Size: px
Start display at page:

Download ""

Transcription

1 09 8 9

2

3 3 Chebyshev Chebyshev-Gauss Gauss Chebyshev-Gauss Chebyshev Chebyshev-Gauss-Lobatto Gauss-Lobatto Chebyshev-Gauss-Lobatto Chebyshev [z b, z t ]

4 Chebyshev Chebyshev-Gauss-Lobatto Gegenbauer 9. Rodrigues Gegenbauer Laplace Hermite Hermite Rodrigues Hermite

5 5 Chebyshev * Fourier. x T m x cos[m arccosx]. cos mθ cos θ m T m x m T m. T m m.3 max T mx.4 x. π n m 0 T m xt n x π/ n m 0 x 0 n m.5 * Chebyshev Tschebyscheff Wikipedia Chebyshev

6 x cos θ π T m xt n x cosmθ cosnθdθ x 0 π 0 π n m 0 π n m 0 0 n m {cos[m + nθ] + cos[m nθ]} dθ.6.3 m x cos θ T m cosmθ.7 T 0 T cos θ x T cos θ Re iθ Rcos θ + i sin θ cos θ sin θ cos θ x T 3 cos 3θ Re 3iθ Rcos θ + i sin θ 3 cos 3 θ 3 cos θ sin θ 4 cos 3 θ 3 cos θ 4x 3 3x T 4 cos 4θ Re 4iθ Rcos θ + i sin θ 4 cos 4 θ 6 cos θ sin θ + sin 4 θ cos 4 θ 6 cos θ cos θ + cos θ 8 cos 4 θ 8 cos θ + 8x 4 8x + T 5 cos 5θ Re 5iθ Rcos θ + i sin θ 5 cos 5 θ 0 cos 3 θ sin θ + 5 cos θ sin 4 θ cos 5 θ 0 cos 3 θ cos θ + 5 cos θ cos θ 6 cos 5 θ 0 cos 3 θ + 5 cos θ 6x 5 0x 3 + 5x.8 6

7 Wikipedia Chebyshev polynomials T 0 x.9 T x x.0 T x x. T 3 x 4x 3 3x. T 4 x 8x 4 8x +.3 T 5 x 6x 5 0x 3 + 5x.4 m T m cos mθ Re imθ Rcos θ + i sin θ m m/ k0 m/ k0 m/ k0 m/ k0 m k m k m k k l0 k cos m k θ sin k θ k cos m k θ cos θ k k cos m k θ m k k l k l k l l0 k l cos m k l θ cos l θ.5 α α n k l l n T m m/ n0 m/ kn m k k n Gould, 00 m/ kn m k k n mm n m n n m/ m 0 * T m m m m/ n0 m/ n0 m/ n0 m m n m m n n n cos m n θ.6 m n n n cos m n θ n m n! n!m n! n cos θ m n n m n! n!m n! n x m n * m 0 m n

8 m T m+ x cos[m + arccosx].9 T m x cos[m arccosx].0 T m+ x + T m x cos[m arccosx] cos[arccosx] xt m x. T m+ x xt m x T m x. T 0 x.3 T x x.4 m T 0 x.5 T x x.6 T x x.7 T 3 x 4x 3 3x.8 T 4 x 8x 4 8x +.9 T 5 x 6x 5 0x 3 + 5x.30. T n+m x cos[n + m arccosx].3 T n m x cos[n m arccosx].3 T n+m x + T n m x cos[n arccosx] cos[m arccosx] T n xt m x.33 T n+m x + T n m x T n xt m x.34 8

9 dt m+ T m + x dt m dt m.35 dt dt.37 d T m+ 4 dt m + T m xd d T m.38 d T d T T m x cos[m arccosx].4 x d T sin[m arccosx] mx m x.4 T m+ x cos[m + arccosx].43 T m x cos[m arccosx].44 T m+ x T m x sin[m arccosx] sin[arccosx] sin[m arccosx] x.45 x d T mx m [T m x T m+ x].46 9

