θ(> ) K i = F (t, T )e iθ (i = i max, i max + 1,, i max ), (7) 8

12 [K min = F (t, T )e i maxθ, K max = F (t, T )e i maxθ ] i max ϵ(> ) [ C(τ, Ki ) i max = arg max i> Ki (5) σ MFIVar(τ) erτ τ + erτ τ (6) j=1 π e rτ σ MFIVol (τ) {C(τ, K ) + P (τ, K )} τ K e + rτ π 1 K i 1 K I (ln i 8τK i= i max + e rτ π i max K j K j 1 8τK j=1 < ϵ and P (τ, K i) K i ] < ϵ, (8) { K i 1 K i P (τ, Ki ) + P (τ, K } i 1) K i= i max i Ki 1 i max { K j K j 1 C(τ, Kj ) + C(τ, K j 1) Kj Kj 1 + I (ln }, (9) ) ) K i K K I 1 (ln i K P (τ, K i ) K i Ki ) ) K i 1 K K I 1 (ln i 1 K P (τ, K i 1 ) K i 1 Ki 1 ) ) Kj Kj I 1 (ln K I (ln K C(τ, K j ) K j Kj ) ) Kj 1 Kj 1 I 1 (ln K I (ln K + C(τ, K j 1 ) K j 1 Kj 1, MFIV F (t, T ) (9) (1) Jiang and Tian [7] (1) 9

13 θ =.1 ϵ = VIX MFIV VIX CBOE S&P5 VIX VIX MFIV σ VIX = [ (T t)b(t, T ) i P (τ, K i ) K Ki i + i> ] C(τ, K i ) K Ki i 1 ( ) F (t, T ) 1, T t K (11) K i (i =, ±1, ±,... ) K i K i = (K i+1 K i 1 )/ K F (t, T ) VIX MFIV ATM (11) (5) VIX (5) 3 1 VIX VIX 3 1 MFIVar VIX 3 7 VIX 1% % VIX 199 1

14 VIX VIX 指数 (%) S&P VIX 指数 8 7 ( 参考 )S&P5 指数 ( 右軸 ) /1 /1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 月 VIX CBOE S&P5 S&P VIX S&P5 VIX VIX VIX VIX VIX MFIV MFIV 9 MFIV

15 1 1 1 LIBOR MFIV OTM 7 1 5, MFIV 5 MFIV LIBOR MFIV

16 3 OTM 5 銘柄数 ( 権利行使価格数 ) 3 年 4 年 5 年 6 年 7 年 満期までの期間 ( ヶ月 ) MFIV 6 7 MFIV MFIV C(τ, K) [max(, Se δτ Ke rτ ), Se δτ ] P (τ, K) [max(, Ke rτ Se δτ ), Ke rτ ] (1) BSIV 13

17 4 MFIV 米イラク攻撃 (MFIV) 5% 45% 4% 35% 3% 5% % 15% 中国抗日デモライブドア問題 MFIVol MFIVar ( 参考 ) 日経平均株価 ( 右軸 ) 中東情勢の悪化北朝鮮テホ ト ン発射 上海発世界同時株安 サブプライム問題 ( 株価 ) 19, 17, 15, 13, 11, 9, 1% 7, 3/4 3/1 4/4 4/1 5/4 5/1 6/4 6/1 7/4 7/1 月 MFIV MFIV MFIV MFIV 17 MFIV 1% 5% 1 MFIV 4 5 MFIV 1% 5% MFIV MFIV 7 MFIV 5% 17 MFIVol MFIVar (4) MFIV ATM BSIV ATM BSIV MFIVol 14

18 MFIV MFIVar , , , , , , 18 MFIVol , , , , , , 18 % MFIV MFIV MFIVar MFIVol VIX MFIV VIX 15

19 5 BSIV 5% 5% 4% BSIV MFIVar MFIVol 4% BSIVs MFIVar MFIVol 3% 3% % % 1% マネネス ( 原資産価格 権利行使価格 1) 1% ターム ( ヶ月 ) BSIV MFIV BSIV MFIV BSIV BSIV MFIV BSIV MFIV MFIVol MFIVar BSIV BSIV MFIV MFIV BSIV MFIV BSIV ATM BSIV ±1% BSIV MFIV BSIV BSIV 16

