られる DT を とするとき は a 図 π kn [ ]k,n = ejφk,n, φk,n = のように表現され 二次元 DT の atom は Bnk,n,k =, DT の atom B R j φk,n +φk,n e となることから 指向性をもつことがわかる 図 b b DT real

Size: px
Start display at page:

Download "られる DT を とするとき は a 図 π kn [ ]k,n = ejφk,n, φk,n = のように表現され 二次元 DT の atom は Bnk,n,k =, DT の atom B R j φk,n +φk,n e となることから 指向性をもつことがわかる 図 b b DT real"

Transcription

1 第回信号処理シンポジウム 0年月日 0日 関西大学 双直交指向性離散コサイン変換の設計 Design of Biorthogonal Directional Discrete Cosine Transforms 市田智大 京地清介 鈴木大三 田中雄一 北九州市立大学大学院国際環境工学研究科 筑波大学システム情報系 東京農工大学大学院工学研究院 Tomohiro ICHITA Seisuke KYOCHI Taizo SUZUKI Yuichi TANAKA The University of Kitakyushu University of Tsukuba Tokyo University of Agriculture and Technology アブストラクト 本論文では 指向性離散コサイン変換 前述の重複変換とは異なり 離散フーリエ変換 DT: : Directional Discrete Cosine Transform を拡張 Discrete ourier Transform [] 離 散 コ サ イ ン 変 換 した双直交指向性離散コサイン変換 B: Biorthog- : Discrete Cosine Transform [] といったブロッ onal を提案する は 直交行列である離 ク変換は atom が互いに重複しておらず 各々のブロッ 散コサイン変換 : Discrete Cosine Transform と クで変換が完結するため 並列処理化やメモリ使用効率に 離散サイン変換 DST: Discrete Sine Transform の並列 おいて 重複変換よりも有利であり 画像符号化をはじめ 可分型二次元変換によって構成され 画像のテクスチャが 様々なアプリケーションに適用されている しかし 指向 持つ多方向の指向性を解析できる利点を持つ 本論文で 性を有するブロック変換に関しては重複変換と比較して は と DST が変調フィルタバンクの特殊例である 疎表現効率が劣るため これまで十分な検討がされていな とみなし そのプロトタイプフィルタのパラメータを与 かった そこで DT や に比べ より豊富な指向性 える正則行列を /DST に乗じることで 指向性を維 atom の方向数 を持つブロック変換として 指向性離 持したまま よりも高い性能 符号化利得等 を 散コサイン変換 : Directional [0] が提案 有する双直交変換を実現する B の性能評価とし されている この変換は と DST DST: Discrete て画像復元に適用し に比べて高い復元性能を有 Sine Transform の並列可分型二次元変換により構成さ することを示す れ ブロック変換の利点である演算量 並列演算 メモリ 使用効率面での優位性を保持しつつ 高い画像解析 処 はじめに 理能力を実現している 近年 画像の解析や加工 復元技術のための画像疎表現 本研究では を拡張した双直交指向性離散コサ [], [] を与える画像変換として 詳細なテクスチャが有す イン変換 B: Biorthogonal を設計し る多様な指向性を捉える Curvelet [] Contourlet [] や の性能を向上させる を構成する 指向性フィルタバンク [] 複素ウェーブレット フィル DST は変調フィルタバンクの特殊例 プロトタイプフィ タバンク [], [] 等の指向性変換が提案され 有効性が示 ルタの係数が全て であるとみなすことができるため されている /DST にプロトタイプフィルタのパラメータを与え しかし 従来の指向性変換は計算負荷を伴うため 計算 る正則行列を乗じて双直交化を行うことで 指向性を保 資源の十分でないデバイスで扱う際に問題が生じる 例 持したまま よりも高い性能 阻止域減衰量 符号 えば Contourlet における二次元フィルタは一次元フィ 化利得等 [] を実現する ルタに比べて大きな演算量を要する また複素ウェーブ レットのように 一次元フィルタによって実現できる手法 以降 本論文を以下のように構成する 節では 従来の も存在するが atom 基底 フレームの要素 が互いに 代表的なブロック変換 指向性ブロック変換として 重複しているため 重複変換 並列処理化が困難である DT を述べる 節で提案法である B を 導入する 性能評価として B を画像復元 欠損画 像補間 の実験に適用する 最後に 節で本論文を結ぶ こと あるいは画像全体のメモリアクセスが必要になる 点が問題として挙げられる - -