10 m m 0 dt x d T mx x d T mx m [ d T m x d ] T m+x x d T mx m x x [T m x T m+ x] m 4 x [m {T m x T m x} m + {T m x T m+ x}].49 4 x d T mx m [m T m x + 4xT m x mt m x 4xT m+ x + m + T m+ x].50 m m 0, d T d T dt m+ m + dt m m T m+ cos[m + θ].53 T m cos[m θ].54 x cosθ.55 {sin[m + θ] sin[m θ]} sin θ cosmθ.56 T m 0

11 m 0, T 0 dt dt T T m m + dt m+ dt m m m.57 dt m mt m + m dt m m [ T m x SmT m x x + m x d ] T m x.59 [ T m+ x S mt + m x x m x d ] T m x T 0 x T x + C.6 T x 4 T x + C.6 T m x [ Tm+ x m + T m x m ] + C m.63 C. m T m x T m x m m T m+x x m T mx + C.64 x m + T mx m m T m x + C.65

12 m 0, T 0 x T T.66 T x 4 T T 0.67 m T m x [ Tm+ T m+ T ] m T m m + m [ m+ ] m m + m [ m+ ] m { m even m 0 odd m x F x *3 F x f 0 T 0 x + f m T m x.69 m f m π F xt m x x.70 x cos θ f m π π 0 F cos θt m cos θdθ.7.5. *3

13 dt n x dθ dt n cos θ dθ sin θ d cosnθ dθ n sinnθ sin θ n einθ e inθ e iθ e iθ n [e in θ + e in 3θ + + e in 3θ + e in θ] { n [cosn θ + cosn 3θ + + cos θ] even n n [ ] cosn θ + cosn 3θ + + cos θ + odd n { n [Tn x + T n 3 x + + T x] even n n [ T n x + T n 3 x + + T x + T 0x ] odd n { n n j,odd [ T jx even n n ] n j,even T jx + T 0x odd n T 0 { d T n n n dt j x j,odd even n { n n j,even dt j x odd n n [ n j,odd j j k,even T kx + T 0x even n n n j,even j j k,odd T kx odd n [ n n k,even n k,odd { 4n jk+,odd jt kx + ] n j j,odd T 0x even n 4n n jk+,even jt kx odd n { [ n ] 4n k,even n k 4 T k x + n 8 T 0x even n 4n n k,odd n k 4 T k x odd n { [ n ] n k,even n k T k x + n T 0x even n n n k,odd n k T k x odd n ] Lagrange sampling points collocation points Gauss Gauss-Lobatto Gauss Gauss-Lobatto Gauss-Lobatto 3

14 minimax Lagrange Runge Gibbs FFT.6. Chebyshev-Gauss.6.. Gauss N T N cosnθ.74 x cos θ.75 Gauss Chebyshev-Gauss grid points k,..., N N k + θ k π.76 N N k + x k cos π.77 N N θ [π, 0] m 0 m N T m cosmθ.78 x cos θ.79 Gauss N k + T m x k cos m π N.80 0 n, m N N N n m 0 T m x k T n x k N/ n m 0 k 0 n m.8 4

15 N T m x k T n x k k N k cos m N k + cos N k + π cos n N [ cos m + n m n N k + N ] N k + π N N k + π N π.8 cosine l < l < N N k N k + cos l π N R N cos l k N π N R exp il k N π N exp il k N π k k k Re il/nπ e ilπ e il/nπ l R e il/nπ e il/nπ [ l ]R i sinl/nπ 0.83 cosine l 0 n m 0 N T m x k T n x k k N k + cos [ cos m + n m n N k + N ] N k + π N N n m 0 N/ n m 0 0 n m π Chebyshev-Gauss x F x F N x f 0T 0 x + 5 N m f m T m x.85