20 6 MFIVar MFIVol ATM BSIV 6% 5% 4% 3% MFIVol MFIVar ATM の BSIV % 1% 4/1 4/15 4/9 5/13 5/7 6/1 6/4 7/8 7/ 8/5 8/19 9/ 9/16 日 BSIV ±1% BSIV 1 integrated realized volatility: IRV IRV (1) σ IRV (t, T ) = S t,t (13) IRV S t,t t T N i t i (i = 1,,, N; t = t, T = t N ) i RV σ RV (t i) IRV σ IRV(t, T ) 1 T t N σrv (t i ) (14) MFIV () (3) MFIV IRV i=1 17

21 σ IRV σ MFIVar σ IRV σ MFIVol 1 IRV MFIV t IRV 1 MFIV 1 T t 1 t = σ IRV (t (T t), t) σ MFIVar (t, T ) t = σ IRV (t (T t), t) σ MFIVol (t, T ) 1 MFIV IRV t = σ IRV (t, T ) σ MFIVar (t, T ) t = σ IRV (t, T ) σ MFIVol (t, T ) 19 MFIV IRV MFIV IRV VIX S&P5 Carr and Wu [7] Bollerslev and Zhou [7] 1 σ MFIVar > σ IRV 5 IRV MFIV RV 18

22 7 (1) () 観測時点プレミアム 実現プレミアム.5. 観測時点プレミアム 実現プレミアム 確率密度.15.1 確率密度 プレミアム (% ポイント ) プレミアム (% ポイント ) 1 7 1, % % 1% 6% Hansen and Lunde [4] RV

23 4 BSIV BSIV MFIV MFIV MFIV 8 8 (1) MFIVar () MFIVol.16 確率密度.14 確率密度 ヶ月物 3 ヶ月物 6 ヶ月物 ヶ月物 3 ヶ月物 6 ヶ月物 % 15% % 5% 3% 35% 4% 45% 5% MFIVar の水準 1% 15% % 5% 3% 35% 4% 45% 5% MFIVol の水準

24 MFIV MFIVar 1 1 MFIVar 13% 1% 6% 8% % 4% MFIVol MFIVar 1

25 9 MFIVar 35% ライブドア問題 米金融政策不透明感 ゼロ金利政策解除 イスラエル軍レバノン攻撃 3% 5% % 15% 1% 6/1 6/ 6/3 6/4 6/5 6/6 6/7 6/8 6/9 6/1 6/11 6/1 5% 上海発世界同時株安 米サブプライム問題 45% 4% 35% 3% 5% % 15% 1% 7/1 7/ 7/3 7/4 7/5 7/6 7/7 7/8 7/9 月 月 MFIVar 1 3 6

26 1 (1) MFIVar () MFIVol.4 確率密度.8 確率密度.3. 順カーブ 逆カーブ それ以外.6.4 順カーブ 逆カーブ それ以外.1. 1% 14% 18% % 6% 3% 34% 38% 4% 46% 5% 1% 14% 18% % 6% 3% 34% 38% 4% 46% 5% % Litterman and Scheinkman [1991] Heston [1993] 1 CEV Gatheral [8] 5 MFIV MFIV 3

27 11 (1) MFIVar () MFIVol a. 4 x x b c #1 # # #1 # #3 c. #1 MFIV MFIV 1 RV RV MFIV 4

28 σ MFIVar(t, T ) = α 1 + σ MFIVol (t, T ) = α + m ξ i σrv (t i ) + ε 1, (15) i= m ζ i σ RV (t i ) + ε. (16) i= α 1, α ξ i, ζ i (i =,, m) RV ε 1, ε MFIV 3 1 RV 3 t RV m = 1 RV 1 MFIV 4 α i RV ξ i, ζ i α ξ i, ζ i i = 5 1 i = 6 ξ i, ζ i m = 5 (15) (16) RV t ξ i, ζ i 5% 3 RV MFIV RV MFIV 1 3 (15) (16) α 1, α ξ i, ζ i 1 m =

