最終報告書.PDF

Size: px
Start display at page:

Download "最終報告書.PDF"

Transcription

1 12 7

2 Covered Ineres Rae Pariy: CIP20 Uncovered Ineres Rae Pariy: UIP

3 VAR

4

5 EG VAR

6

7 II-1 5 II-2 9 II-3 10 II-4 11 II-5 GDP 12 II-6 73:199:2 15 II-7 73:199:2 15 II-8 73:199:2 16 II-9 73:199:2 17 II II II II II II III-1 33 III-2 34 III-3 35 III-4 36

8 III-5 37 III-6 38 III-7 39 III-8 ISLM 40 III-9 43 III III III III III III-15F 50 III-16F 51 IV-1 65 IV-2 65 IV-3 mˆ > mˆ 68 IV-4 69 IV-5 69 IV-6 70 IV-7 gˆ > gˆ 71 IV-8 71 IV-9 73 IV-10 mˆ > mˆ 75 IV IV IV IV-14 gˆ > gˆ 77 IV IV V-1 y = y 0 + a + u 81 V-2 y = y 0 + ε i 82 i= 1 V-3 84 V-4 96 V-5 97 V-6 LPPIJU 98 V-7 100

9 V-8LYDOL 100 V V V V-12 LYDOL 103 V VI VI VI VI VI-5F 116 VI-6F 116 VI VI-8VAR 118 VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII VII

10 VII VII VII VII VII VII VII VII VIII VIII VIII VIII VIII VIII VIII VIII VIII-9 177

11 bilaeral exchange rae effecive exchange rae EER = n i= 1 w i BER i n w i i= 1 = 1 EER = n i= 1 BER w i n w i i= 1 = 1 EER : w : i i BER i : i 1 2

12

13

14

15 = IS-LM

16 2 i P = S i = 1,, n * i P i * P i i S Pi i * i S Pi i i i P i

17 Purchasing Power Pariy n * = S P P i= 1 P * * wi Pi P wi Pi n i= 1 * * n * i wi = 1, wi = 1 i= 1 n i= 1 P S = * P 3 i i i i * P / P * * = ( S / S ) ( P / ) 0 0 P * 0 *

18 0 p ˆ + * * = sˆ pˆ s ˆ = pˆ pˆ ŝ pˆ ˆp * SPP * ŝ 100 II-2 80 RE RE = S P P * reˆ = sˆ + pˆ * pˆ reˆ reˆ ŝ reˆ

19 IMF, Inernaional Financial Saisics PT P N * P = S p ˆ = sˆ + pˆ * T P T T T P pˆ = αpˆ T + (1 α) pˆ N pˆ * * * * * α pˆ T + (1 α ) pˆ N = pˆ p * T ˆT * * * * sˆ + pˆ pˆ = re ˆ = (1 α )( pˆ pˆ ) (1 α )( pˆ pˆ ) N T N pˆ ˆ T N p T

20 II =100 IMF, Inernaional Financial Saisics Yearbook II-4

21 IMF, Inernaional Financial Saisics Pricing o he Marke 3 4

22 IMF, Inernaional Financial Saisics 1990pp

23 3 M = L( Y, i) m ˆ p ˆ = η y y ˆ + ηi i P M * = * * * L ( Y, i ) * * * * * * * mˆ pˆ =η yˆ y + ηi i P M P Y i ηy η i M M M M d( )/( ) d( ) /( ) η P P P P y =, ηi = dy / Y di * ^ η η * * * * * * sˆ = pˆ pˆ = ( mˆ mˆ ) ( η yˆ η yˆ ) ( η i η i ) Y Y i i * * * sˆ = ( mˆ mˆ ) η ( yˆ yˆ ) η ( i i ) Y i * * * ( mˆ η yˆ) ( mˆ η yˆ ) η y * mˆ mˆ e e * * * sˆ = ( mˆ mˆ ) ( η i η i ) e e i i mˆ mˆ * > 0 e Y e Y Y i Y ˆ

24 * i i i) ii) iii) iv) M1 M 2 M II

25 sˆ = * mˆ mˆ ( 1.351) (1.742) ( 0.565) ( 0.342) ( 1.795) * i * i ( 0.964) (1.653) R 2 * * 0.022* yˆ 1.106* ˆy = S. E. = D. W. = * * * sˆ = *( mˆ mˆ ) *( yˆ ˆy ) ( 1.917) (1.466) ( 0.150) * *( i i ) ( 1.037) R 2 = S. E. = D. W. = 1.506

26 1979 M log( ) = η log Y P Y η i * M log( ) = η * log Y * * i * * Y η i P * log( S) = log( P) log( P ) i log( S ) = log( M ) log( M * ) η Y log Y + η * Y log Y * + η i η i i * i * log S = log M log M* log Y log Y* (4.53) (2.64) (-1.76) (2.88) (0.44) i i* (2.32) (2.65) 2 R = S. E. = D. W. = 0. 22