16 Gauss x k k,..., N F N x k F x k.86 F x k f 0T 0 x k + f m N m f m T m x k.87 f m N N F x k T m x k.88 k FFT.6..3 Chebyshev f m π π Gauss 0 F cos θt m cos θdθ.89 f m N F cos θ k T m cos θ k θ.90 π k Gauss θ θ π N.9 f m N N F x k T m x k.9 k.6. Chebyshev-Gauss-Lobatto.6.. Gauss-Lobatto N T N cos[n θ].93 x cos θ.94 x dt N x dθ dt N dθ N sin[n θ].95 6

17 Gauss-Lobatto Chebyshev-Gauss-Lobatto grid points k,..., N θ k N k N π.96 N k x k cos N π.97 N θ [π, 0] T N x k cos[n kπ] N k.98 m 0 m N T m cosmθ.99 x cos θ.00 Gauss-Lobatto T m x k cos m N k N π 0 n, m N.0 T mx T n x + N k T m x k T n x k + T mx N T n x N N n m 0, N N / n m 0, N 0 n m N T mx T n x + T m x k T n x k + T mx N T n x N k T m T n + N k cos m N k N π cos n N k N π + T mt n.0.03 m + n m + n T m T n T m T n N T mx T n x + T m x k T n x k + T mx N T n x N 0 N k N k k cos m N k N π cos n N k N π [ cos m + n N k N π + cos m n N k ] N π.04 7

18 l k N k + cos l N k N π N N k + + cos l π N cos lπ l k N π + cos l k N π [coslπ + ] cos l k N π [ l + ] cos l k N π 0.05 N k N + / N N + / l cos l π cos N π 0.06 l m + n T m T n T m T n N T mx T n x + T m x k T n x k + T mx N T n x N N k k cos m N k N π N k cos n N k N π [ cos m + n N k N π + cos m n N k ] N π N n m 0, N N / n m 0, N 0 n m cosine 0 l < l < N N cos l N k N N π k cos l N π k k0 N k R exp il N π k0 N k R exp il N π k0 e ilπ R e i[l/n ]π k k N / l e ilθ e ilθ N / 8

19 k k N m + n m + n k k N /.6.. Chebyshev-Gauss-Lobatto x F x F N x f 0T 0 x + N m Gauss-Lobatto x k k,..., N F x k f 0T 0 x k + f m T m x + f N T N x.09 F N x k F x k.0 N m f m T m x k + f N T N x k. f m [ ] f m N N F x T m x + F x k T m x k + F x N T m x N k FFT Chebyshev f m π π 0 F cos θt m cos θdθ.3 Gauss-Lobatto Gauss Gauss-Lobatto f m π N F cos θ k T m cos θ k θ.4 k Gauss-Lobatto θ θ π N [ ] f m N N F T m + F x k T m x k + F T m k 9.5.6

20 F x f 0 T 0 x + N m f m T m x.7 m N /.7.7. [z b, z t ] F z [z b, z t ] z z b + z t z b + x.8 x z z b z t z b.9 z x x [, ] F x F x F x f 0 T 0 x + m f m T m x.0.7 dt n x { n n j,odd [ T jx even n n ] n j,even T jx + T 0x odd n. 0

21 F x T 0 df m n f m dt m x dt n x dt n x f n + f n n n n f n n T j x + T 0x + f n 4n j n f n T 0 x + n 4n f n T j x + j nj n f n T 0 x + n j nj+ n n T j x j n f n T j x j + n f j+n T j x j n. df x df 0 T 0 x + m df m T m x.3 df m m + n f m+n.4 n df m m + n f m+n + m + f m+ n m + + n f m++n + m + f m+ n.5 df m+ + m + f m+ m d T n { [ n ] n k,even n k T k x + n T 0x even n n n k,odd n k T k x odd n.6

