untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 ECOH/YG No On the Role o Spectral Width and Shape Parameters in Control o Wave Height Distribution Yoshimi GODA and Masanobu KUDAKA ( Distributions o individual wave heights approximately ollow the distribution regardless o the bandwidth o requency spectra, even though Longuet-Higgins (95) derived the theory on the condition o narrowband spectrum. The spectral width parameter does not aect the wave height distribution, but it is merely a measure o the minuteness o data sampling interval relative to mean wave period or waves in the sea. A spectral shape parameter introduced by Rice (945) or wave envelope amplitude is a better measure o describing a slight departure o wave height distribution rom the. Several sets o previous wave simulation data and ield measurement records have been re-analyzed to veriy the above indings. Key Words: Wind waves; signiicant wave; Wilson s ormulas; minimum duration 95 Longuet-Higgins (95) H max H /3 H (99) Goda (97) (974) H /3 m () 5% H 4 η = rms m () / η rms m () n = n mn = ) d () ) () 96 (wave rider)

2 () H m (3) T (4) T T = (3) / ( m/ m ) T = (4) m/m ) = A : m min D exp[.5 =.95,.8m 5 4 exp[.5 ] ) = A + α(.5 ) exp : =.3, = 6. min max max ] = (.5[(.5 ) ] ) (6) (7) () H / 3 η rms 5 NOWPHAS Rice (945) (5) (7) (Goda 97) F ) = A : 5 min M exp[.5 =.5, max 4 ] =.. (5) Normalized Spectral Density, ) / m.. M- M-4 M-6 F-4 M-7 M-8 M Normalized Frequency, / FM Normalized Spectral Density, ) / m.. D- D- D-3 D Normalized Frequency, / D F PiersonMoskowitz Bret-schneider

3 p =. max =. 6 A m M m.5,.5,.5,,, 5.8 Normalized Spectral Density, ) / m Normalized Spectral Density, ) / m.. γ = γ = 3.3 γ = γ = Normalized Frequency, /.. J m = 3 m = 5 m = m = Normalized Frequency, / W D p =. p =.4 α =.,, 5, 5 4 F M D 9698 TOSBAC π t /(5 max ) 987 JONSWAP Wallops (Goda 988) (8), (9) J ) = A : σ =.7 or : 5 min W exp[.5 =.6, ) = A : m min max 4 ] γ = 6. exp[ ( ) / σ ] <, σ =.9 or exp[ ( m/4) =.6, max 4 ] = 6. JONSWAP (J ) γ.5,, 3.3, 5, 7,, 4, 8 Wallops (W ) m 3, 4, 5, 6, 8,, 4, 8 m = 5 J γ = J W max = 6 p t = T p / FFT 496 (= 34.3T p ) FFT (8) (9) 3

4 5 Probability Density o Wave Height, p (H /ηrms) M-5 Spectr. (m = ) ε = Wave Height Ratio, H /ηrms M(m = ) Probability Density o Wave Height, p (H /ηrms) F-4 Spec. (m = 5) Wave Height Ratio, ε =.73 H /ηrms F(m = 5) m = M m = 5 F D-4 H /3 /η rms 4. Probability Density o Wave Height, p (H /ηrms) D-4 Spec. (α = 5) ε = Wave Height Ratio, H /ηrms D(α = 5) 4 (974) 5 /4 (Goda 983) 3 (NOWPHAS) (974)

5 t H /3 T /3 (m) (s) (m) (s) , m 5 8 s 3 Goda (983) 5º 6ºº6º 7, 9, km 5 7 JONSWAP γ m 6.7 s ( 985) (NOW-PHAS) ( 985) 985. m 88 t H /3 T /3 (m) (s) (m) (s) NOWPHAS m t = 5 s 4 (5 s) c = /3 Hz FFT 5 η rms 5 cm 9 5

6 .8.63 m η rms m Normalized Spectral Density, ) / m 5 3 Aug.'98 6 Sep.' Frequency, (Hz) = / 5 Hz m = < /3 Hz Longuet-Higgins (95) CartwrightLonguet-Higgins (956) () ε / ε = [ m /( m m )] : ε () 4 ε Goda (97) Longuet-Higgins (975) ν () / ν = [ mm/ m ] : ν () () Spectral Width Parameter, ν Spectral Width Parameter, ν J-series W-series M-series F-series D-series Approx. ν (/ )ε () Spectral Width Parameter, ε νε Nagoya (Single Spec) Rumoi Yamase-domari Tomakomai Kanazawa Mutsu-ogawara Kami-kawaguchi Naka-gusuku Approx Spectral Width Parameter, ε νε () Approx. () M D ε () 6