27 II-9 log S = log (M / M*) 0.65 log (Y/ Y*) (i i*) (35.95) (4.51) (-21.75) (0.85) R 2 = S. E. = 0.13 D. W. = 0.19 * * * log S = α + α log( M / M ) + α log( Y / Y ) + α ( i ) i S M M * Y Y * i 3 * i 3 * log( / M ) log( / (35.95) * * M Y Y ) ( i i ) 0.59 (4.51) (-21.75) (0.85)

28 II log S = (log m - log m* ) (log y - log y*) (18.61) (10.31) (-15.32) (i - i*) (5.02) 2 R = S. E. = 0.08 D. W. = 0.85 log S = log (M / M*) 0.16 log (Y / log y*) (6.77) (-2.03) (-2.70) (i - i*) (4.74) 2 R = S. E. = 0.08 D. W. = 0.63

29 * * * log S = α + α log( M / M ) + α log( Y / Y ) + α ( i ) i * log( / M ) log( / 8.44 (6.77) * * M Y Y ) ( i i ) (-2.03) (-2.70) 0.18 (4.74) * * * log S = α + α log( M / M ) + α log( Y / Y ) + α ( i ) i * log( / M ) (18.61) * * M log( Y / Y ) ( i i ) 1.62 (10.31) (-15.32) 0.03 (5.02)

30 Ineres Pariy i i * S S + 1 I d I + 1 I f 1 + d I = I (1 + i ) f * = ( I / S ) (1 + i ) S+ 1 I d I + 1 I f 1 + ( i + 1 * 1 + ) = (1 + i ) ( S / S ) +1 F, +1

31 ( i, + 1 * * 1+ ) = (1 + i ) ( F / S ) i i + f, +1 s f, +1 s F, +1 S Covered Ineres Rae Pariy: f, +1 s LIBOR IMF, Inernaional Financial Saisics e S 1 +

32 ( i + 1 * e * 1 + ) = (1 + i ) ( S / S ) i i + s e +1 s e s 1 S 1 + e + e Uncovered Ineres Rae Pariy: s +1 s e f, +1 s + 1 rp e f, + 1 s + 1 = rp f, +1= s e + 1 r r e = i p + p ) ( 1 +1 i

33 s e * = s + ( i i ) 1 e * * * e * r = i p + p ) r = i ( p + p ) ( 1 1 s * + p p + e * e e * = ( s+ 1 + p + 1 p 1) ( r r ) 2 re re * re = re ( r r ) s e * = s + 1 ( i i ) rp +

34 * re = re ( r r ) + rp rp * * re = re ( r r ) + φ( B ) * * re re β ( r r ) + γm B = * M m mm B m 1m II-12

35 log RE = (r r*) R 2 = 0.03 S.E. = 0.23 D.W. = 0.07 (-16.20) (-1.96) * log RE = α + α ( r ) 0 1 r RE r 10 1 * r 10 1 r r * (-16.20) (-1.96)

36 II log RE = (r r*) 1.59 rp R 2 = S.E. = 0.13 D.W. = 0.25 (-15.26) (-4.63) (-15.57)

37 * u j u g u e u c log RE = α 0 + α1( r r ) + α 2 ( M 11B + M 12B + M 13B + M 14B ) RE r * r u M ij B, j g e c, B, B B 7 * (-15.26) r r rp (-4.63) (-15.57)

38 log RE = (r r*)) 2.40 (rp) (-19.00) (-7.95) (-20.65) R 2 = S.E. = 0.10 D.W. = 0.45 log RE 1 * = α 0 + α1 ( r r ) λ2 2 s u j u g u e u c + α 2 ( M 11B + M 12B + M 13B + M 14B ) cλ ( a + b) ( a + b) 4ϕs / c λ 2 = < 0 2 a, b a + b = 0.1 ϕ 2 s c 2

39 1 * ( r r ) (-19.00) λ (-7.95) 2 s cλ rp (-20.65) II-15

40 log RE = (r r*)) 1.75 ( rp) (deb j /ny j ) (-19.00) (-7.95) (-20.65) R 2 = S.E. = 0.09 D.W. = 0.50 log RE 1 * = α 0 + α1 ( r r ) λ2 2 s u j u g u e u c + α 2 M11B + M12B + M13B + M 14B ) + α cλ ( 3 j deb ny j ( deb j / ny j ) λ 1 * 2 ( r r (-5.73) ) 2 s cλ rp (-11.31) j deb / ny j