22 F x T 0 d F m n n + f m d T m x f n d T n x + n f n dt nx n f n n {n j }T j x n j n f n n {n j }T j x + n T 0 x j 4n 3 fn T 0 x + + n j j nj+ nj+ 4n 3 fn T 0 x + n 4n 3 fn T 0 x + n 4 n {n j } f n T j x n{n j } f n T j x n 3 fn T 0 x + n j nj+,n j even nn j f n T j x j + n[j + n j ] f j+n T j x j j n 4 nj + nj + n f j+n T j x n.7 d F x ddf 0 T 0 x + m ddf m T m x.8 ddf m 4 nm + nm + n f m+n.9 n

23 T 0 dt dt T T m m + dt m+ dt m m m.30 F x x F x f 0 T 0 x + m df x df 0 T 0 x + f m T m x.3 m T 0.3 df m T m x.3 df x m f m dt m.33.3 [ df x dt df 0 + [ dt df 0 + m df dt + m df dt + m3 [ dfm m df ] dtm m { dt m+ df m m + m dt df m m m df m+ m m } ] dt m ] dt m.34 f m [ dfm m df m+].35 m df m df m+ + m + f m+.36 3

24 x [, ] u t u x.37 u, t u b.38 u, t u t Chebyshev u.37.9 dũ m dt ddu m.40 4 nm + nm + nũ m+n n n ũ n u b.4 n0 ũ n u t.4 n0 n N 0 n N 0 m N dũ m dt N m/ 4 nm + nm + nũ m+n.43 n 4

25 α α ] N ũ N ũ N [u N b n ũ n ũ N + ũ N u t N n0 n0.44 ũ n.45 N N ũ N u t u b ũ N u t + u b + N 3 n,odd N n0,even ũ n.46 ũ n.47 N ũ N u t + u b ũ N u t u b + N 3 n,even N n0,odd ũ n.48 ũ n Chebyshev-Gauss-Lobatto Gauss-Lobatto θ k N k N π.50 N k x k cos N π.5 k,..., N T m;k T m x k.5 T m;k d T m x k.53 5

26 u N u N x k, t T 0;ku 0 t + N m T m;k u m t + T N ;ku N t.54 d u N x k, t N T 0;ku 0 t + T m;ku m t + T N ;ku N t.55 m.37 T du 0 0;k N dt t + m T m;k du m dt t + T N ;k du N t dt N T 0;ku 0 t + T m;ku m t + T N ;ku N t m.56 k,..., N k, N N T 0;u 0 t + T m; u m t + T N ;u N t u b.57 m N T 0;N u 0 t + T m;n u m t + T N ;N u N t u t.58 m u m t + t Euler T 0; T ;... T N ; T N ; u 0 t + t T 0; T ;... T N ; T N ; u t + t T 0;N T ;N... T N ;N T. N ;N u N t + t T 0;N T ;N... T N ;N T N ;N u N t + t u b rhs. rhs N u t.59 rhs m t u m t T 0; T 0;... T 0;N T 0;N T ; T ;... T ;N T ;N N T N ; T N ;... T N ;N T N ;N T N ; T N ;... T N ;N T N ;N 6.60

27 u 0 t + t u t + t. u N t + t u N t + t T 0; T 0;... T 0;N T 0;N T ; T ;... T ;N T ;N. N T N ; T N ;... T N ;N T N ;N T N ; T N ;... T N ;N T N ;N u b rhs. rhs N u t.6.9 Doman, Brian George Spencer 06 The Classical Orthogonal Polynomials, World Scientific 5 Glatzmaier, Gary A. 04 Introduction to Modeling Convection in Planets and Stars, Prenceton University Press 9.4 Gould, H.W. 00 Combinatorial Identities: Table III: Binomial Identities Derived from Trigonometric and Exponential Series ed., Jocelyn Quaintance, 004, I Protas, Bartosz 004 Topics in Numerical Analysis Spectral Methods III Chebyshev Spectral Methods, 7