7 () ν ε <.8() ε.8ν H /3 /η rms ε H /3 /η rms ()4.4 Wave Height Ratio, H/3 /ηrms J-series W-series M-series F-series D-series Spectral Width Parameter, ε H /3 /η rms ε F, M D ε H /3 /η rms 4.4ε M3 D3.7 JONSWAP γ ε Wallops ε H /3 /η rms ε Wave Height Ratio, H/3 /ηrms Nagoya (Single Spec) Nagoya (Multi Spec) Tomakomai Kanazawa Mutsu-ogawara Kami-kawaguchi Naka-gusuku Spectral Width Parameter, ε H /3 /η rms ε ε H /3 /η rms ε ε H /3 /η rms H /3 /η rms ν () ν H /3 /η rms ν νjonswap γ Wallops ε H /3 /η rms 7

8 ν νh /3 /η rms Wave Height Ratio, H/3 /ηrms J-series W-series M-series F-series D-series Spectral Shape Parameter, ν H /3 /η rms ν Wave Height Ratio, H/3 /ηrms Nagoya Tomakomai Kanazawa Mutsu-ogawara Kami-kawaguchi Naka-gusuku Spectral Width Parameter, ν H /3 /η rms ν 5 () () max = / t t m n max n = S ) d : = t/ () ( max 5 max m4 = () ε = max m 4 ε < ε max p max t ε t /T Spectral Width Parameter, ε Simulation Nagoya (Single Spec) Nagoya (Multi Spec) Rumoi Yamase-Domari Tomakomai Kanazawa Mutsu-ogawara Kami-kawaguchi Naka-gusuku Relative Sampling Interval, t /Tmean ε Spectral Shape Parameter, κ (T) t /T Simul.(m = 5) Simul.(m = 4) Nagoya Rumoi Yamase-Domari Tomakomai Kanazawa Mutsu-ogawara Kami-kawaguchi Naka-gusuku Relative Sampling Interval, t /Tmean ν t /T ε 8

9 t /T M m = ν t /T ν max H /3 /η rms H /3 /η rms H /3 /η rms Goda 98399:9.4 Wave Height Ratio, H/3 /ηrms Rumoi Yamase-domari Tomakomai Kanazawa Mutsu-ogawara Kami-kawaguchi Naka-gusuku Wave Nonliearity Parameter, Π/3 H /3 /η rms Π /3 (4) Π /3 3 Π = ( H / L )coth (π h / L ) (4) / 3 / 3 A A L A (Airy) H /3 /L A H /3 L A /(πh) 3 Π /3.H /3 /η rms Π /3. Longuet-Higgins (98), Tayun (983) ε, ν Rice (945) r = ρ + λ ρ = m λ = m )cosπ ( ) τ d )sin π ( ) τ d (5) τ Rice (945) Kimura (98) Battjesvan Vledder (984),Longuet-Higgins (984) Tayun (98) 9

10 Rice (945) τ = T / r r ν Forristall (984)(5) Tayun (98) (5)(6) (99) Forristall (984) κ (T ) κ ( T ) = m = m + m + m )cosπ ( ) Td )cosπ Td )sin π ( ) Td )sin π Td (6) H /3 /η rms κ (T ) H /3 /η rms κ (T ) T (4) T H /3 /η rms JONSWAP Wallops M.3.98 H /3 /η rms D-3 D-4 H /3 /η rms κ (T ) Mean H /3 /η rms κ (T ) Wave Height Ratio, H/3 / ηrms J-series W-series M-series F-series D-series Mean Spectral Shape Parameter, κ (T) H /3 /η rms κ (T ) 3 3 H / 3 / η rms = κ.385κ κ (7) κ (T ) 4 H /3 /η rms