29 4 ξ m = MFIVar (ξ i ) MFIVol (ζ i ) (i ) α 5.18 (8.93) 17.8 (6.68) (6.15) 3.5 (.3) 5.55 (.9) 6.6 (.33) 6.6 (5.7) (4.8) 4.58 (3.95).76 (.6) 1.94 (.5) 1.55 (.8) (5.88) 5.58 (4.4) (4.5) 1.77 (.7) 1.4 (.5).95 (.9) 3.57 (5.9).8 (4.43) 15.3 (4.8) 1.39 (.7) 1.1 (.6) 1.3 (.9) 3.75 (5.98) (4.48) (4.1) 1.1 (.7).94 (.6).79 (.3) (5.98) (4.48) 1.58 (4.1).96 (.7).7 (.6) 1.7 (.3) 5.8 (5.98) (4.47) 9.68 (4.1).84 (.7).54 (.6).5 (.3)* (5.98)* 6.96 (4.47)* 8.9 (4.1). (.7)*.4 (.6)*.13 (.3)* (6.)* 8. (4.51)* 5.7 (4.15)*.48 (.7)*.54 (.6).18 (.3)* (6.)* 8. (4.5)* 9.51 (4.15).51 (.7)*.4 (.6)*.36 (.3)* 9.98 (6.) (4.51) 7.3 (4.15)*.76 (.7).63 (.6).5 (.3)* (6.3) 1.43 (4.51) 8.1 (4.16).74 (.7).55 (.6).4 (.3)* (6.) 11.8 (4.51) 7.86 (4.15)*.71 (.7).7 (.6).61 (.3) (6.3) 1.1 (4.51) 8.64 (4.16).51 (.7)*.7 (.6)*.74 (.3) (6.6) 9.79 (4.54) 7.31 (4.18)*.63 (.8).55 (.6).66 (.3) (6.7) 1.35 (4.54) 9.6 (4.19).4 (.8)*.4 (.6)*.53 (.3)* (6.9) 1.46 (4.56) 11.5 (4.).64 (.8).48 (.6)*.86 (.3) (6.9)* 9.35 (4.56) 7.1 (4.)*.9 (.8)*.6 (.6).38 (.3)* (6.1) 1.33 (4.56) (4.1).55 (.8).56 (.6).57 (.3)* (6.3)* 1.3 (4.51) 8.46 (4.16).9 (.7)*.49 (.6)*.7 (.3)* (6.)* 7.67 (4.49)* 7.37 (4.13)*.3 (.7)*.33 (.6)*.4 (.9)* 1.47 (5.8)* 8.33 (4.36)* 7.31 (4.1)*.4 (.6)*.45 (.5)*.64 (.9) * 95% ξ i % ζ i % 1 ξ i, ζ i t m = 5 (1) ξ i t MFIVar () ζ i t MFIVol ゼロである - 5% 有意水準 ゼロではない ヶ月 3 ヶ月 6 ヶ月 ラグの日数 (i 日 ) 1 ヶ月 3 ヶ月 6 ヶ月 ゼロである -4-5% 有意水準 ゼロではない ラグの日数 (i 日 ) ξ i, ζ i t 5% 6

30 MFIV 3 VIX VDAX VDAX DAX VIX MFIVar VIX VDAX 3 6 MFIVar Granger 5 MFIV MFIV 4 VDAX VDAX VIX 7

31 13 MFIVar VIX VDAX 5 (%) 4 3 わが国 MFIVar 米国 VIX ドイツ VDAX 1 3/4 3/1 4/4 4/1 5/4 5/1 6/4 6/1 7/4 ( 月 ) VIX CBOE VDAX 14 MFIVar VIX VDAX (1) () 1.9 相関係数.8 相関係数 日 MFIVar と米 VIX( 日本基点 ).8.7 日 MFIVar と米 VIX( 日本基点 ) 日 MFIVar と独 VDAX( 日本基点 ) 独 VDAX と米 VIX( ドイツ基点 ).6.4. 日 MFIVar と独 VDAX( 日本基点 ) 独 VDAX と米 VIX( ドイツ基点 ).6-5 日 -4 日 -3 日 - 日 -1 日 日 +1 日 + 日 +3 日 +4 日 +5 日 日数差 日 -4 日 -3 日 - 日 -1 日 日 +1 日 + 日 +3 日 +4 日 +5 日日数差 MFIV VIX VDAX 15 1 VIX VDAX VDAX VIX CBOE VDAX 8