2 られる DT を とするとき は a 図 π kn [ ]k,n = ejφk,n, φk,n = のように表現され 二次元 DT の atom は Bnk,n,k =, DT の atom B R j φk,n +φk,n e となることから 指向性をもつことがわかる 図 b b DT real part k,k DT は 指向性を有する atom を形成できるが 問題 点がある 例えば 図 b の k, k = と k, k = を = 見ると 同一帯域を示す atom が重複して含まれているこ とにより豊富な指向性が得られないため 画像解析の効 率が低下すると考えられる 表記 R は実数の集合を表す N 次元の実数係数ベクトル空 間を RN と表記する Nr 行 Nc 列の実数係数行列の全 体を RNr Nc とする 小文字 大文字の太字はそれぞれ ベクトル 行列を表す j := ΩN := {0,, N } ΩN,N := {N,, N } I は単位行列 A は A の転置 行列 xi [x]i はベクトル x の第 i 成分 Xi,j [X]i,j は の を D とし 定義を以下に示す D :=P 行列 X の第 i, j 番目の要素とする Xi,j R xnr j+i = Xi,j とする bvecx R L L は行列 ここで C は の であり S は次式で定義さ れる DT の を C とするとき C は次式で定義 される π [C ]k,n = αk cosθk,n, θk,n = k n+ ここで k は周波数変数 n は時間変数 k, n Ω と k [S ]k,n sin π n + = sin π k n + k = 0 k = 0 これはすなわち type-ii DST を行に関して 行周期 前提事項 し α0 = I X R L L のブロック毎のベクトル化 bvecx = [vecx0,0 vecx,0 vecxl,l ] とする はクロネッカー積を表す [ ] I C C P, S S I I I は行列 X R L L i ΩL, j ΩL の i, j 番目の小ブロック とする 行列 X RNr Nc に対して vecx RNr Nc は X のベクトル化 I = 0 αk = k = 0 とする は 信号の疎表現に優れており 圧縮等に適用されているが 画像の詳細なテクスチャが有する多様な指向性を効率よ く表現することができないことが難点である これはす k,k なわち 二次元 の基底に含まれる atom を Bn,n とするとき Bnk,n,k = αk αk シフトした行列である I R I b, P b P b R は単位行列 P = diagp b b b R は置換行列とする P P = I 具体的に P は 二次元のサブバンドインデックスが k = 0 または k = 0 である 個の または DST 係数を先 頭に その他の k = 0 かつ k = 0 であるような 個の係数をその後ろに並べ替える行列である の変換のフローを図 に示す と DST の 和/差である二つの可分型ブロック変換を並列処理するた め や DT のブロック変換と比較すると 演算量 は多くなる しかし Curvelet や Contourlet 等の重複変 換と比較すると 演算量は少ない 最後に の atom の指向性を確認する は定義より D を用いて D D = I が成り立つ これ cos θk,n cos θk,n, は がパーセヴァルフレームを形成することを意味 し パーセヴァルフレームの atom は D を調べればよい のように指向性が無いことに起因する 図 a 一方 の atom には 二次元 と二次元 DST の atom 指向性を有する代表的なブロック変換として DT が挙げ の他に 二次元 と DST の atom の和/差が含まれて - -