41 ISLM closed economy open economy Y GDPC I G T NX M P P* L i i* r r* e e P ε = e P *

42 6 3 Y = C( Y T) + I( r) + G + NX ( e) M = L( r, Y) P r = r * IS e LM M/P L(r,Y) 7 M P dr L Y LM L r dy = > 0

43 2 * Y = C( Y T) + I ( r ) + G + NX( e) M = L( r *, Y) P Y X XY e LM IS LM LM LM IS Y ISLM

44 e LM IS IS Y

45 e LM LM impor quoa IS * NX ( e) = Y C( Y T) I( r ) G IS Y arbirage opporuniy LM Y,e 1 360

46 1970 EU EMU IS LM e LM LM IS IS Y

47 impor quoa IS LM 1cons. e

48 P M = L( r, Y) P λp + ( 1 λ) P / d f e P d P f λ 0 < λ < 1 (Y,e) LM e P M L Y 9 LM e LM IS Y LM LMd LM LMf dy de > 0

49 LMd ) ( * r r CF CF = IS LMd Y e IS LMf IS LMd Y e IS LMf

50 NX D E D E r CF r Y,r IS r IS ICM 0 ),,,, ( ) ( * = + e G T r Y NX r r CF ) ( ) ( ) ( e NX G r I T C Y Y = ), ( Y r L P M = 0 ),,,, ( ) ( * = + e G T r Y NX r r CF ),,,, ( ),,, ( e G T r Y NX G T r Y E Y D + = 0. 0, 0, 1, 0 < > < < < T E G E r E Y E D D D D ) ( ),,, ( * r r CF G T r Y E Y D = IS ICM) Y r LM IS PCM) IS CLD) r* IS ICM) Y r LM IS PCM) IS CLD) r*

51 Y,r IS PCM ICM CLD IS r* IS IS

52 NFI CF NFI = NFI( r r Y = C( Y T) + I( r) + G + NX ( e) M = L( r, Y) P NX ( e) = NFI( r) Y = C( Y T) + I( r) + G + NFI( r) M = L( r, Y) P IS * )

53 ISLM IS r LM r IS IS NFI(r) Y NFI e NFI NFI NX(e) NX

54 ISLM LM r LM LM r IS NFI(r) Y NFI e NFI NFI NX(e) NX

55 VAR VAR GDP GDP GDP GDP GDP M CD 73/3100 IMF Inernaional Financial Saisics

56

57 -13 GDP F F F GDP 1 F F 3.362

58 F GDP F GDP F GDP GDP

59 F F F GDP F 4.508

60 F

61 TSP

62 j (a) 1 2 ε ε D S d( p2 M 2 )/ p2m 2 d ln( p2m 2) d ln p2 + d ln M 2 ε D = = de / e d ln e d ln e (1) d ( p1 X1) / p1x 1 d ln( p1x 1) d ln p1 + d ln X1 ε S = = de / e d ln e d ln e (2) 1,2 e p X, M η j d ln M d ln M 2 2 η j = (3) d ln( ep2 ) d ln e + d ln p2 ηa d ln X 1 η a (4) d ln p1

63 χ j d ln X d ln X 1 1 χ j = (5) d ln( ep1 ) d ln e + d ln p1 χa χ d ln M 2 a d ln p (6) 2 (3)(6) η χ j a d ln p2 = d ln e + d ln p 2 d ln p 2 η j d ln p 2 = ( ) d ln e (7) η + χ j a (7)(6) d ln M 2 d ln M 2 χaη j = ( ) d ln e (8) η + χ j a (7)(8) ε D ε D η j ( χa + 1) = η + χ j a (9) (5)(4) d ln p 1 χ j d ln p 1 = ( ) d ln e (10) η + χ a j

64 (10)(4) d ln X 1 ηaχ j d ln X 1 = d ln e (11) η + χ a j (10)(11) ε S ε S χ j ( ηa 1) = η + χ a j (12) NX NX = p X p (13) 1 1 2M 2 dnx = d( p1 X1) d( p2m 2) (1),(2) d p X ) = s p X d ln e (1 ) ( 1 1 ε 1 1 ( p2m 2) ε p2 2 d = D M d ln e (2 ) (9),(12) p 1X1 = p2m2 dnx ηjη a( χ j + χa + 1) + χ jχa ( η j + ηa 1) = [ ] p1x1 (15) d ln e ( η + χ )( η + χ ) a j j a dnx / d ln e > 0 η η ( χ j a j + χ ( η a a + 1) + χ + χ j )( η j j χ ( η a + χ a j ) + η a 1) > 0 (16)

65 (16) χ χ +, χ + j χ a 1 0 η η > 1 (17) j + a j 1 a

66

67

68

69

70

71

72

73

74 -1 ( y) y p = π & y GDP y GDP y π = p&

75 p& 45 o p& y y & p y y

76 p& = 0 y ( y = y) r i p& c e + p p i r c e p 1 e

77 y = µ gˆ σr δc mˆ p =αy λi i p& = r ĝ mˆ µ, σ, δ, α, λ ĝ, mˆ µ p, p&, y, i, e, c p p p& = 0 y = y i = r p e r, c y y i r r