11 H /3 /η rms. H /3 /η rms = Wave Height Ratio, H/3 /ηrms 4. Simulation Caldera Sakata Mutsu-ogawara Kami-kawaguchi Naka-gusuku Kochi-inra Multi-peaks Spectral Shape Parameter, κ (T) H /3 /η rms κ (T ) 6% % H /3 η rms 4 κ =.4H /3 /η rms = Wave Height Ratio, H/3 / ηrms 4. Simulation Caldera (5) Sakata (88) Mutsu-ogawara (7) Kami-kawaguchi (37) Naka-gusuku (35) Multi-peaks (55) Kochi-inra (9) Spectral Shape Parameter, κ (T) H /3 /η rms κ (T ) (.8) (.54) (.44) (.35) (.44) (.66) (.45) (.7) (.93) (.) (.5) (.64) (.5) (.34) (.63) (.55) (.3) (.) (.44) (.64) (.5) ε ν κ (T ) H /3 /η rms (.) 39 (.53) 63 (.88) (.67) 4 (.84) 3.74 (.4) 46 (.95) 3 m L H/ 3 4. m L = 4. 6% H /3 /η rms σ H σ H /η rms σ H /η rms κ (T ) D

12 m = M σ H /η rms.39 H /3 /η rms 4.4 κ (T ) = σ H /η rms =.76% κ (T ) = H /3 /η rms = 686% Wave Height Ratio, σ H /ηrms J-series W-series M-series F-series D-series Mean M(..4)T p σ T =.5T p α = 5D.7T p.3t p σ T =.73T p D Probability Density o Wave Period, p (T / Tp) m =, Tmean =.96, κ =.9 m = 5, Tmean =.74, κ =.39 α = 5, Tmean =.47, κ = Wave Period Ratio, T / Tp Spectral Shape Parameter, κ (T) σ H /η rms κ (T ) σ H /η rms κ (T ) κ (T ) κ (T ) m = M (.8.)T p σ T =.T p m = 5 COV o Wave Period, σt / Tmean J-series W-series M-series F-series D-series Spectral Shape Parameter, κ (T) σ T /T κ (T )

13 H /3 /η rms NOWPHAS H /3 /η rms % εν, 4 ε. Rice(945) κ (T ) NOWPHAS (4) No. 86 p. + A & B. (). (985) 4 4 pp (99) 333 p. (974) 3 pp (97) 3 No., 4 p. Battjes, J, A. and van Vledder, G.Ph. (984): Veriication o. Kimura s theory or wave group statistics, Proc. 9th Int. Con. Coastal Eng., Houston, ASCE, pp H /3 /η rms κ Cartwright, D.E. and Longuet-Higgins, M.S. (956): The (T )= 4.4 κ (T )= statistical distribution o the maxima o random unction, 6 Proc. Roy. Soc. London, A. 37, pp. -3. % Forristall, G.Z. (984): The distribution o measured and simulated wave heights as a unction o spectral shape, J. Geophy. Res., 89 (C6), pp.,547-,55. H /3 /η rms Goda, Y. (97): Numerical experiments on wave statistics 3.733% with spectral simulation, Rept. Port and Harbour Res. Inst., 9(3), pp Goda, Y. (983): Analysis o wave grouping and spectra o H /3 /η rms = 5 long-travelled swell, Rept. Port and Harbour Res. Inst., Vol., No., pp % Goda, Y. (983): A uniied nonlinearity parameter o water waves, Rept. Port and Harbour Res. Inst., Vol., No. 3, pp Goda, Y. (988): Statistical variability o sea state parameter as a unction o wave spectrum, Coastal Engineering in Japan, κ (T ) JSCE, Vol. 3, No., pp Kimura, A. (98): Statistical properties o random wave groups, Proc. 7th Int. Con. Coastal Eng., Sydney, ASCE, pp

14 Longuet-Higgins, M.S (95): On the statistical distribution o sea waves, J. Marine Res., XI (3), pp Longuet-Higgins, M.S (975): On the joint distribution o the periods and amplitudes o sea waves, J. Geophys. Res., 8 (8), pp Longuet-Higgins, M.S. (984): Statistical properties o wave groups in a random sea state, Phil. Trans. Roy. Soc. London, A3, pp Rice, S.O. (945): Mathematical analysis o random noises, reprinted in Selected Papers on Noise and Stochastic Processes (Dover Pub., 954), pp Tayun, M.A. (98): Distribution o crest-to-trough wave heights, J. Waterway, Port, Coastal and Ocean Eng. Div., ASCE, 7 (WW3), pp