3 とで 阻止域減衰量や符号化利得 [] 等の指標に対して性 0 能の高いフィルタバンクを用いた並列可分型二次元変換を 設計する 以下で /DST のプロトタイプフィルタの 0 D 0 係数を変更して得られる双直交 B: Biorthog onal および双直交 DST BDST: Biorthogonal] [ DST を定義する パラメータ p = p0 p に対して行列 P を 'LUHWLRQDO XEEDQG LJQDOV D DST P= 図 0 p +/ p p の変換フロー = と二次元周波数分 p +/ p/ バンドを表す と設定する を使用することにより B を BC BC = C P a Bk,k, 図 p0 p 割形状 灰色は上側と下側から出力されるサブ p/ と定義する 次に行列 Q を Q= b Bk,k, p/ p +/ p p0 p p p +/ の atom = p/ 0 おり atom の和/差をそれぞれ Bk,k,, Bk,k, R k, k Ω, Ω, とすると それらは と設定する 0 を使用することにより BDST を BS Bnk,n,k,± = Cnk,n,k ± Snk,n,k = cos θk,n θk,n, BS = S Q のように表すことができる 図 に の atom を示 す と図 より の atom は指向性を有してい のように定義する の行列 P Q によって 以 下のようにプロトタイプフィルタが与えられることが分 かる ることがわかる サブバンドインデックスが k = 0 ま たは k = 0 であるサブバンドは指向性を持たないため の行列のサイズが であるときの方向選 択数は となる [BC ]k,n = fk,n [C ]k,n [BS ]k,n = fk,n [S ]k,n ただし 双直交指向性離散コサイン変換 fk,n = p +/ n + p +/+n k : even 前節では の構成について述べた 本節では fk,n = p +/ n p +/+n k : odd の指向性を保持しながら 更なる性能向上を目的 とした B の構成を説明する は と である 以上の を使用し の C を BC DST の並列可分型二次元変換であり 使用する と に S を BS に置き換えることで B が構成され DST は変調フィルタバンクの特殊例 プロトタイプフィル る はパーセヴァルフレームであり D D = I タの係数が全て であるとみなすことができる であったが B はプロトタイプフィルタ係数行列 DST のプロトタイプフィルタの係数をカスタマイズするこ を乗じたため BD BD = I となるような双直交変換と - 0 -

4 a Bk,k, 図 a Barbara b Zoneplate c andrill b Bk,k, B の atom = なる ここで BD は 以下のように計算できる [ ] := BC BC BS BS BD I I I P P I I I = の場合の B の atom を図 に示す 図 より 明らかに の指向性を保持したまま 双直交への 一般化が実現できていることが分かる d Lena e 図 g f h a d: 原画像 e h: 観測画 像 原画像の %の画素数 表 符号化利得 B 化利得が よりも高い これはすなわち疎表現効率 が改善されたことに起因している 実験 本節では 提案法である B の性能を欠損画素補間 によって評価する 比較に使用した画像として Barbara 結論 本論文では 画像解析のための指向性変換である Zoneplate andrill Lena の 枚 図 a d 参照 の性能向上のために拡張を施した B を提案した を用いた 欠損画素補間の性能比較のため 観測画像と 拡張前の 同様に ブロック処理が可能であり 従 して 枚の画像に %のそれぞれの確率でラ 来の重複フレーム処理よりも演算面で効率が良い 更に ンダムに欠損させたものを使用する 図 e h は原画 の持つ方向選択数を保持したまま 更に良い性能 像の %の画素で構成された画像 観測画像から原画 像を変換係数の L ノルムの正則化を用いて復元を行う で指向性変換を実現できることが分かった 実験では B の性能を欠損画素補間を用いて評 詳細は付録参照 比較する対象として 拡張元である 価を行った 実験結果では 拡張前の よりも拡張 の他に DT Discrete Hartley Transform [] を使用した ブロックサイズは = に設 後の B の方が優れた復元精度が得られた 定した B のプロトタイプフィルタの設計に関して は 画像の疎表現の効率を評価する符号化利得を AT- 付録 実験に使用する画像復元問題を以下のように定式化する LAB の関数 fminunc を用いて最大化することで決定 x = arg min ρ x + ιc[0,] x + v Φx, した および最適化結果の B の符号化利 得を表 に /DST/B/BDST の周波数応答を 欠損画素補間の詳細なアルゴリズム x RNr Nc ただし ρ > 0 x = bvecx X RNr Φ は劣化過 図 に示す また 文献 [0] で指摘されているように 程を示し ι x は指数関数 とする はブロック毎 A /B では DC 漏れが生じるため 画像の各ブ の B によるため 文献 [0] と同様に 画像の各ブ ロックの平均を計算する行列 = 0 0 ただし ロックの平均を計算する行列 = ただし 0 0 [0 ]k,n = / を用いて BD I とした変換を 画像復元に適用する [0 ]k,n = / を用いて C[0,] は各要素が [0, ] に含 表 と図 に実験結果を示す ほとんどの画像と欠損率 v に対するデータ忠実項とする 本論文では欠損画素補 において 提案法である B は DT よりも優れた復元精度を示した B の符号 まれるベクトルの集合とする v ΓRN は観測画像 集合 A における指示関数は ι x = 0, x A, A, x / A と定義される - - ιa x =