78 p e mˆ y = y, i = r = r mˆ p e mˆ > mˆ p i y p p& = π ( α λπ ) p + π ( α λπ ) ( mˆ λπy r ) πy p mˆ, y, r α λπ > 0 p p& = 0 p mˆ, y, r ĝ ĝ p&

79 p p& α λπ > 0 α λπ < 0 p& p& p p α λ, π mˆ p p& α λπ > 0 p& p p mˆ p& p p p p T0 = mˆ p p& > 0 P P p y, i, e, c p m ˆ, gˆ, r, y

80 mˆ y y i e c 0 y 0 y i y e 0 y = y c 0

81 ĝ ĝ p ĝ c y, i e gˆ > gˆ ĝ e c e,c

82 E ( e& ) = e& E(& e) = i i i e& = i i

83 i i e 0 i i e e 0 e % 5.7 p e 2 p e y i y = y( p, e) i = i( p, e) 2

84 ( p, e; gˆ, mˆ, y, i*, p* ) p & = P ( p, e; gˆ, mˆ, y, i*, p *) e & = F 2 p e p& = 0 e& = 0 y = y i = i p e r, c y y i r i p e mˆ y = y, i = r = r mˆ p e

85 mˆ > mˆ e p& < 0 e& > 0 e& = 0 e& < 0 p& > 0 e& > 0 e& < 0 p& > 0 p& < 0 p& = 0 p ( ) p& = 0 e& = 0 p, e ( ) p, e mˆ p& = 0 e& = 0 p e p e

86 &e = 0 &p = 0 &e = 0 &p = 0 45 $ $ $m o

87 y 0 y e 0 y = y c 0 ĝ ĝ p& = 0 e& = 0 p ĝ c y, i e gˆ > gˆ

88 e e& = 0 s s p& = 0 e& = 0 s s p& = 0 p p ĝ ĝ e µ ĝ δ p y i

89 ( ) [ ] ) ( ˆ + = p p e y y i g y δ π σ µ y i + = p y m g p e i y ˆ ˆ δ σπ µ δ δ λ α σ σπ + = p y m g p e i y ˆ ˆ δ σπ µ λ α σ σπ δ δ λ α σ σπ = p y m g p e i y ˆ ˆ αδ ασπ σπ αµ λδ λσπ σ λµ σπ αδ αδ σ δλ δλ y i = i p y m g p e p e ˆ ˆ ) ( λδπ π λσπ σπ λµπ αδ ασπ σπ αµ π σ δλ δλπ σπ αδ αδ & & e p ( ) ( ) [ ] { } δλπ αδ σπ π σ λδ αδ > αδ σπ

90

91 y = y 0 + a + u u i.i.d(0,s 2 ) a u i.i.d(0,s 2 ) u independenly and idenically disribued 10 1 y 0 2 a u deerminisic rend y y = y 0 + a + u u6 u5 u4 u3 u2 u1 y

92 sochasic rend y = y 1 + ε ε i.i.d(0,s 2 ) 0 y 1 ε y1 y1 ε 2 2 y = y 0 + ε i i= y y = y 0 + ε i i= 1 u5 u1 u4 u6 u2 u3 y

93 11 Granger y = θ y 1 + ε ε i.i.d(0,s 2 )? = 1? y V-3? = 1.2? = 0.8? E( X ) = µ var( X ) = γ σ 2 2 cov( X, X s ) = E( X µ )( X s µ ) = s

94 ?? 12? uni roo? = 1.2? = 0.8? = 1? = 1,= 0.1 ε i.i.d(0,1) y = β + θy 1 + ε ( 1 θ L) y = ε ( 1 θl) = 0?

95 y = b + y 1 + ε y i= 1 ε i.i.d(0,s 2 ) = y 0 + b + ε i V-3 ( y y0 a ) = u y y y 1 = y = ε y 1 = y = b + ε b

96 1 d d y I(d) I(0) I(1) 1 y I(2) 2 2y y d y I(0) I(0) y I(0) 1976 Fuller p p Fuller (1976)Dickey and Fuller (1981) y = θ y 1 + ε ε i.i.d(0,s 2 )?? 0 <? 1? H0 :? = 1 H1 :? < 1 H0 H1 y I(0) H0 y