32 5 MFIVar VIX VDAX 1 5.3* 89.97* 6.47* 6.67* 31.5* 8.* 6.39* 1.18* 11.6* 68.86* 48.65* 7.86* F 1% VIX CBOE VDAX MFIV t MFIVar t 1 (t 1 > t) t (t > t 1 ) 5 σmfivar(t, t 1, t ) = E t S t1,t, (17) MFIVar MFIVar t 1 t MFIVar t MFIVar E t1 S t1,t = E t S t1,t + ε t1 t, (18) ε t1 t N(µ t1 t, (t 1 t)v ). µ t1 t (t 1 t)v t t 1 t 1 (18) 5 MFIVol MFIVar 9

33 (18) (18) MFIVar (18) t T m n T = t + mn (1) S t,t+nm = 1 n 1 S t+im,t+im+m, (19) n t i= E t S t,t+nm = σmfivar(t, t + nm) = 1 n 1 E t S t+im,t+im+m, () n (18) Campa and Chang [1995] Mixon [7] σmfivar (t, t + m) 1 n 1 [ σ n MFIVar (t + im, t + im + m) σmfivar(t, t + m) ] i= i= = α + β[σ MFIVar(t, t + nm) σ MFIVar(t, t + m)] + ε, (1) ε = n 1 i=1 ε im (1) α =, β = 1 MFIVar ε ε im Newey and West [1987] t F 6 m, n 6 α, β α β m 1 t m, n α = 6 Andrews [1991] AR(1) 3

34 6 1 m n α β F (.14) (.914) (.14) (.1151) (.1) (.141) ** (.9) (.111) (.7) (.16) *.436 (.6) (.889) α, β α = β = 1 5% F α = β = 1 1% Newey and West [1987] (m, n) = (3, ) β = 1 F (m, n) = (, 3) α = β = MFIV 6 MFIV 4 MFIV MFIV (1) MFIV 31

35 () (3) (4) 5 1 (5) BSIV (6) MFIV 1 (7) MFIV VIX VDAX 1 (8) MFIV MFIV VIX MFIV MFIV 3 BSIV 3 BSIV MFIV MFIV MFIV MFIV 3

36 1 MFIVar 1 F (t, T ) = x d = σ(t, )dw t + (e x 1)[µ(dx, dt) ν(dx, t)dt], (A-1) 1 dw t σ(t, ) t x µ(x, t) = 1 x = ln( / ) x t µ(x, t) ν(x, t) J t = t F s (e x 1)µ(dx, ds), (A-) Ẽ s µ(dx, dt) = Ẽsν(dx, t)dt, ( s < t), T - Ẽ t [ ] = Ẽ[ ] = σ(f s ; s t) ν(x, t) ν(, t) =, (e x 1)ν(x, t)dx <, t [, ), (A-3) MFIVar σ MFIVar(t, T ) ( Ft P (τ, K) dk + τb(t, T ) K C(τ, K) K ) dk, (A-4) 33

37 f( ) x f(y) (y > ) f(y) = f(x)+f (x)(y x)+ x f (K)(K y) + dk + f( ) x, y y f(y) f(x) = 1{y x} f (u)du 1{x > y} x y [ f(y) = f(x) + 1{y x} f (x) + x 1{x > y} u x x = f(x) + f (x)(y x) + 1{y x} = f(x) + f (x)(y x) + 1{y x} = f(x) + f (x)(y x) + x y ] f (v)dv du [ f (x) y x y x f (v) x u y v x f (K)(y K) + dk. (A-5) x y ] f (v)dv du f (u)du, dudv + 1{x > y} (y v)f (v)dv + 1{y < x} (y v) + f (v)dv + v = K (A-5) x x y x (v y) + f (v)dv, y v f (v) dudv y (v y)f (v)dv 3 f(f T ) V t = B(t, T )Ẽtf(F T ) B(t, T ) 34

38 C(τ, K), P (τ, K) V t = f( )B(t, T ) + Ft B(t, T )Ẽt f (K)P (τ, K)dK + f (K)C(τ, K)dK. (A-6) [ ln F ] Ft T P (τ, K) C(τ, K) = dk + dk, (A-7) K K (A-5) x = t T - Ẽ t f(f T ) = f( ) + f ( )(ẼtF T ) +Ẽt Ft f (K)(K F T ) + dk + Ẽt f (K)(F T K) + dk, T - V t = f( )B(t, T ) + Ft f (K)P (τ, K)dK + f (K)C(τ, K)dK, (A-6) f(x) = ln x (A-6) Ẽ t ln F T = ln Ft P (τ, K) dk K C(τ, K) K dk, (A-7) 35