5 b a b DT c d B d c 図 a 周波数応答 周波数:[0, π] :a bdst cb dbdst = 図 間に適用するため データ忠実項は ι{v} x とする ただ し Φ は 単位行列の対角成分において 欠損した画 素に対応する場所の を 0 に変えることで定義する 本実 験では パラメータ γ γ ρ は 00 γ 結果画像 a b c 従来法 d 提案法 Algorithm の最適化アルゴリズム 0 [0,] = z t = z : t = prox : t = prox 0 とし 終了条件は xn+ x 00 とした : t を解くために primal-dual splitting PDS algorithm [] を用いる ここで 以下の凸適化問題 : x arg min f x + glx, x Rp を考える ただし f Γ0 Rp g Γ0 Rq Γ0 RN は RN 上の下半連続な真凸関数の集合とする [] L Rp q このとき 最適解 x は以下のように導出できる x k+ := proxγ f [xk γ L zk ], z x ] := prox [z + γ Lx k+ γ g k k+ k 0 : n = 0 x0, z, z, γ, γ の設定 : while 終了条件が偽な場合 do x γ z + Φ z : xn+ = proxγ ιc + γ xn+ x n+ x + γ Φx n+ zk γ ι γ {v} tk : = : n = n + 0: end while ρ t γ t γ γ t k k =, : u を出力 参考文献 [] J-L Starck, urtagh, and J adili, Sparse Image and Signal Processing: Wavelets, Curvelets, orphological Diversity, New York, NY, USA: Cambridge University Press, 00 ただし prox は近接写像 [] h は h の共役関数 [] L は L の随伴作要素とする この実験の場合 関数 g [] V Afonso, J B-Dias, and A T h 行列 L は以下のように設定する igueiredo, An augmented lagrangian approach to the constrained optimization formulation of imag- gx = ιc[0,] x, h[z z ] = ρ z + ι{v} z, [ ] z = x, z = Φx, L = 0 Φ ing inverse problems, IEEE Trans Image Process, vol 0, no, pp, ar 0 [] J L Starck, E J Cand es, and D L Donoho, 最終的なアルゴリズムは Algorithm にまとめる RN に対して [proxγ x]i = signxi max{ xi γ, 0} soft-thresholding proxιc x は [0, ] へのクリッピン x [0,] グ proxι{v} x = v ただし v RN は観測画像 - - The curvelet transform for image denoising, IEEE Trans Image Process, vol, no, pp 0, June 00

6 表 指向性離散コサ [0] 京地 清介 鈴木 大三 田中 雄一 復元誤差 インフレームの設計 電子情報通信学会技術研究 Image: Barbara % : 0 0 DT 0 B % : % : 報告 July 0 [] G Strang and T Q Nguyen, Wavelets and ilter Banks, Wellesley, A: Wellesley-Cambridge, Image: andrill [] R N Bracewell, The fast hartley transform, Proc % : 00 DT B % : % : of the IEEE, vol, no, pp 00 0, Aug [] L Condat, A primal-dual splitting method for con- Image: Lena DT B % : % : 0 % : DT B % : 0 % : 0 0 % : 0 vex optimization involving lipschitzian, proximable and linear composite terms, J Optimization Theory and Applications, Dec 0 [] H H Bauschke and P L Combettes, Convex Analysis and onotone Operator Theory in Hilbert Image: Zoneplate Spaces, New York, NY, USA: Springer- Verlag, 0 [] N Do and Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans Image Process, vol, no, pp 0 0, Dec 00 [] W Q Lim, Nonseparable shearlet transform, IEEE Trans Image Process, vol, no, pp 0 0, ay 0 [] S Kyochi and Ikehara, A class of near shift-invariant and orientation-selective transform based on delay-less oversampled evenstacked cosinemodulated filter banks, IEICE Trans undam, vol, no, pp, Apr 00 [] S Kyochi, T Uto, and Ikehara, Dual-tree complex wavelet transform arising from cosine-sine modulated filter banks, in Proc IEEE Int Symp Circuits and Syst ISCAS, ay 00 [] J W Cooley and J W Tukey, An algorithm for the machine calculation of complex ourier series, athematics of Computation, vol, pp 0, Apr [] Z Wang, On computing the discrete fourier and cosine transforms, IEEE Trans Acoust Speech Signal Process, Vol, No, pp, - -

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - 画像工学 印刷用

Microsoft PowerPoint - 画像工学 印刷用 教室 : 14-202 JURY 08 画像工学 2007 年度版 Imaging Science and Technology 画像工学 2007 年度版 11 慶応義塾大学理工学部 中島真人 教授 今日で最後です! 6. デジタル画像の性質と取り扱い 6-1. 画像のサンプリング サンプリングした画像のフーリエ変換 画像のサンプリング付随して生じるエラー 6-2. デジタル画像のフーリエ変換 周期関数のフーリエ変換