97 ? Dickey and Fuller Dickey-Fuller Tes y = δ 1 + ε y 1 δ =θ H0 : d = 0 H1 : d < 0 H0 :? =1H1 :? < 1 H0 : d = 0? =1 y I(1) y I(0) I(0) I(1) d Fuller(1976) 2 y = µ + δ 1 + ε y y y = µ + α + δ 1 + ε 13 y 2 H0 : d = 0 H1 : d < 0 y I(0) H0 : d = 0 H1 : d < 0 y I(1) y I(0)

98 2 y = δ + ε y 1 H0 : d = 0 H1 : d < 0 H0 : d = 0 H1 : d < 0 y = θ 1 + ε θ =1 + δ y? < 1 y I(0) y I(1) H0 : d = 0 H1 : d < 0 ε i.i.d(0,s 2 ) y p 1 = γ y + γ y + υ = 1 i i i 1 I(1) =1 (-1) = 0 Dickey and Fuller Augmened Dickey-Fuller Tes p y = δ y δ i y i + υ i= 1 Q(p)

99 y = µ + δy 1 + ε ε i.i.d(0,s 2 ) d = 0 = 0 (, d) = (0, 0) Dickey and Fuller (1981) F F F 1 y p 1 µ α δy = = δ y 1 i i i 1 ε ε i.i.d(0,s 2 ) H0 : d = 0 H1 : d < 0 H0 y ( ) = 0 H0 H0 : d = 0 = 0 F H0 d = 0 1 <>0 y = + a + y 1 µ + ε H0 = 0 d = 0 y p 1 µ δy = + + = δ y ε 1 i i i 1 H0 : d = 0 H1 : d < 0 H0 y H0 y <>0 H0 : = 0 d= 0 F H0 d = 0 3 <>0 y

100 H0 = 0, = 0 y p 1 δy = + = δ y ε 1 i i i 1 H0 : d = 0 H1 : d < 0 H0 y H0 (i) (ii) (iii) (i) (ii) (i) (ii)

101 I(1) yi(1) x xy Granger and Newbold (1974) y I(1)x I(1) y = + X + u = 0 R 2 DW H0: = 0 H0 y I(1)xI(1) I(0) 2 2 3

102 x I(d) y I(d) 1y β 2x β + I(d - b) d b > 0 y x d b y, x CI(d, b) ( β, β 1 2 ) I(0) d b = 0 y = α + βx + u u = y α βx y I(d) x I(d) d u I(0) y + u = y = α + β 1 x1 + β 2x2 u α β 1 x1 β2x2 y I(1) x, 1 x2 I(0) y, x, 1 x2 y + u = y = α + β1x1 + β 2x2 + β3x3 u α β1x1 β2x2 β3x3 y I(1) x 1 I(1) x, 2 x3 I(2) y, β 1 x1, β2x2 + β3x3 I(1) u I(0)

103 y = α + β x + β x + Lβ x + u k k β 1, β 2, L, β k ε A p = δε δ i i= 1 ε ε + υ i Ho: = 0 H1: < 0 u I(0) y, x1, x2, L, x k Engle-Granger Tes Augmened EG Tes y = α + β + ε x y, x I(1) y x ε = y α βx I(1) ε E( ε )=0 ε I(0) y x y α βx ε = y α βx Engle and Granger (1987) y x y = δ x γε + u γ > 0 1

104 ECM: Error Correcion Model y, x I(1) ε I(0) y, x, ε 1 I(0) u I(0) ε y α βx > 0 y 1 > α + βx 1 = α βx y y < 0 0 ε < y 1 < α + βx 1 y y 1 y > 0 γ γ y x y x A ( L) y = B( L) δ x γε 1 + θ( L) u L A(0) = y

105 LYDOL α + u = + β 1 LPPIjp1 β2lppius2 LYDOL LPPIjp LPPIus LYDOL LPPIjp LPPIus

106 LYDOL LPPIjp LPPIus

107 LYDOLLPPIjpLPPIus LYDOL 1 I(1) LPPIus LPPIjp LYDOLI(1)LPPIjp, LPPIusI(0) AR(p) R 2 LYDOL LPPIjp LPPIus LYDOL LPPIjp LPPIus β1,β 2 14 LYDOL = α + β log( PPIjp / PPIus ) + u 23 = α + βlppiju + u LPPIju LPPIju

108 AR(p) R I(1) 23 EG 23 LYDOL = LPPIju 24 ( ) ( ) (0.000) (0.000) R 2 = s = DW = ( ) 24 ε ε = ε ε ε ε 3 ( ) ( ) ( ) ( ) (0.005) (0.001) (0.000) (0.002) R 2 = s = DW = ( )

109 24 24 ε = LYDOL βlppiju α 24 LYDOL LYDOL TB LYDOL + DU = α 1 + ( α 2 α1) DU + βlppiju u 25 1 ( > TB ), 0 ( TB ) = DU LYDOL = α 1 + βlppiju + u ( TB ) LYDOL = α 2 + βlppiju + u > T ) ( B