39 4 MFIVar MFIVar (5) σ MFIVar(t, T ) = MFIVar (A-3) ( Ft P (τ, K) dk + (T t)b(t, T ) K C(τ, K) K ) dk + ε, ( (dfs ) ) 3 ε o. (A-8) F s σ MFIVar(t, T ) = = = 1 T tẽt 1 T tẽt 1 T tẽt T t T t T t ( dfs F s ( 1 F s ) ) d[f, F ] s [ σ (s, )ds + ] (e x 1) µ(dx, ds). ln F s d ln F s = df s F s 1 σ (s, )ds + σ (s, ) σ MFIVar(t, T ) = T tẽt + 1 T tẽt [ ln(f s e x ) ln F s F ] s ex F s µ(dx, ds) F s [ ln F T T t ] + T df s T tẽt t F s ( e x 4e x + x + 3 ) µ(dx, ds). T - 36

40 1 (A-7) σ MFIVar = = (T t)b(t, T ) + 1 T tẽt [ Ft T (T t)b(t, T ) (A-4) t [ Ft P (τ, K) C(τ, K) dk + K K ( e x 4e x + x + 3 ) µ(dx, ds) P (τ, K) dk + K C(τ, K) K ] dk ] dk + ε, ε 3 e x = 1 + x + x / + o(x 3 ) ε = 1 T tẽt = 1 T tẽt 1 T tẽt T t T t T t ( e x 4e x + x + 3 ) µ(dx, ds) { (1 + x + x + o(x 3 )) 4(1 + x + x / + o(x 3 )) + x + 3 } µ(dx, ds) o(x 3 )µ(dx, ds). (A-8) 37

41 MFIVol Carr and Lee [7b] MFIVol σ MFIVol (t, T ) = E Q 1 T t T t ( ) dsu S u F t, (A-9) τ σ MFIVol π P (τ, ) + C(τ, ) τ B(t, T ) 1 π + B(t, T ) 8τ + K< I K> I 1 ( ln ( ln ) K I 1 (ln K K ) K I (ln K K ) K ) K P (τ, K)dK C(τ, K)dK, (A-1) 1 q 1 q = π 1 e sq s ds, s (A-11) ( ) 1 π = Γ = e s s ds. π = [ ] (1 e s ) 1 e s ds = s s + 1 e s ds = s 3 1 e s ds. s 3 38

42 s = qt (A-11) 1 e qt π = qdt = 1 (qt) 3 1 e qt dt. q t 3 σ W t T d = σ(t, )dw t, (A-1) t T X T X T X T = X T = λ λ T p ± (λ) = 1 df s = ln F T, (A-13) ( ) dfs. (A-14) t F s T t F s ( 1 ± ) 1 8λ, (A-15) σ W Ẽ t e λ X T = Ẽte p± (λ)x T. (A-16) x, y C 1, u(x, y) u du = u x dx + 1 u u d[x, x] + x y dy, 39

43 X t dx t = d 1 d X t, x = X t, y = X t du(x t, X t ) = x u(x t, X t )dx t + 1 x u(x t, X t )d X t + y u(x t, X t )d X t = 1 { 1 x u(x t, X t )d + x + y 1 } u(x t, X t )d X t, x { } 1 u x + u y 1 u x =, u T - p, λ u(x, y) = e px+λy 1 p + λ 1 p =, (A-15) p ± (λ) p = p ± (λ) u = e p± (λ)x+λ X X t = X t = Ẽ t e p± (λ)x T +λ X T = e p± (λ)x t +λ X t = 1. Ẽ 1 1 T - σ W X X (A-16) 3 (A-11) q = X T (A-16) σ W Ẽ t X T = Ẽt [ 1 ] 1 e p(λ)x T π λ. (A-17) λ θ ± = 1 p ± θ ± = θ ± [ 1 Ẽ t X T = Ẽt π ± ] θ ± (λ) 1 ex T p ± (λ) λ dλ λ. (A-18) 4