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

インターリーブADCでのタイミングスキュー影響のデジタル補正技術

インターリーブADCでのタイミングスキュー影響のデジタル補正技術 1 インターリーブADCでのタイミングスキュー影響のデジタル補正技術 浅見幸司 黒沢烈士 立岩武徳 宮島広行 小林春夫 ( 株 ) アドバンテスト 群馬大学 2 目次 1. 研究背景 目的 2. インターリーブADCの原理 3. チャネル間ミスマッチの影響 3.1. オフセットミスマッチの影響 3.2. ゲインミスマッチの影響 3.3. タイミングスキューの影響 4. 提案手法 4.1. インターリーブタイミングミスマッチ補正フィルタ

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

Microsoft PowerPoint - CSA_B3_EX2.pptx

Microsoft PowerPoint - CSA_B3_EX2.pptx Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T 2.6 FFT(Fast Fourier Transform 2.6. T g(t g(t 2 a 0 + { a m b m 2 T T 0 2 T T 0 (a m cos( 2π T mt + b m sin( 2π mt ( T m 2π g(t cos( T mtdt m 0,, 2,... 2π g(t sin( T mtdt m, 2, 3... (2 g(t T 0 < t < T

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - DigitalMedia2_3b.pptx Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

ds2.dvi

ds2.dvi 1 Fourier 2 : Fourier s(t) Fourier S(!) = s(t) = 1 s(t)e j!t dt (1) S(!)e j!t d! (2) 1 1 s(t) S(!) S(!) =S Λ (!) Λ js T (!)j 2 P (!) = lim T!1 T S T (!) = T=2 T=2 (3) s(t)e j!t dt (4) T P (!) Fourier P

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

SAP11_03

SAP11_03 第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft PowerPoint - dm1_5.pptx

Microsoft PowerPoint - dm1_5.pptx デジタルメディア処理 1 017( 後期 ) 09/6 イントロダクション1 : デジタル画像とは, 量 化と標本化,Dynamic Range 10/03 イントロダクション : デジタルカメラ, 間の視覚, 表 系 10/10 フィルタ処理 1 : トーンカーブ, 線形フィルタ デジタルメディア処理 1 担当 : 井尻敬 10/17 フィルタ処理 : 線形フィルタ, ハーフトーニング 10/4

More information

Microsoft PowerPoint - Lec14 [互換モード]

Microsoft PowerPoint - Lec14 [互換モード] 第 回講義水曜日 限教室 68 情報デザイン専攻 画像情報処理論及び演習 II - 周波数分解 - フーリエ変換 DCT と周波数操作 吉澤信 shin@riken.jp, 非常勤講師 大妻女子大学社会情報学部 今日の授業内容 www.riken.jp/brict/yoshizawa/ectures/inde.html www.riken.jp/brict/yoshizawa/ectures/ec4.pdf.

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

untitled

untitled KLT はエネルギを集約する カルーネンレーベ変換 (KLT) で 情報を集約する 要点 分散 7. 9. 8.3 3.7 4.5 4.0 KLT 前 集約 分散 0.3 0.4 4.5 7.4 3.4 00.7 KLT 後 分散 = エネルギ密度 エネルギ と表現 最大を 55, 最小を 0 に正規化して表示した 情報圧縮に応用できないか? エネルギ集約 データ圧縮 分散 ( 平均 ) KLT 前

More information

スライド 1

スライド 1 データ解析特論第 5 回 ( 全 15 回 ) 2012 年 10 月 30 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 をもっとやります 2 第 2 回 3 データマイニングの分野ではマクロ ( 巨視的 ) な視点で全体を捉える能力が求められる 1. コンピュータは数値の集合として全体を把握していますので 意味ある情報として全体を見ることが不得意 2. 逆に人間には もともと空間的に全体像を捉える能力が得意

More information

とができ 現在までにいくつかの手法が提案されている 去性能を向上させる 以下の最適化問題を解き 多重露 提案手法では 多項式により逆カメラレスポンスカーブ 光画像統合における重み wk を求める を近似する Mitsunaga 等の手法 9] を用いる 逆カメラ min kp w hk + α kd