110

111

112 T T Bs Be 25 DU = ( T < T ), 0 ( < T, > T ) 1 Bs Be Bs Be 1 ( TB1 s < TB1 e, > TB2s ), 0( TB1s, TB1 e < TB2s DU = ) AR(p) R Q Q Q486Q Q486Q297Q LYDOL 90

113 90

114 A ( L) δ 1 + θ( L) u LYDOL = B( L) LPPIju γε LYDOL = LPPIju LPPIju LPPIju ( ) ( ) ( ) LYDOL ε 1 ( ) ( ) R 2 = s = DW = ( ) LYDOL = LPPIju LPPIju ε LPPIju ( ) ( ) ( ) ( ) R 2 = s = DW = ( ) γ /γ

115 1995 Sims y = α + α y + α y, + e y y y = β + β y + β y + e , 1 3 2, y y 1 2 = π = π π + π y 1, 1 y 1, 1 + π 13 + π 23 y 2, 1 y 2, 1 + υ 1 + υ 2 VAR()

116 VAR AR(p) p y = v + Θ 1 + υ y y y = 1 y v = π 2 π Θ = π π π π υ υ = υ υ 1 2 y1,,y VAR(p) y = v + Θ1 y1 + Θ2 y Θ p y p + υ VAR E [ υ 1 ] = 0 Cov ( υ ) 1 ω = Ω = ω ω ω V = Cov ( υ ) ( ) 1 Cov υ1, υ 2 ( υ, υ ) V ( υ ) ω 12 ( ) υ υ s s VAR VAR 1 Granger(1969) y 2 y 1 y 1 y 2 VAR

117 π 13 = 0 y 2 y 1 VAR() y1 = π 11 + π12 y1, 1 + π 13y2, 1 + π 14 y1, 2 + π 15y 2, 2 + υ1 π13 = π15 = 0 y 2 y 1 y 2 y 1 y 2 y 1 (, ) y y y = 1 2 ' VAR(p) y y 1 2 v = v π π π 11, 1 12, 1 π 211, 22, 1 y y 1, 1 2, 1 π + + π 11, p 21, p π π 12, p 22, p y y 1, p 2, p υ + υ 1 2 y π = π = π p = 12, 1 12, 2 12, 0 y 2 y 1 π = π = π p = 211, 21, 2 21, 0 y 1 y 2 y 2 y 1 y 2 y 1 y 1 2 y 1 y 2 VAR(p) y 2 y 1 ( ) RSSR USSR / p λ = USSR / ( T 2p 1) λ p,tp p: T: VAR y = ( y,, y )' P 1 M

118 [VAR(p)] y 1 = v + Θ1 y 1 + = Θ p y p + υ ( ) ' v = v v 1,, M Θ i θ = M θ M 11, i 1, i K O L θ θ 1M, i M MM, i ( ) ' υ = υ, L, υ 1 M υ E υ = 0 [ ] [ ], non-singular = E ' υ υυ υ υ s s υ VAR(p) MA y = µ + v + M 1υ 1 +L i= 0 = µ + M υ i i [ = E y ] = ( I Θ1 LΘ p ) 1 µ µ M i kj I j k VAR(p) υ P P υ = I y MA y = µ + M P Pυ = µ + Ψ w i= 0 i 1 i i= 0 i i = M P 1 ( w = w,, ' 1 L w ) Ψ i i M w

119 E ' ' ' [ w w ] = PE[ υ υ ] P I = Ψ i w m y 1 P Ψ i Causal Ordering v δ VAR(p) h MSE ( ) ' h = + M M + L+ M M ' v 1 v 1 h 1 v h ' ' ' ' 1 ' 1 ' 1 ' 1 ' v 1 v 1 L h 1 v h 1 ' ' ' L h 1 h 1 = ( ) + ( ) + + ( ) P P P P M P P P P M M P P P P M = ΨΨ + ΨΨ+ + Ψ Ψ Ψ n Ψ ' n m Ψ n 2 ' ' Ψ Ψ LΨ h Ψ h MSE MSE y m ϕ mj, 0 + ϕ mj, 1+ L + ϕ mj, h 1 Ψ mj, n Ψ n mj MSE

120 VAR VAR LYDOL X IMF Inernaional Financial Saisics Y GDP Z GDP W

121

122 VAR LYDOLXYZW X = δ + ε X 1 X = µ + δ + ε X 1 X = + α + δx 1 µ + ε 2 X

123 LYDOL LYDOL

124

125 3 p H : δ 0 0 = LYDOL W X p LYDOL X W W W = +1 W W + ε = ε + ε 1 + ε

126 VAR 2 VAR F (p, T-2p-1)F p T F F(4,99) F(4,40)F(4,48)

127

128 VAR 5 YD,XX,Y,Z,W VAR VAR YD VAR

129

130

131 VII VII

132

133 % % % VII-3 80

134

135 n.a n.a IMF, Inernaional Financial Saisics

136 n.a n.a.