28

29 9 Gegenbauer Gegenbauer Legendre Chebyshev Gegenbauer Chandrasekhar Rodrigues Xµ µ µ + µ. ρ α µ µ α. n Fn α µ d n ρ α µ dµ n [ρ αµxµ n ].3 Rodrigues n 0 F α 0 µ.4 F α n µ [, ] n Π n µ F α n, Π n ρ α µf α n µπ n µdµ Π n µ dn dµ n [ρ αµxµ n ]dµ ] [Π n µ dn dµ n [ρ αµxµ n ] Π n µ dn dµ n [ρ αµxµ n ]dµ.5

30 .. Gegenbauer µ + µ 0 0 n F α n, Π n n Π n n µ[ρ αµxµ n ]dµ.6 n Π n µ n 0 0 F α n, Π n 0.7 F α 0, F α,..., F α n n F α n, F α l 0 l,,..., n.8 Fl α, Fk α ρ α µfl α µfk α µdµ 0 l k.9 Fn α [, ] F 0 α F α F 0 α ρ α Fn α F 0 α, F α,..., Fn α ρ α n F α n F α n n Fn α d n lim µ µ α dµ n [ µn+α + µ n+α ].0 µ µ n+α n + µ n+α F α n n n + αn + α α + n n n α + n. Pochhammer β n β n ββ + β + n Γβ + n Γβ.. Gegenbauer Gegenbauer F α n µ C α+ n µ n Γα + Γn + α + n n! Γα + Γn + α + F n α µ.3 Cn α µ n Γα + /Γn + α n n! ΓαΓn + α + / F α n µ.4 30

31 α + /.6 n 0 µ C α n n! C α 0 µ.5 Γn + α Γα m + / C m+ n µ n n n! m!n + m! m!n + m! m 0 Legendre α n n!.6 d n µ m dµ n [ µ n+m ].7 P n x C n µ n d n n n! dµ n [ µ n ].8 Chandrasekhar 98 6 m C 3 n µ n n + n+ n! µ d n dµ n [ µ n+ ].9 Chebyshev 0 Gegenbauer Γ0 T n µ Cnµ 0 n Γ/Γn + n n! ΓΓn + / F n µ n n n! n n n! π Γn + / F n µ π Γn + / F n µ n n F n µ / n.0 Chebyshev Gegenbauer U n µ C nµ..3 Gegenbauer I α+ n [ ρ α µ C α+ n µ] dµ n Γα + Γn + α + n n! Γα + Γn + α + [ ] C α+ d n n µ dµ n [ρ αµxµ n ]dµ. 3

32 n I α+ n Γα + Γn + α + n n! Γα + Γn + α + d n [ ] dµ n C α+ n µ [ρ α µxµ n ]dµ.3 C α+ n µ n n µ n k n k n Γα + Γn + α + dn n µ n+α µ n+α n! Γα + Γn + α + dµ n Γα + Γn + α + Γn + α + n n! Γα + Γn + α + Γn + α + Γα + Γn + α + n n! Γα + Γn + α +.4 I α+ n k n Γα + Γn + α + n n! Γα + Γn + α + k n n Γα + Γn + α + Γα + Γn + α + k n n Γα + Γn + α + Γα + Γn + α + d n dµ n xn [ρ α µxµ n ]dµ [ρ α µxµ n ]dµ µ n+α dµ.5 ξ + µ.6 µ n+α dµ n+α+ ξ n+α ξ n+α dξ 0 n+α+ Bn + α +, n + α +.7 n+α+ [Γn + α + ] Γn + α + I α+ n Γα + Γn + α + n n! Γα + Γn + α + Γα + Γn + α + n Γα + Γn + α + n+α+ [Γn + α + ] Γn + α + α+ [Γα + ] Γn + α + n!n + α + [Γα + ].8 α 0 Legendre I n [P n µ] dµ n +.9 3