とができ 現在までにいくつかの手法が提案されている 去性能を向上させる 以下の最適化問題を解き 多重露 提案手法では 多項式により逆カメラレスポンスカーブ 光画像統合における重み wk を求める を近似する Mitsunaga 等の手法 9] を用いる 逆カメラ min kp w hk + α kd 第8回信号処理シンポジウム 3年月9日 日 下関 多重露光画像を用いたノイズ除去のための重み最適化 Weight Optimization for Multi-exposure Noise Reduction 山内智弘 松岡諒 馬場達也 北九州市立大学大学院国際環境工学研究科 奥田正浩 omohiro Yamauchi Ryo Matsuoka atsuya Baba Masahiro Okuda

More information

Microsoft PowerPoint - dm1_6.pptx

Microsoft PowerPoint - dm1_6.pptx スケジュール 09/5 イントロダクション1 : デジタル画像とは, 量 化と標本化,Dynamic Range 10/0 イントロダクション : デジタルカメラ, 間の視覚, 表 系 10/09 画像処理演習 0 : python (PC 教室 : 課題締め切り 11/13 3:59) 10/16 フィルタ処理 1 : トーンカーブ, 線形フィルタ デジタルメディア処理 1 担当 : 井尻敬 10/3

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学 マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG マルチメディア工学 : 講義計画 イントロダクション コンピュータグラフィックス (Computer Graphics: CG) マルチメディアデータの解析 佐藤嘉伸 大阪大学大学院医学系研究科放射線統合医学講座 yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka

More information

Microsoft Word - 卒業論文.doc

Microsoft Word - 卒業論文.doc 006 年度卒業研究 画像補間法を用いた拡大画像の比較 岡山理科大学総合情報学部情報科学科 澤見研究室 I03I04 兼安俊治 I03I050 境永 目次 はじめに ラスタ画像 3 画像補間法 3. ニアレストネイバー法 3. バイリニア法 3.3 バイキュービック法 4 DCT を用いた拡大画像手法 5 FIR 法 6 評価 6. SNR 6. PSNR 7 実験 7. 主観評価 7. 客観評価

More information

Microsoft PowerPoint - 発表スライド新潟大学小沢

Microsoft PowerPoint - 発表スライド新潟大学小沢 海洋レーダにおける Khatri-Rao 積拡張アレー処理を用いた角度 ドップラ周波数分解能改善に関する検討 Angular/Doppler-Frequency Resolution Improvement Using the Khatri-Rao Product Array Processing in Ocean Surface Current Radar 小沢直輝 1, 山田寛喜 1, 山口芳雄

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG 佐藤嘉伸 マルチメディア工学 : 講義計画 マルチメディアデータの解析 基礎数理 代表的解析手法 データ圧縮 : 離散コサイン変換 JPEG データ表現 : 形状の主成分分析 奈良先端科学技術大学院大学情報科学研究科生体医用画像研究室 yoshi@is.naist.jp http://icb lab.naist.jp/members/yoshi/

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5 1 -- 5 5 2011 2 1940 N. Wiener FFT 5-1 5-2 Norbert Wiener 1894 1912 MIT c 2011 1/(12) 1 -- 5 -- 5 5--1 2008 3 h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)]

More information

Microsoft PowerPoint - 配布資料・演習18.pptx

Microsoft PowerPoint - 配布資料・演習18.pptx 学年学科学籍番号氏名 宿題 ( 複素正弦波 jω ) メディアと信号処理第 回 ( 金田 ). 複素数とは 実数部と虚数部を持った数である 例えば 虚数単位を j と表すと 4+ j は複素数で 実数部は 4 で 虚数部が である 一般的に 実数部を 虚数部を とすると 複素数 z は z = + j と表される 複素数の 大きさ は 絶対値 (r jθ の r ) で定義される z の絶対値は z

More information

Microsoft Word - FT_2010.doc

Microsoft Word - FT_2010.doc 3. フーリエ変換 3. 周期的な複雑な波形 (t) si(ωt), (t) si(ωt), (t) si(3ωt) のグラフを図 3 に示す 単純にこれらの波形を重ね合わ せると (t) si(ωt) + si(ωt) + si(3ωt) は右図のように複雑な波形となる この合成波の時間方向の移 動は見られない ( 時間方向を波の位相と呼ぶ ) しかし 振幅の変調が見られる 3 3Hz (t) Hz