44 θ ± (λ) = 1 ( ) 1 1. (A-19) 1 8λ (A-16) Ẽte p (λ)x T = Ẽte p+ (λ)x T ) Ẽ t e λ X T = Ẽte p+ (λ)x T + θ (λ) (Ẽt e p (λ)x T Ẽte p+ (λ)x T θ ± (λ)e p± (λ)x T, = Ẽt ± (A-11) q = X T Ẽ t X T = = = = [ 1 1 e λ X T π Ẽt λ λ 1 1 Ẽte λ X T π λ dλ λ ± θ± (λ) Ẽt 1 π 1 π Ẽt ± ] dλ ± θ± (λ)e p± (λ)x T λ λ θ ± (λ) 1 ep± (λ)x T λ λ dλ, dλ ( ± θ ± (λ) = 1 (A-18) 4 Carr and Lee [7b] ) (A-17) (A-18) σ W σ W (A-17) (A-18) Carr and Lee [7b] (A-18) (A-17) (A-18) MFIVol 4 MFIVol MFIVol (A-1) 41

45 α e αx T (A-6) f f(x) = x α Ft Ẽ t FT α = Ft α + α(α 1) P (τ, K)K α dk + α(α 1) α = p ± (λ) α(α 1) = λ [ (FT ) ] p ± (λ) C(τ, K)K α dk, Ẽ t e p± (λ)x T = Ẽt [ Ft = 1 λ ( P (τ, K) K K ) p ± (λ) C(τ, K) dk + K ( K ) ] p ± (λ) dk. MFIVol (A-18) σ MFIvol = 1 τ Ẽ t X T = = 1 τπ Ft ± dλ θ± (λ) λ w(k) P (τ, K)dK + [ Ft ( P (τ, K) K K + ) p ± (λ) dk C(τ, K) K w(k) C(τ, K)dK, ( K ) ] p ± (λ) dk w(k) K k = ln(k/ ) w(k) = = = = 1 K τπ 1 K τπ e k ± ( K F t e k τπ e k θ ± (λ) λ ( K ) p± (λ) dλ ) 1 ± Ft e k (M N). τπ ( cosh λ ( ) θ ± ± 1 8λ (λ) K dλ λ k 1 8λ ) dλ ( sinh k ) 1 8λ dλ λ(1 8λ) 4

46 M u = 1 8λ, v = 8λ 1 M = = 1/8 = ( cosh 1 k 1 8λ λ ) dλ cosh k 1 8λ du + λ u cosh ku 1 u du + 1/8 ( cosh i k 8λ 1 λ ) v cos kv 1 + v dv. 1 L 1 (z) 1 1 I 1 (z) 1 L 1 (z) = 4 u cosh(uz) π du 1 u = I 1 (z) 4 ( ) u π 1 cos(uz)du, 1 + u M = π I 1 ( ) k + cos(ku)du, δ(x) dk du cos(ku) = lim u sin(ku) dk = arctan k k dv + = π, ϕ(x); ϕ(x) M ( x) dkϕ(k) du cos(ku) πϕ() = lim u {ϕ(k) ϕ()} sin(ku) dk k. y = ku, u = 1/ε L > [ L lim ε + L + ] (ϕ(yε) L L ϕ()) sin(y) y dy L M( arctan L + π) + lim ε L {ϕ(yε) ϕ()} sin(y) y dy. L 1 L 43

47 ε lim sup ε L y L = lim =. sup ε L y L L ϕ(yε) ϕ() L ϕ(yε) ϕ() arctan L sin(y) dy y M M = cos(ku)du = πδ(k), π I 1 ( ) k + πδ(k). N L (z) I (z) L (z) = π k N = = = 1 = I (z) π sinh(uz) du 1 u ( sinh k ) 1 8λ dλ λ(1 8λ) 1 sinh ku du + 1 u ( ) π k I, (k ) k = sinh = N =. w(k) k sin(uz) du, (z ) 1 + u sin kv 1 + v dv w(k) = 1 { ( ) ( ) } π K τ e k k k 4δ(k) + I 1 I 1(k ), (k ) 44

48 k < w(k) = { π 8τK 3 { π 8τK 3 I 1 (ln π τ I (ln ) K I (ln K )}, (K > ) 1 δ(k), (K = F K t ) ) K I 1 (ln K )}. (K < ) K = k = dk = dk/k σ MFIVol K= = = = = = Ft π τ K w(k) P (τ, K) K { { π τ π τ π τ (A-1) dk K + K w(k) C(τ, K) dk K K dkδ(k) C(τ, e k ) + e k e k + dkδ(k) C(τ, e k ) { C(τ, Ft ) + 1 e k + P (τ, ) + C(τ, ), B(t, T ) dkδ(k) C(τ, } e k ) e k dkδ(k)(1 e k ) dkδ(k)(1 e k ) ( C(τ, ) = C(τ, ) B(t, T ) = C(τ, F ) t) + P (τ, ). B(t, T ) } } 45

