Size: px
Start display at page:

Download ""

Transcription

1 CGE 12 * Date: 2018/07/24, Verson Armngton Armngton Armngton Armngton Armngton p EW p MW * : Webste: 1

2 ˆ autarky or closed economy ˆ ˆ CGE ˆ 12 CGE ˆ CGE 12 2

3 2. 2 ˆ ˆ EU FTA CGE GTAP (Hertel, 1999) MIT EPPA (Paltsev et al., 2005) OECD ENV-Lnkages (Burnaux et al., 2008) Takeda et al. (2013) Takeda et al. (2012) Takeda et al. (2011) Takeda (2010) CGE 1 ˆ A1 ˆ A2 A1 A2 A2 A2 A1 A2 A2 CGE 1 (2007) 3

4 3. ARMINGTON ˆ ˆ Armngton 3.1 Armngton Cross-Haulng CGE 1) 2) CGE 1 CGE 2 Armngton (1969) Armngton Armngton 2 4

5 3. ARMINGTON 1: , 464 2, 092, , , 821, , , 517, , , 985, , , , , , 040 2, 384, , , , 604 3, , , , , 772, , , , 597, , 951, 417 3, 195, , 339 1, , 669, 407 3, 667, , 725, 705 7, 168, 697 8, , 768, , 709, 053 4, 774, 091 : 2005 CGE CGE Armngton 3.2 Armngton Armngton CES q AM q AD CES q A [ q A = α AD ( ) q AD σ 1 σ + α AM ( q AM ) σ 1 σ ] σ σ 1 Armngton Armngtonaggregaton 3 σ Armngton σ q A (1) q A = q AD + q AM Armngton σ < (1) 3 Armngton (2007) 5

6 4. Armngton (1) q A q AM q AD Armngton Armngton 1) 2) Armngton Armngton Armngton Armngton 12 Armngton c = j (α x j) σ (p j ) 1 σ + (α v ) σ (p va ) 1 σ 1 1 σ {c } c va = f (β v f) σv [ (1 + t F f )p F f ] 1 σ v 1 1 σ v {c va } c u = j 1 (γ j ) [ 1 σ σc (1 + t C ] c 1 σ c j )p j {c u } 6

7 5. c p = 0 {y } c va p va = 0 {v a } c u p u = 0 {u} [ α x ] a x j c σ j = {a x p j [ α a v v = c [ p va j} ] σ {a v } β v f cva a F f = (1 + t F f )pf f [ a u γ c u = (1 + t C )p ] σ c ] σ v {a F f} {a u } y = j a x jy j + a u u {p } (2) v a = a v y v f = {p va } (3) a F fv a {p F f } (4) u = m p u {p u } (5) m = f p F f v f + t C p d +,f t F fp F f v f {m} (6) Armngton Armngton q AM CES Armngton q A q AD q A = f A (q AD, q AM ) = [ α AD ( q AD ) σdm 1 σ DM + α AM ( q AM ] σdm ) σ DM 1 σ DM 1 σ DM 7

8 5. Armngton Armngton CES c A c A mn a AD,a AM [ p D a AD + p M a AM f A (a AD, a AM ) = 1 ] Armngton 1 Shephard a M a D a AM = ca p M a AD = ca p D f A (1) c A aam a AD [ c A = a AD = a AM = (α AD [ α AD c A p D [ α AM c A p M ) σdm (p D ) 1 σdm ] σ DM ] σ DM + (α AM ) σdm (p M ) 1 σdm ] 1 1 σ DM {c A } {a AD } {a AM } Armngton p A Armngton π A π A = (p A c A )q A {π A } Armngton q A π A q A = 0 c A p A = 0 {q A } Armngton 5.2 Armngton CGE 12 y y E yd y = y E + y D (7) (7) 8

9 5. (7) CET constant elastcty of transformaton y = g S (y E, y D ) = [ δ ES (y E ) η DE +1 η DE + δ DS (y D ) ] ηde η DE +1 η DE +1 η DE δ ES δ DS η DE η DE {0, + } CES elastcty of transformaton (7) 1 4 (8) 国内向供給 B: 完全代替 C: 代替なし A: 不完全な代替 輸出向供給 1: CET CET y A (0, ) B C 0 η DE = η DE = 0 Armngton 4 CET 9