33 α I 3 n [ ] µ C 3 3 n +! n µ dµ n!n + 3 n + n + n F α n µ n Gegenbauer C α+ n µ d F α n dµ α + µdf α n dµ + n n + α + F α n 0.3 F α n Cα n µ d C α n dµ α + µdcα n dµ + n n + α Cα n 0.3 α / Legendre µ d P n dµ µdp n dµ + nn + P nµ 0.33 α 3/ Gegenbauer µ d C 3 n 3 n dµ 4µ dc dµ + nn + 3C 3 n µ

34 Xµ d n+ [ dµ n+ Xµ d ] dµ [ρ αµxµ n ] Xµ dn+ dµ n+ [ρ αµxµ n ] + n + X µ dn+ dµ n+ [ρ αµxµ n ] nn + + X µ dn dµ n [ρ αµxµ n ] Xµ d d n dµ dµ n [ρ αµxµ n ] + n + X µ d d n dµ dµ n [ρ αµxµ n ] nn + + X µ dn dµ n [ρ αµxµ n ] Xµ d dµ [ρ αµfn α µ] + n + X µ d dµ [ρ αµfn α µ] nn + + X µ [ρ α µfn α µ] µ d [ µ dµ α Fn α µ ] n + µ d [ µ α Fn α µ ] dµ nn + [ µ α Fn α µ ] { µ α µ d Fn α α dµ n + α + µdf n dµ [ ] } 4αα + nµ + µ nn + α Fn α µ.35 34

35 .5. Laplace d n+ [ dµ n+ Xµ d dn+ dµ n+ dn+ dµ n+ ] dµ [ρ αµxµ n ] [ Xµ d dµ [ ρα µxµ Xµ n ]] [ Xµ n d dµ [ρ αµxµ] + n Xµ n ρ α µx µ dn+ dµ n+ [Xµn ρ α µf α µ + n Xµ n ρ α µx µ] dn+ dµ n+ [{F α µ + n X µ} ρ α µxµ n ] {F α µ + n X µ} dn+ dµ n+ [ρ αµxµ n ] + n + {F α µ + n X µ} dn dµ n [ρ αµxµ n ] {F α µ + n X µ} d d n dµ dµ n [ρ αµxµ n ] + n + {F α µ + n X µ} dn dµ n [ρ αµxµ n ] {F α µ + n X µ} d dµ [ρ αµfn α µ] + n + {F α µ + n X µ} [ρ α µfn α µ] µα + n d dµ α + n µ α { µ df α n dµ + [ µ α F α n µ ] n + α + n [ µ α F α n µ ] ] } [n + αµ µ Fn α ] µ d F α n dµ α + µdf α n dµ + nn + α + F α n µ Laplace Gegenbauer C N/ n N N zonal N N x i i.38 35

36 .5. Laplace N x r cos θ.39 x r sin θ cos θ.40 x 3 r sin θ sin θ cos θ x N r sin θ sin θ sin N cos θ N.43 x N r sin θ sin θ sin N sin θ N.44 0 θ i π for i,,..., N 0 θ N π 0 N r + N N r r + r N r N r r i + ρ i N i θ i + N i tan θ i ρ i sin θ i N i θ i [ sin θ i N i ].45 θ i θ i { r i ρ i r i l sin θ l i.46 N H 0 H r θ i i zonal Zr, θ { r N r N + r r r sin θ N [ sin θ N θ θ ]} Z 0.47 Zr, θ RrΘθ.48 d Rr N 3 r dr N dr d dr Θsin θ N dθ [ sin θ N dθ dθ ].49 r θ λ Θ Θ [ ] d N dθ sin θ N sin θ + λθ 0.50 dθ dθ µ cos θ.5 36

37 .5. Laplace Mµ Θθ.5 M µ d M N µdm dµ dµ + λm 0.53 N 5 Chandrasekhar 6 α N.54 µ d M α + µdm dµ dµ + λm 0.55 n λ nn + α M a n µ n.56 n0 µ nn a n µ n α + µ na n µ n + λ a n µ n 0.57 n0 n0 n0 µ n 0 n + n + a n+ nn a n α + na n + λa n 0.58 a n+ a n nn + α λ n + n +.59 µ lim n a n+ /a n µ < µ Gauss Bressoud 006 u m a m u m+ u m mm + α λ m + m + m + αm λ/4 m + 3/m + /.60 Gauss m m α < / α / Chandrasekhar 6 α 3/ λ nn + α n n n 37