49 3 T t T HV HV HV 7 HV HV 1 t T (> ) V VOS (t, T ) ] B(t, T )E [ S Q t,t V VOS (t, T ). (A-) (A-) 1 (A-) 7 Carr and Lewis [4] 46

50 V VOS (t, T ) V VOS (t, T ) = E Q [ S t,t ] = σ MFIVol (t, T ), (A-1) MFIVol V VAS (t, T ) V VAS (t, T ) = E Q [ S t,t ] = σ MFIVar(t, T ), (A-) MFIVar MFIV (5) (6) 1 OTM OTM (5) σmfivar(τ) wi P P (τ, K i ) + wi C C(τ, K i ). i:k i F (τ) i:k i >F (τ) (A-3) [ e wi C = wi P r(τ)τ K = τk i ], (A-4) [a] a K K 47

51 w C i, w P i ATM [K i, K i+1 ) wat P M = er(τ)τ ( K i ), τft wat C M = er(τ)τ (K i+1 ). τft (A-5) ATM (5) C(τ, K) = P (τ, K) + Se δτ Ke rτ x σ MFIVar(t, T ) [ x P (τ, K) τb(t, T ) K dk + + τ x C(τ, K) K ( 1 x + ln x ] dk ), (A-6) x (A-6) MFIVol (6) σ MFIVol w S [P (τ, F (t, T )) + C(τ, F (t, T ))]+ w i P P (τ, K i )+ w i C C(τ, K i ). i:k i <F (τ) i:k i >F (τ) (A-7) 48

52 [ w S 1 = [ w i P = π [ w i C = π ], π F (t,t ) τ [ 8τKi 3F (t,t ) I (ln 8τK 3 i F (t,t ) [ I 1 (ln K i F (t,t ) K i F (t,t ) ) ( I 1 ln ) ( I ln K i F (t,t ) K i F (t,t ) )] ] K, ] )] K.. (A-8) w S ATM ATM w P i K < F (t, T ) w C K > F (t, T ) (A-9) w P, w C w S ATM 49

53 Andrews, D.W.K., Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation, Econometrica, 59(3), pp , Bollerslev, T. and H. Zhou, Expected Stock Returns and Variance Risk Premia, Finance and Economics Discussion Series, Division of Research and Statistics and Monetary Affairs, Federal Researve Board, Washington D.C., 11, 7. Britten-Jones, M. and A. Neuberger, Option Prices, Implied Price Processes and Stochastic Volatility, Journal of Finance, 55, pp ,. Campa, J.M and P.H.K. Chang, Testing the Expectations Hypothesis on the Term Structure of Volatility in Foreign Exchange Options, Journal of Finance, 5(), pp , Carr, P. and R. Lee, Realized Volatility and Variance: Options via Swaps, Journal of Risk, pp , 7a. Robust Replication of Volatility Derivatives, Discussion Paper, Bloomberg LP and University of Chicago, 7b. Carr, P. and K. Lewis, Corridor Variance Swaps, Risk, 17(), pp. 67 7, 4. Carr, P. and L. Wu, Variance Risk Premiums, Review of Financial Studies, (3), pp , 7. CBOE, The CBOE Volatility Index - VIX, Chicago Board Options Exchange, 9. Demeterfi, K., E. Derman, M. Kamal, and J. Zou, More Than You Ever Wanted To Know About Volatility Swaps, Quantitative Strategies Research Notes, Goldman Sachs, March, Dupire, B., Arbitrage Pricing with Stochastic Volatility, Societe Generale, 199. Fitz, P. and J. Gatheral, Valuation of Volatility Derivatives as an Inverse Problem, Quantitative Finance, 5, pp , 5. 5