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

砂浜砕波帯における流れと地形変化

砂浜砕波帯における流れと地形変化 47 * Currents and Morphological Changes in the Surf Zone on a Sandy Beach Yoshiaki KURIYAMA, Littoral Drift Division, Port and Airport Research Institute 1 1 1) ρd M M x y 2 + + = (1) t x y 2.1 M x UM

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

untitled

untitled GeoFem 1 1.1 1 1.2 1 1.3 1 2 2.1 2 2.2 3 2.3 FEM 5 (1) 5 (2) 5 (3) 6 2.4 GeoFem 7 2.5 FEM 16 2.6 19 2.7 26 3.1 33 3.2 35 3.3 GeoFem 36 3.4 48 3.5 49 A A1 A2 A3 A4 A5 A6 A7 GeoFem GeoFem CRS GeoFem GeoFem

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1 72 12 2016 pp. 739 748 739 43.60.+d 2 * 1 2 2 3 2 125 Hz 0.3 0.8 2 125 Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1. 1.1 PSS [1] [2 4] 2 Wind-induced noise reduction

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

SEISMIC HAZARD ESTIMATION BASED ON ACTIVE FAULT DATA AND HISTORICAL EARTHQUAKE DATA By Hiroyuki KAMEDA and Toshihiko OKUMURA A method is presented for using historical earthquake data and active fault

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS () [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()

More information

CMP Technical Report No. 4 Department of Computational Nanomaterials Design ISIR, Osaka University 2 2................................. 2.2......................... 2 3 3 3................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

untitled

untitled - 37 - - 3 - (a) (b) 1) 15-1 1) LIQCAOka 199Oka 1999 ),3) ) -1-39 - 1) a) b) i) 1) 1 FEM Zhang ) 1 1) - 35 - FEM 9 1 3 ii) () 1 Dr=9% Dr=35% Tatsuoka 19Fukushima and Tatsuoka19 5),) Dr=35% Dr=35% Dr=3%1kPa

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly

More information

Recent Developments and Perspectives of Statistical Time Series Analysis /ta) : t"i,,t Q) w (^ - p) dp *+*ffi t 1 ] Abraham, B. and Ledolter, J. (1986). Forecast functions implied by autoregressive

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9 No.7, No.8, No.9 email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Introduction (Critical Behavior) SCR ( b > 0) Arrott 2 Total Amplitude Conservation (TAC) Global Consistency (GC) TAC 2 / 25 Experimental

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

数値計算:フーリエ変換

数値計算:フーリエ変換 ( ) 1 / 72 1 8 2 3 4 ( ) 2 / 72 ( ) 3 / 72 ( ) 4 / 72 ( ) 5 / 72 sample.m Fs = 1000; T = 1/Fs; L = 1000; t = (0:L-1)*T; % Sampling frequency % Sample time % Length of signal % Time vector y=1+0.7*sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(size(t));

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

02.„o“φiflì„㙃fic†j

02.„o“φiflì„㙃fic†j X-12-ARIMA Band-PassDECOMP HP X-12-ARIMADECOMP HPBeveridge and Nelson DECOMP X-12-ARIMA Band-PassHodrick and PrescottHP DECOMPBeveridge and Nelson M CD X ARIMA DECOMP HP Band-PassDECOMP Kiyotaki and Moore

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

p. 1 p. 102 24 2 10 106237 1 1 8 1.1................................. 9 1.1.1.......................... 9 1.1.2........................... 10 1.1.3...................... 10 1.1.4.........................

More information

untitled

untitled 3 4 4 2.1 4 2.2 5 2.3 6 6 7 4.1 RC 7 4.2 RC 8 4.3 9 10 5.1 10 5.2 10 11 12 13-1 - Bond Behavior Between Corroded Rebar and Concrete Ema KATO* Mitsuyasu IWANAMI** Hiroshi YOKOTA*** Hajime ITO**** Fuminori

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

kato-kuriki-2012-jjas-41-1.pdf

kato-kuriki-2012-jjas-41-1.pdf Vol. 41, No. 1 (2012), 1 14 2 / JST CREST T 2 T 2 2 K K K K 2,,,,,. 1. t i y i 2 2 y i = f (t i ; c) + ε i, f (t; c) = c h t h = c ψ(t), i = 1,...,N (1) h=0 c = (c 0, c 1, c 2 ), ψ(t) = (1, t, t 2 ) 3