137 10 10 IMF, Inernaional Financial Saisics (1) (2) (1) (2)

138

139

140 IMF, Inernaional Financial Saisics 97 97

141 99

142 i YDOL = *( PPI *( IRGB *( BPC US J US CPI / NGDP / WPID J / CPI US J *100) ) *( IRGB10 J 4 ) *( BPC J US CPI / NGDP J US / CPI *100) US 4 ) YDOL PPIUS WPIDJ IRGB10 10 CPI US J US IRGB10 10 CPI BPC J J BPCUS NGDPUS J NGDP ii NEEDS NEEDS NEEDS NEEDS 2

143 YDOL = *( KBPC *(( IRGB *( YDOL 1 ) US WPI US J ) / WPI US 4 ) ( RBLAV WPI J / WPI J 4 )) KBPC J IRGB30 US 30 WPIUS RBLAV WPI J YDOL = * ( PE / EXPIS *199) *( BPC * (( RCALL *( YDOL J /1000 / GNP US 1 ) WPI US J 1 ) / WPI US 4 ) ( RCALL J WPI J / WPI J 4 )) PE EXPIS BPC J GNP GNP J RCALL US J RCALL iii YDOL MAVG4 = *( KBPC *(( RMAA J JMAVG4 PGDP / PGDP J ) *( YDOL ) J 4 MAVG4 MAVG4 1 IRGB30 US ) ) MAVG4 RMAAJ PGDP GDP J MAVG4 4

144 i log( YDOL ) log( PPP) = *(( IRGB *(( KBOPCRNT *(( BPC J US PGDP + KDR + DR ) /( NGDP J J US / PGDP J ) /( J US 4 NGDP + NGDP ) ( RBLAV PGDP J US + NGDP US * YDOL )) J * YDOL )) / PGDP J 4 )) YDOL PPP IRGB30US 30 PGDP GDP US RMAA J PGDP GDP J KBPC J KDR J NGDPUS NGDP J BPC J ii [ ]= *[ ] -7.46*[ ]+1.44*[ ] -1.73*[ ]

145

146

147

148

149

150

151 Y X 1 10 X 2 10 X 3 X 4 23

152 ii

153

154 Y X 1 X 2 X 3 X

155 2000

156

157

158

159 21 1 1

160

161

162 99

163 VII-28

164 86 20 The Conference Board s Leading Indicaors Index

165 2

166

167

168

169

170 22

171 PPP

172 GDP GDP TOPIX NY 30 M1 M1M2 M1 M1M2

173 23 EU

174

175

176 1 1

177 FOMC Yes No

178 84-4

179

180 CI Conference Board s Leading Indicaors Index 4 Q M W D -5 Excel -4 Primark Daasream

181

182

183

184

185 2-8 -9

186 * * * log( YDOL) = α 0 + α1 log( M / M ) + α 2 log( Y / Y ) + α3 ( i i ) YDOL M M * Y Y * i 3 * i 3 * log( RE) = α 0 + α1 ( r r ) RE r 10 1 * r 10 1 RE) α + α log( lead jp ) α log( lead ) log( = us 2 RE lead jp CI leadus US Conference Board s Leading Indicaors Index * u j u g u e u log( RE ) = α 0 + α1( r r ) + α 2( M 11B + M 12B + M13B + M 14B c ) RE * r r u M ij j g e c B, B, B, B 7 log( ) α 1 + ( α2 α1) DU + β YDOL = log( PPIjp / PPIus ) + u DU = 1 (81Q4 < 86Q2), 0 ( 81Q 4, > 86Q2) YDOL PPIjp PPIus DU

187

188 G ( )

189 GDP

190 GDP GDP GDP GDP

191 3

192

193

194

195

196 [1994] [1983] [1983] [1979] No.3 [1992] [1994] The Economic Sudies QuarerlyVol.45, No.5 [1996] [1990] [1999] [1994] 13 4, G.S. [1992] [1997] [1992] [1995] Baillie, Richard and Parick McMahon[1989] The Foreign Exchange Marke: Theory and Economeric Evidence, Cambridge Universiy Press. Cuhberson, Keih[1996] Quaniaive Financial Economics: Socks, Bonds and Foreign Exchange, Wiley. De Grauwe, Paul, Hans Dewacher and Mark Embrechs[1993] Exchange Rae Theory: Chaoic Models of Foreign Exchange Markes, Blackwell. Greene, William H.[1993] Economeric Analysis, 2 nd. Ed. Macmillan Grossman, Gene. M. and Kenneh Rogoff [1995] Handbook of Inernaional Economics, Volume 3, Norh-Holland Isard, Peer [1995] Exchange Rae Economics, Cambridge Universiy Press. Jacques J. Polak[1995] Fify Years of Exchange Rae Research and Policy a he Inernaional Moneary Fund, IMF Saff Papers, Vol. 42, 4 MacDonald, Ronald and Mark P. Taylor[1992] Exchange Rae Economics: A Survey, IMF Saff Papers, Vol. 39, 1 Mankiw, N. Gregogry[1994] Macroeconomics, 2 nd. Ed., Worh Publishers