54 Gatheral, J., Further Development in Volatility Derivatives Modeling, Briefing Paper, Quant Congress USA 8, 8. Hansen, P.R. and A. Lunde, Realized Variance and IID Market Microstructure Noise, Brown University, Department of Economics, 4. Heston, S., A Closed Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, The Review of Financial Studies, 6, pp , Jiang, G.J. and Y.S. Tian, The Model-Free Implied Volatility and Its Information Content, Review of Financial Studies, 18, pp , 5. Extracting Model-Free Volatility from Option Prices: An Examination of the VIX Index, Journal of Derivatives, Spring, pp. 35 6, 7. Litterman, R. and J. Scheinkman, Common Factors Affecting Bond Returns, Journal of Fixed Income, 1(1), pp , Maghrebi, N., An Introdustion to the Nikkei 5 Implied Volatility Index, Kinzai Riron, Wakayama Economic Review, 336, pp , 7. Mixon, S., The Implied Volatility Term Structure of Stock Index Options, Journal of Empirical Finance, 14, pp , 7. Neuberger, A., Volatility Trading, Working Paper, London Business School, 199. Newey, W.K. and K.W. West, A Simple Positive Semi-Definite Heteroskedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica, 55, pp , Nishina, K., N. Maghrebi, and M. Kim, Stock Market Volatility and the Forecasting Accuracy of Implied Volatility Indices, Discussion Papers in Economics and Business, Graduate School of Economics and Osaka School of International Public Policy, No.6-9, 6. 51

55

わが国株式市場のモデルフリー・インプライド・ボラティリティ

わが国株式市場のモデルフリー・インプライド・ボラティリティ BSIV MFIV MFIV MFIV 5 MFIV 1 MFIV MFIV 3 MFIV 1 4 MFIV VIX E-mail: yoshihiko.sugihara@boj.or.j / /1.4 73 1. imlied volatility; IV Black-Scholes imlied volatility; BSIV BSIV BSIV 1 model free imlied volatility;

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6]) Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

第一次大戦後の日本における国債流通市場の制度改革

第一次大戦後の日本における国債流通市場の制度改革 IMES DISCUSSION PAPER SERIES Discussion Paper No. 2009-J-23 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 103-8660 2-1-1 http://www.imes.boj.or.jp IMES Discussion Paper Series 2009-J-23 2009

More information

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1 . ( + + 5 d ( + + 5 ( + + + 5 + + + 5 + + 5 y + + 5 dy ( + + dy + + 5 y log y + C log( + + 5 + C. ++5 (+ +4 y (+/ + + 5 (y + 4 4(y + dy + + 5 dy Arctany+C Arctan + y ( + +C. + + 5 ( + log( + + 5 Arctan

More information

kanatani0709wp.dvi

kanatani0709wp.dvi Recent Studies on Estimation of Volatility in the Presence of Market Microstructure Noise 2009 9 RV MMN 21730174 522-8522 1-1-1 HP: http://www.biwako.shiga-u.ac.jp/sensei/t-kanatani/ Email: t-kanatani@biwako.shiga-u.ac.jp

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

Tomorrow Next th draft version MEW SWET

Tomorrow Next th draft version MEW SWET Research Center for Price Dynamics A Research Project Concerning Prices and Household Behaviors Based on Micro Transaction Data Working Paper Series No.7 Tomorrow Next を用いた金融政策の分析 青野幸平 June 14, 2012 4th

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

dvipsj.8449.dvi

dvipsj.8449.dvi 9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A) Discussion Paper Series A No.425 2002 2 186-8603 iwaisako@ier.hit-u.ac.jp 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

MFIV となる Volatility Index Japan(VXJ) を日次で算出 公表している VIX 等と同様にTは約 1 ヶ月に設定 近似ターゲットは V t である 現行バージョンの計算方法は CBOE 方式に準じているが CSFI ではより高い精度で V t を近似する方法を研究開発中

MFIV となる Volatility Index Japan(VXJ) を日次で算出 公表している VIX 等と同様にTは約 1 ヶ月に設定 近似ターゲットは V t である 現行バージョンの計算方法は CBOE 方式に準じているが CSFI ではより高い精度で V t を近似する方法を研究開発中 日本版ボラティリティ インデックス VXJ の時系列特性 大阪大学金融 保険教育研究センター石田功 1 ボラティリティ インデックス 資産価格のボラティリティが デリバティイブの価格付けやヘッジ アセット アロケーション等 投資意思決定のあらゆる分野においてキーとなる重要な要素であることはいうまでもない しかしながら ボラティリティは直接観測できないため 資産価格の過去の時系列データから統計的に推定したものや

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information