38 Gegenbauer C α n µ N Gegenbauer Cn N/ µ Gegenbauer.6 Gegenbauer α 0 wµ, h µ wµ, h µ wµ, h µh + h α.6 αh µh + h α+.6 4αα + h µh + h α+.63 wµ, h αh µ h µh + h α+.64 h α { } α+ wµ, h h αh [ α + µh µ α + α + h + α + µ ] h h µh + h α+.65 µ wµ, h wµ, h µ α + µ µ h α { α+ wµ, h h h h }.66 wµ, h µh + h α h n ϕ n µ.67 n0 ϕ n µ µ n.66 n0 { h n µ d ϕ n µ dµ α + µ dϕ } nµ dµ h n nn + αh n ϕ n x.68 µ d ϕ n µ dµ α + µ dϕ nµ + nn + αϕ n x 0.69 dµ Gegenbauer.3 ϕ n Gegenbauer C α n.67 n0 38

39 µ h n ϕ n h α α n n0.6 n0 n0 n0 h n αα + α + n h n n! α n h n n! ϕ n α n n!.70.7 Cn α µ ϕ n µ.7 µh + h α h n Cn α µ.73 Gegenbauer Gegenbauer n0.7 Goursat fz n f n z n! πi C t z C ft dt.74 t z n+ Gegenbauer C α+ n µ n Γα + Γn + α + d n n n! Γα + Γn + α + µ α dµ n [ µ α+n ].75 C α+ n µ n Γα + Γn + α + n πi Γα + Γn + α + Γα + Γn + α + πi Γα + Γn + α + C 39 µ α [ t t µ C ] n [ t µ t α+n t µ ] α dt t µ n+ dt.76

40 t h h t t µ.77 ht t + µ h 0.78 t h µh + h.79 dt dh h µh + h + µ h h dh µh + h µh µh + h h dh µh + h.80 t µ h µh µh + h.8 dt t µ h dh.8 µh + h t µ µh + µh + h.83 Goursat C α+ n µ Γα + Γn + α + πi Γα + Γn + α + α µh + dh µh + h α µh + h h n+ around h0 Γα + Γn + α + Γα + Γn + α + [ ] d n α n! dh n µh + µh + h α µh + h h0.84 α µh + µh + h α µh + h Γα + Γn + α + Γα + Γn + α + Cα+ n µh n α + n C α+ n µh n α + n n0 n

41 α / µh + µh + h α / µh + h n0 n0 ΓαΓn + α + / Γα + /Γn + α Cα n µh n α + / n α n Cn α µh n.86 / Legendre C n µh n P n µh n.87 µh + h n0 n0.8 Bressoud, David M. 006 Gauss s Test, Appendix to A Radical Approach to Real Analysis, nd ed., Chandrasekhar, S. 98, Dover edition; 96, original Hydrodynamics and Hydromagnetic Stability, Dover. Doman, Brian George Spencer 06 The Classical Orthogonal Polynomials, World Scientific 9 96, 5 0 n, 4

42

43 43 3 Hermite 3. Hermite Rodrigues Hermite Rodrigues H m x m e x dm m e x 3. m 0 m 5 H 0 x e x e x 3.a H x e x H x e x H 3 x e x H 4 x e x d e x d e x d3 3 e x d4 4 e x e x xe x x 3.b e x [4x e x ] 4x 3.c e x [ 8x 3 + xe x ] 8x 3 x 3.d e x [6x 4 48x + e x ] 6x 4 48x + 3.e H 5 x e x d5 5 e x e x [ 3x x 3 0xe x ] 3x 5 60x 3 + 0x 3.f 3. Rodrigues e x H m xh l x 0 m l 3.3