10 5. CET r y p E pd r y max [ p E a ES a ES,a DS + p D a DS g S (a ES, a DS ) = 1 ] Shephard a ES a DS a ES = ry p E {a ES } a DS = ry p D {a DS } a ES y a DS y CET (8) A-1 [ r y = (δ ES ) ηde (p E ) 1+ηDE + (δ DS [ ] p a ES E η DE = δ ES r y [ p a DS D = δ DS r y ] η DE ) ηde (p D ) 1+ηDE ] 1 1+η DE p EW / p EX p E p E /p EX = p EW p MW p M p M = p EX p MW p EX

11 Armngton Armngton Armngton x M x M = a AM q A = [ α AM c A (1+ M )p M ] σ DM q A t M (1 + t M )p M x E x E [ p = a ES E y = δ ES r y ] η DE y (9) (2) p y = j a x jy j + a u u (9) a DS y Armngton a AD q A p D a DS y = a AD q A {p D } Armngton Armngton j a x j y j a u u Armngton q A = j a x jy j + a u u {p A } Armngton p A

12 5. ˆ A1 ˆ A2 A p EW x E pmw x M TS 6 TS = p EW x E p MW x M A1 TS p EX p EW x E p EX p MW x M = TS {p EX } > (6) m = f p F f v f + t C p A d +,f t F fp F f v f + t M p M x M m D = m p EX TS m D p EX TS p EX TS TS < 0 6 p EX TS = p E xe p M x M 12

13 (13) Armngton Armngton p A c = j (α x j) σ (p A j ) 1 σ + (α v ) σ (p va ) 1 σ 1 1 σ {c } (10) c va = f (β v f) σv [ (1 + t F f )p F f ] 1 σ v 1 1 σ v {c va } (11) c u = j (γ j ) σc [ (1 + t C j )p A j ] 1 σ c 1 1 σ c {c u } (12) [ c A = (α AD r y = [ ) σdm (p D ) 1 σdm + (α AM ) σdm ([1 + t M ]p M ) 1 σdm ] 1 1 σ DM {c A } (13) (δ ES ) ηde (p E ) 1+ηDE + (δ DS ) ηde (p D ) 1+ηDE ] 1 1+η DE {r y } p EW p MW x E x M p E = p EX p EW {x E } (14) p EX p MW = p M {x M } (15) 0 Armngton c r y = 0 {y } (16) c va p va = 0 {v a } (17) c u p u = 0 {u} (18) c A p A = 0 {q A } (19) (24) (25) Armngton a x j = a v = [ α x j c p A j [ α v c p va ] σ {a x j} (20) ] σ {a v } (21) 13

14 5. [ a AD = β v f cva a F f = (1 + t F f )pf f [ a u γ c u = (1 + t C )pa [ α AD c A p D ] σ v ] σ c ] σ DM [ a AM α AM c A = (1 + t M )p M ] σ DM {a F f} (22) {a u } (23) {a AD } (24) {a AM } (25) [ p a ES E = δ ES r y [ p a DS D = δ DS r y ] η DE ] η DE {a ES } {a DS } Armngton a DS y = a AD q A {p D } (26) q A = j v a = a v y v f = a x jy j + a u u {p A } (27) {p va } (28) a F fv a {p F f } (29) u = md p u {p u } (30) (30) m D a ES y x E x M Armngton a AM q A a ES y = x E {p E } (31) x M = a AM q A {p M } (32) p EW x E p MW x M = TS {p EX } (33) 14

15 6. m = f p F f v f + t C p A d +,f t F fp F f v f + t M p M x M {m} (34) m D = m p EX TS {m D } (35) (10) (35) {c } {c va } {c u } {c A } {r y } {pe } {pm } {y } {v a} {u} {qa } {ax j } {av } {af f } {au } {aad } {a AM } {a ES } {a DS } {p D } {pa } {pva } {p F f } {pu } {y E } {qam } {p EX } {m} {m D } 6 5 CGE 6.1 MCP MCP (14) (15) p E pm p E pm x E xm (14) p E = p EW p EX p E p E p EW p EW p EX (14) 0 (16) (19) 0 7 (14) (16) (19) (14) (15) p EX p MW 7 0 = p M 15

16 6. 0 (14) (15) x E xm x E xm (31) (32) p E pm a ES y = x E x E p E (32) x M = a AM q A Armngton p M (14) (15) x E xm (31) (32) p E pm GAMS (14) (15) p E pm (31) (32) x E xm 6.2 (33) TS p EX (33) (33) (33) (33) p EW pew x E p MW pmw x M TS TS 16