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0

More information

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3) 72 12 2016 pp. 777 782 777 * 43.60.Pt; 43.38.Md; 43.60.Sx 1. 1 2 [1 8] Flexible acoustic interface based on 3D sound reproduction. Yosuke Tatekura (Shizuoka University, Hamamatsu, 432 8561) 2. 2.1 3 M

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

1 -- 9 -- 6 6--1 (DFT) 009 DFT: Discrete Fourier Transform 6--1--1 N x[n] DFT N 1 X[k] = x[n]wn kn, k = 0, 1,, N 1 (6 ) n=0 1) W N = e j π N W N twidd

1 -- 9 -- 6 6--1 (DFT) 009 DFT: Discrete Fourier Transform 6--1--1 N x[n] DFT N 1 X[k] = x[n]wn kn, k = 0, 1,, N 1 (6 ) n=0 1) W N = e j π N W N twidd 1 -- 9 6 009 (DFT) 6-1 DFT 6- DFT FFT 6-3 DFT 6-4 6-5 c 011 1/(0) 1 -- 9 -- 6 6--1 (DFT) 009 DFT: Discrete Fourier Transform 6--1--1 N x[n] DFT N 1 X[k] = x[n]wn kn, k = 0, 1,, N 1 (6 ) n=0 1) W N = e

More information

1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x 0, x 1, x 2, を入力すると, y 2, y 1, y 0, y 1, y 2, が出力される. 線形システム : 線形シ

1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x 0, x 1, x 2, を入力すると, y 2, y 1, y 0, y 1, y 2, が出力される. 線形システム : 線形シ 1. 線形シフト不変システムと z 変換 ここで言う システム とは? 入力数列 T[ ] 出力数列 一意変換 ( 演算子 ) 概念的には,, x 2, x 1, x, x1, x2, を入力すると, y 2, y 1, y, y1, y2, が出力される. 線形システム : 線形システムの例 x nxn 1 yn= 2 線形でないシステムの例 xn yn={ 2 xn xn othewise なぜ線形システム?

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

DVIOUT-OCTbook201

DVIOUT-OCTbook201 第 3 章 ヒルベルト空間 本節では, 量子系の理解のために必要な無限次元線形空間の理論であるヒルベルト空間の基本的事柄を概説する. 0.1 基本定理数体 K ( 実数体 R または複素数体 C; これらをスカラー体ともいう ) 上の線形空間の任意の元 x, y, z X と任意の λ K に対して, 1. hx, xi 0, = 0 x =0, 2. hx, yi = hy, xi, 3. hx,

More information

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2 FFT 1 Fourier fast Fourier transform FFT FFT FFT 1 FFT FFT 2 Fourier 2.1 Fourier FFT Fourier discrete Fourier transform DFT DFT n 1 y k = j=0 x j ω jk n, 0 k n 1 (1) x j y k ω n = e 2πi/n i = 1 (1) n DFT

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

高次元データ スパース正則化学習法 最適化手法 proximal point algorithm 確率最適化手法 2

高次元データ スパース正則化学習法 最適化手法 proximal point algorithm 確率最適化手法 2 正則化学習法における最適化手法 鈴木大慈東京大学情報理工学系研究科数理情報学専攻 2013/2/18@ 九州大学伊都キャンパス文部科学省委託事業数学協働プログラム 最適化ワークショップ : 拡がっていく最適化 1 高次元データ スパース正則化学習法 最適化手法 proximal point algorithm 確率最適化手法 2 問題設定スパース正則化学習 3 高次元線形判別 物体認識 音声認識 自然言語処理

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

福島県立医科大学総合科学教育研究センター紀要 Vol. 4, 1-10, 2015 原著論文 CT 2 ( ) CT 2 Received 2 October 2015, Accepted 16 October CT 2 f 0 (x, y) Radon f 0 2 f (x, y)

福島県立医科大学総合科学教育研究センター紀要 Vol. 4, 1-10, 2015 原著論文 CT 2 ( ) CT 2 Received 2 October 2015, Accepted 16 October CT 2 f 0 (x, y) Radon f 0 2 f (x, y) 福島県立医科大学総合科学教育研究センター紀要 Vol. 4, -, 5 原著論文 CT () CT Received October 5, Accepted 6 October 5 CT f (x, y) Radon f f (x, y) (FBP) Fourier Fourier (Bracewell & Riddle, 967 () ; Ramachangran & Lakshminarayanan,