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

4 小川/小川

4 小川/小川 B p p B pp M p T p M p Tp T pt T p T p T p p Tp T T p T p T pt p Tp p p p p p p p p T p p T T M M p p p p p p T p p p T T p T B T T p T T p T p T T T p T p p T p Tp T p p Tp T p T Tp T T p T p T p T p

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

JA.qxd

JA.qxd Application Note 1432 J rmsj RJ pp J pp t, P σ J rms RJ t (t) 1 ϕ (t) S (t) = P(2π f d t + ϕ (t)) S P f d ϕ (t) J ϕ 1 1 J [s] = ϕ [rad] J [UI] = ϕ [rad] 2π f d 2π Φ(t) 2π f d t ϕ (t) 1 d 1 d ƒ (t) = Φ(t)

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

: 1/ dB 1/ Hz 210mm 1/6 1/ Hz 1/3 500Hz 4 315Hz 500Hz?? Hz Hz Hz 315Hz Hz 500Hz

: 1/ dB 1/ Hz 210mm 1/6 1/ Hz 1/3 500Hz 4 315Hz 500Hz?? Hz Hz Hz 315Hz Hz 500Hz 93 5 [19] 3 4 5.1 3 1/15 3 2kHz 1/2 85mm 500Hz 2/3 94 5 5.1: 1/3 3 3.5 20dB 1/3 0.315 500Hz 210mm 1/6 1/2 5.1 5.1.1 1 200Hz 1/3 500Hz 4 315Hz 500Hz?? 5.3 200Hz 170 250Hz 215 280Hz 315Hz 275 395Hz 500Hz

More information

3B11.dvi

3B11.dvi Siripatanakulkhajorn Sakchai Study on Stochastic Optimal Electric Power Procurement Strategies with Uncertain Market Prices Sakchai Siripatanakulkhajorn,StudentMember,YuichiSaisho, Student Member, Yasumasa

More information

kiyo5_1-masuzawa.indd

kiyo5_1-masuzawa.indd .pp. A Study on Wind Forecast using Self-Organizing Map FUJIMATSU Seiichiro, SUMI Yasuaki, UETA Takuya, KOBAYASHI Asuka, TSUKUTANI Takao, FUKUI Yutaka SOM SOM Elman SOM SOM Elman SOM Abstract : Now a small

More information

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni LAGUNA10 47 56 2003 3 LAGUNA 10 p.47 56 2003 1997 2001 1 2 2 Water quality of Lake Kamo, Sado Island, northeast Japan, 1997 2001 Katsuaki Kanzo 1, Niigata Prefectural Ryotsu High School Science Club, Iwao

More information

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998 18 1 12 2016 キトラ古墳天文図の観測年代と観測地の推定 2015 5 15 2015 10 7 Estimating the Year and Place of Observations for the Celestial Map in the Kitora Tumulus Mitsuru SÔMA Abstract Kitora Tumulus, located in Asuka, Nara

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

n-jas09.dvi

n-jas09.dvi Vol. 9 (2009 12 ), No. 03-091211 JASCOME CREEP ANALYSIS DISCONTINUOUS ROCK MASS AROUND UNDERGROUND CAVERN 1) 2) 3) Takakuni TATSUMI, Hidenori YOSHIDA and Masumi FUJIWARA 1) ( 761-0396 2217-20, E-mail:

More information

筑波大学大学院博士課程

筑波大学大学院博士課程 3. 3. 4 6. 6. 7.3 8 3 9 3. 9 3. 3 3.3 3 3.4 6 4 7 4. 7 4. 7 4.3 4.4 5 5 5. 5 5. 5 5.3 3 6 4 6. 4 6-43 6. 44 6.3 46 6.4 47 7 48 49 5 5 . [] 3 [] [3-] 3 . [-] [5] [3] 5kHz [8] 3.6Hz 3 4 5 6 5 7 4 Fig. -

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

01-._..

01-._.. Journal of the Faculty of Management and Information Systems, Prefectural University of Hiroshima 2014 No.6 pp.43 56 43 The risk measure for resilience in the inventory control system Nobuyuki UENO, Yu

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information