17 6. pew x E pmw x M + TS (33) (33) 1 (33) (33) 6.3 p EW p MW (33) p EW p MW p EW p MW p EW p MW a E (14) (15) (33) = p EW a M = p MW p E = a E p EX {x E } a M p EX = p M {x M } a E x E a M x M = TS {p EX } p EW p MW 8 0 p E p M p EX p E = λp E p M = λp M p EX = λp EX p E pm p EX 0 8 (2004) p ε 17

18 6. ˆ p EW p MW ˆ 6.4 = (36) CGE (36) 10 (14) (15) p E p M j = pew p MW j, j j j

19 6. 1 (14) (15) p E p M = p EW = p MW 1 (33) (34) (35) TS TS = f p F f v f + t C p A d +,f t F fp F f v f + t M p M x M m D p EX = 1 TS = f p F f v f m D TS = r y y j p A j a j y p A a u u = r y y p A j a j y j + a u u = = = r y y [ p D a DS p A q A y + p E a ES p E a ES y p M ] [ y p D a AD a AM q A = q A + p M a AM p E x E p M x M q A ] = p EW x E p MW x M (33) CGE cross-haulng Armngton 5.2 CET Armngton cross-haulng 19

20 6. CET CET r y = pd = p E ˆr y = ˆpD ρ = ˆp E ˆ 11 p E = p EW p EX ˆp E = ˆp EX ˆp EX = ρ cross-haulng p M = p MW p EX ˆp M = ˆp EX p M ˆp M = ρ ˆp D = ˆp M = ρ ˆp A = ρ ˆr y = ˆpD = ˆp E = ˆp M = ˆp A = ˆp EX = ρ ˆp EX ˆr y = ˆpD = ˆp E = ˆp M = ˆp A = ˆp EX = ρ 3 11 ˆr y = ry /ry 20

21 6. cross-haulng cross-haulng

22 6. TPP CGE 14 p EX /p u = p EX / p u p u TS TS (33) (35) p EW x E p MW x M = TS {TS} m D = m p EX TS {m D } p EX /p u TS TS

23 s F p EX TS = s F m p EW x E p EX TS = s F m p MW x M = TS {p EX } {TS} m D = (1 s F )m {m D } SAM Part_12_SAM_example.xlsx ˆ SAM 7 SAM3 SAM SAM 7 ˆ SAM 7 SAM3 4 ž Part_7_SAM_Japan.xlsx SAM ž 15 23

24 7. 2: SAM Sector Sector Sector Factor Factor DE DE DE Goods Goods Goods Other Agent Agent Sum AGR MAN SER LAB CAP AGR MAN SER AGR MAN SER UTL HH ROW Sector AGR Sector MAN Sector SER Factor LAB Factor CAP DE AGR DE MAN DE SER Goods AGR Goods MAN Goods SER Other UTL Agent HH Agent ROW Sum ž DE ž 10 ˆ 3 AGR MAN SER CAP LAB ˆ Sector ž Sector ž AGR LAB 40 CAP 30 AGR MAN SER ˆ Factor ž ž HH ˆ DE ž ž ˆ Goods ž Armngton 24

25 7. ž AGR ˆ Other ž ž AGR MAN SER ˆ Agent ž ž ROW ž HH ˆ Sector ž Sector ž SAM 1 DE ˆ Factor ž 3 ˆ DE ž ž ROW Agent ž 130 AGR ˆ Goods ž Armngton ž 140 AGR Armngton AGR MAN SER ˆ Other ž HH ˆ Agent ž HH ž ROW 25

26 one_regon.gms one_regon.gms data_create.gms Part_12_SAM_example.gdx 8.1 $ontext $offtext parameter fl_fts " " fl_fex " " fl_alt " " ; fl_fts = 1; fl_fex = 0; fl_alt = 0; 3 ˆ 5.4 ˆ ˆ fl_fts = 1 * * parameter sg_dm() Armngton eta_de() ; * 4 sg_dm() = 4; eta_de() = 4; dsplay sg_dm, eta_de; Armngton sg_dm eta_de 4 26

27 8. parameter p_ew0() p_mw0() ; * 1 p_ew0() = 1; p_mw0() = 1; dsplay p_ew0, p_mw0; Harberger convenson 1 1 parameter srate_f ; srate_f = ts0 / sum(f, SAM("Agent","hh","Factor",f)); dsplay srate_f; parameter alpha_x(j,) alpha_v() beta_v(f,) gamma() alpha_ad() alpha_am() delta_es() delta_ds() ; Armngton Armngton CET CET Armngton CET 8 parameter rt_m() rt_m0() ; * rt_m0() = 0; rt_m() = rt_m0(); 27