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se The Visual Servo Control of Drone in Consideration of Dead Time,, Junpei Shirai and Takashi Yamaguchi and Kiyotsugu Takaba Ritsumeikan University Abstract Recently, the use of drones has been expected

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

基底関数ネットワーク

基底関数ネットワーク 6. 基底関数ネットワーク (Bass Functon Network) 6-1 基底関数ネットワーク研究の背景 (1)( 階層型 ) ニューラルネットワークの問題点の回避 設計性の悪さ ローカルミニマム問題 (2) 級数展開の利用 基底関数が周期関数 フーリエ級数 フーリエ級数 フーリエ級数 F1 フーリエ係数 F2 信号 + F3 F4 フーリエ展開で関数を近似した例 フーリエ係数の意味 F1

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up 年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

1999年度 センター試験・数学ⅡB

1999年度 センター試験・数学ⅡB 99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる

More information

ワースペクトルの離散フーリエ逆変換として以下の式で 与えられる XkY k rm IDFT Xk Y k 信号の位相スペクトルが 変量確率分布に従う場合 の POC 関数の統計的性質 3 3. 著者らのグループがこれまでに行ってきた POC 関数の XkY k W mk Xk Y k 統計的解析では

ワースペクトルの離散フーリエ逆変換として以下の式で 与えられる XkY k rm IDFT Xk Y k 信号の位相スペクトルが 変量確率分布に従う場合 の POC 関数の統計的性質 3 3. 著者らのグループがこれまでに行ってきた POC 関数の XkY k W mk Xk Y k 統計的解析では 第30回 信号処理シンポジウム 05年月4日 6日 いわき 変量確率分布に従う位相スペクトルをもつ 信号間の位相限定相関関数の統計的性質 Statistical Properties of Phase-Only Correlation Functions Between Two Signals With Phase Spectrum Following Bivariate Probability Distributions

More information

Wavelet HSI / [1] JPEG2000 9/7Wavelet [2][6] 2:1 9/7Wavelet Wavelet 80 Wavelet i

Wavelet HSI / [1] JPEG2000 9/7Wavelet [2][6] 2:1 9/7Wavelet Wavelet 80 Wavelet i 17 Wavelet Image Enhancement by Wavelet Transform 1060326 2006 3 10 Wavelet HSI / [1] JPEG2000 9/7Wavelet [2][6] 2:1 9/7Wavelet Wavelet 80 Wavelet i Abstract Image Enhancement by Wavelet Transform Yuichi

More information

Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson

Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson 量子情報基礎 阿部英介 慶應義塾大学先導研究センター 応用物理情報特別講義 A 216 年度春学期後半金曜 4 限 @14-22 Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson

More information

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー shimpei@cc.hirosaki-u.ac.jp (K ) Nick Schmitt (Tübingen ) [6] R 3 K CGC [], R 3 CGC, R 3 CGC CGC CGC CGC 2, [2]. CGC CGC [6] C 3 CGC [4] CGC. 図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

Microsoft Word - 簡単な計算と作図.doc

Microsoft Word - 簡単な計算と作図.doc エクセルを用いた簡単な技術計算と作図について 画像処理 Ⅰ 配付資料 ( 岡山理科大学澤見英男 2006 年作成 ) 表計算ソフト エクセル を用いた簡単な技術計算と作図について紹介します 例として正弦波の標本化と周波数特性の計算を取り上げることにします (1) 正弦波の描画先ず表計算ソフト エクセル を立ち上げます 以下の様な表示が現れます この中のA 列を横座標軸 ( 工学単位 ; 度 ) に割り当てます

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

Microsoft PowerPoint - Lec15 [互換モード]

Microsoft PowerPoint - Lec15 [互換モード] 情報デザイン専攻 画像情報処理論及び演習 II 周波数分解 FFT Gaussian フィルタと周波数分解 今日の授業内容 www.riken.jp/brict/yoshizawa/lectures/index.html www.riken.jp/brict/yoshizawa/lectures/lec5.pdf. 前回 前々回の復習 レポートの説明. 第 3, 回講義水曜日 限教室 68 吉澤信

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69 第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [ RI-002 Encoding-oriented video generation algorithm based on control with high temporal resolution Yukihiro BANDOH, Seishi TAKAMURA, Atsushi SHIMIZU 1 1T / CMOS [1] 4K (4096 2160 /) 900 Hz 50Hz,60Hz 240Hz

More information