44 3.3. Hermite m > l m < l e x H m xh l x m d m m e x H l x { [ d m m e x H m l x m+ m 0 ] d m e x d m H lx e x dm m H lx } d m e x d m H lx 3.4 H l l m> l Hermite Rodrigues Hermite Hermite d H m x dh m + mh m m dm m e x e x H m x 3.6 m dm+ e x e x xh m+ m x + dh mx 3.7 e x H m x d e x H m x d [e x xh m x + dh ] mx 4x e x H m x 4xe x dh mx e x [ 4x H m x 4x dh mx + e x d H m x ] + d H m x

45 d e x H m x m dm+ m+ e x m dm+ m+ xe x m [ m + dm m e x x dm+ m+ e x] m + m dm m e x x m dm+ m+ e x m + e x H m x xe x xh m x + dh mx [ e x 4x m H m x x dh ] mx 3.9 4x H m x 4x dh mx + d H m x 4x m H m x x dh mx 3.0 d H m x dh m + mh m Φ m x e x / H m/ m x m / ex dm m/ m e x 3. A ± d + x A + Φ m Φ m+ A Φ m Φ m a 3.4b 45

46 ] A + Φ m m+ d [e x / dm m+/ m e x + m / xex dm m+/ m e x m+ / ex dm+ e x + m+ / xex dm m+/ m+ m+/ m e x + m / xex dm m+/ m e x / ex dm+ m+/ m+ Φ m+ e x m+ ] A Φ m m d [e x / dm m+/ m e x + m / xex dm m+/ m e x m / ex dm+ e x + m / xex dm m+/ m+ m+/ m e x + m / xex dm m+/ m e x m / ex dm m+/ m xe x / ex dm m / m Φ m e x m + m / xex dm m / m e x SGC 6, 46

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

4 14 4 14 4 1 1 4 1.1................................................ 4 1............................................. 4 1.3................................................ 5 1.4 1............................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

p03.dvi

p03.dvi 3 : 1 ( ). (.. ), : 2 (1, 2 ),,, etc... 1, III ( ) ( ). : 3 ,., III. : 4 ,Weierstrass : Rudin, Principles of Mathematical Analysis, 3/e, McGraw-Hil, 1976.. Weierstrass (Stone-Weierstrass, ),,. : 5 2π f

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2 IA September 5, 7 I [, b], f x I < < < m b I prtition S, f x w I k I k k k S, f x I k I k [ k, k ] I I I m I k I j m inf f x w I k x I k k m k sup f x w I k x I k inf f x w I S, f x S, f x sup f x w I

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

2 4 202 9 202 9 6 3................................................... 3.2................................................ 4.3......................................... 6.4.......................................

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

29 1 6 1 1 1.1 1.1 1.1( ) 1.1( ) 1.1: 2 1.2 1.2( ) 4 4 1 2,3,4 1 2 1 2 1.2: 1,2,3,4 a 1 2a 6 2 2,3,4 1,2,3,4 1.2( ) 4 1.2( ) 3 1.2( ) 1.3 1.3 1.3: 4 1.4 1.4 1.4: 1.5 1.5 1 2 1 a a R = l a l 5 R = l a +

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx Sturm-Liouville Green KEN ZOU 2006 4 23 1 Hermite Legendre Lguerre 1 1.1 2 L L p(x) d2 2 + q(x) d + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 2 + q(x) d + r(x) (2) L = d2 2 p(x) d q(x) + r(x) (3) 2 (Self-Adjoint

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

0 0. 0

0 0. 0 60 0 ( ) Web http://www.phys.u-ryukyu.ac.jp/~maeno/wave00/index.html Java Web maeno sci.u-ryukyu.ac.jp () () (3) 0 0. 0 0.. 3 () () (3) () () (3) () (3) () 0. 3 0Hz 0000Hz Hz 4 3 4 Hertz 4 0 A 4 440Hz

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd

More information