197 Obsfeld, Maurice and Kenneh Rogoff[1996], Foundaions of Inernaional Macroeconomics, MIT Press Romer, David[1996] Advanced Macroeconomics, McGraw-Hill

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

金融政策の波及経路と政策手段

金融政策の波及経路と政策手段 Krugman(988) Woodford(999) (2000) (2000) 4 rae-of-reurn dominance 405 4 406 (i) a 2 cash good credi good b King and Wolman(999) (ii) 407 3 4 90 (iii) (iv) 408 λ κ (2.8) π x π λ = x κ Svensson 999 sric

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 000 364 645 (ax smoohing (Barro(979 Barro(979 (consumpion smoohing Hall(978 Campbell(987 Barro(979 Hall(978 Campbell(987 Campbell(987 B ( r B G T ( ( r E B G T Y T/Y r ( No Ponzi Game ( [ Ω ] Y ( lim (

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

III

III III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2

More information

iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

# GDP 1 GDP 1992 GDP Hamilton and Flavin (1986) Doi and Ihori(2003) (2007) 2 Bohn(1998) /GDP Bohn # 1 2 Broda

# GDP 1 GDP 1992 GDP Hamilton and Flavin (1986) Doi and Ihori(2003) (2007) 2 Bohn(1998) /GDP Bohn # 1 2 Broda # masaya@econ.keio.ac.jp GDP 1 GDP 1992 GDP 1 2006 Hamilon and Flavin (1986) Doi and Ihori(2003) 1965 2003 (2007) 2 Bohn(1998) /GDP Bohn # 1 2 Broda and Weinsein (2005) (2007) 1 Hamilon and Flavin(1986)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

1 GDP 2 8 2 2

1 GDP 2 8 2 2 2013 11 29 1990 15 JEL C51, E12, E32, E62, O42, O53 1 2007 19 Borio (2012a), Galbraih (1994) 1990 1 20 1998 GDP 1998 2012 GDP 0.6 0.6 1 1930 Eggerson man (2012) and Krug 1 1 GDP 2 8 2 2 2005 2 1996 2007

More information

土地税制の理論的・計量的分析

土地税制の理論的・計量的分析 126 312 1 126 312... 2... 4 I...12...12...12...14...14...16...16...17...20...22...22...24...25 II...31...33...33...33...36...36...38 2...41...41...42...50...50...51 III...54...54...54...54...55...55...57...57...58...60...60...60...63...65...67...67

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1 1. 1-1 00 001 9 J-REIT 1- MM CAPM 1-3 [001] [1997] [003] [001] [1999] [003] 1-4 0 . -1 18 1-1873 6 1896 L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L 6 1986 ( 19 ) -3 17 3 18 44 1 [1990]

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 1998 1999 1998 1999 10 10 1999 30 (1982, 1996) (1997) (1977) (1990) (1996) (1997) (1996) Ihori, Doi, and Kondo (1999) (1982) (1984) (1987) (1993) (1997) (1998) CAPM 1980 (time inconsistency) Persson, Persson

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

1990年代以降の日本の経済変動

1990年代以降の日本の経済変動 1990 * kenichi.sakura@boj.or.jp ** hitoshi.sasaki@boj.or.jp *** masahiro.higo@boj.or.jp No.05-J-10 2005 12 103-8660 30 * ** *** 1990 2005 12 1990 1990 1990 2005 11 2425 BIS E-mail: kenichi.sakura@boj.or.jp

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) (Windows 95 ) ii iii iv NEC Corporation 1999 v P A R T 1 vi P A R T 2 vii P A R T 3 P A R T 4 viii P A R T 5 ix x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 6 5 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 4

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

土地税制の理論的・計量的分析

土地税制の理論的・計量的分析 54 III 1971 1988 III 1971 m 2 16,000 1988 109,000 17 6.6 4.5 1974 197173 17) 197881 198687 17 1950 III ( m 2 ) () 1971 16,470 15.53 1972 21,550 30.84 1973 26,817 24.44 1974 24,973 6.88 1975 25,549 2.31

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail b1215@yamaguchi-u.ac.jp 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr 1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-French (FF) 3 [5] (Capital Asset Pricing Model; CAPM

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information