28 8. 0 * Armngton e_c_a().. c_a() =e= ((alpha_ad()**(sg_dm()) * (p_d())**(1-sg_dm()))$a_ad0() + (alpha_am()**(sg_dm()) * ((1+rt_m())*p_m())**(1-sg_dm()))$a_am0() )**(1/(1-sg_dm())); * e_r_y().. r_y() =e= ((delta_es()**(-eta_de()) * (p_e())**(1+eta_de()))$a_es0() + (delta_ds()**(-eta_de()) * (p_d())**(1+eta_de()))$a_ds0() )**(1/(1+eta_de())); Armgton 5.4 a_am0() a_es0() * e_p_ex.. (ts - ts0)$fl_fts + (p_ex / p_u - 1)$fl_fex + (p_ex * ts - srate_f * m)$fl_alt =e= 0; fl_fts = 1 ts - ts0 =e= 0 e_m_d.. m_d =e= m - p_ex * (ts0$fl_fts + ts$fl_fex + ts$fl_alt); * * p_d.fx("agr") = 1; AGR 8.2 benchmark replcaton 3 ˆ bench benchmark replcaton ˆ cap_ 20% 28

29 8. ˆ rt_c ž MAN SER 10 % ˆ rt_m ž AGR 20 % AGR y_ c_ d_ e_ m_ p_u one_regon.gms cap_ ˆ cap_ 20 % 15% 3 MAN SER AGR ˆ ts ts p_ex MAN ˆ MAN rt_c ˆ rt_c ˆ MAN SER MAN SER ˆ (1 + t C MAN )pa MAN p u (1 + t C SER )pa SER p u 29

30 8. rt_m ˆ 16 ˆ AGR AGR ˆ AGR p_a_agr ˆ MAN AGR (14) (15) 3: 変数の水準 変数の変化率 (%) 貿易収支固定 為替レート固定 貿易収支固定 為替レート固定 bench cap_ rt_c rt_m cap fex rt_c_fex rt_m_fex cap_ rt_c rt_m cap fex rt_c_fex rt_m_fex u u y_agr y_agr y_man y_man y_ser y_ser c_agr c_agr c_man c_man c_ser c_ser d_agr d_agr d_man d_man d_ser d_ser e_agr e_agr e_man e_man m_agr m_agr m_man m_man ts ts p_d_m p_ex p_ex p_d_agr p_d_agr p_d_man p_d_man p_d_ser p_d_ser p_e_agr p_e_agr p_e_man p_e_man p_m_agr p_m_agr p_m_man p_m_man p_a_agr p_a_agr p_a_man p_a_man p_a_ser p_a_ser r_y_agr r_y_agr r_y_man r_y_man r_y_ser r_y_ser

31 one_regon.gms $ext 3 _fex cap fex ˆ 80 cap fex 43.8 MAN ˆ ˆ 15% 5.8% ˆ rt_c_fex ˆ rt_c_fex cap fex 0.01% 23% rt_m_fex ˆ rt_m_fex rt_c_fex

32 CET 6.6 p r y = pd = p E = p y = a AD q A + x E one_regon_cet.gms fl_cet = : 変数の水準 変数の変化率 (%) CET 関数利用 CET 関数利用せず CET 関数利用 CET 関数利用せず bench cap_ rt_c rt_m cap ncet rt_c_ncet rt_m_ncet cap_ rt_c rt_m cap ncet rt_c_ncet rt_m_ncet u u y_agr y_agr y_man y_man y_ser y_ser c_agr c_agr c_man c_man c_ser c_ser d_agr d_agr d_man d_man d_ser d_ser e_agr e_agr e_man e_man m_agr m_agr m_man m_man ts p_ex p_d_m p_d_agr p_ex p_d_man p_d_agr p_d_ser p_d_man p_e_agr p_d_ser p_e_man p_e_agr p_m_agr p_e_man p_m_man p_m_agr p_a_agr p_m_man p_a_man p_a_agr p_a_ser p_a_man r_y_agr p_a_ser r_y_man r_y_agr r_y_ser r_y_man r_y_ser

33 8. CET CET cap ncet ˆ cap ncet cap_ ˆ ˆ cap_ AGR MAN 3.9% 14.7% cap ncet AGR 101% MAN 40% ˆ AGR 1190% ˆ CET ˆ p D AGR = 1 ˆ rt_c_ncet ˆ rt_c_ncet rt_c AGR ˆ rt_m_ncet ˆ rt_m_ncet AGR 100% ˆ AGR AGR ˆ AGR AGR MAN 33

34 9. ˆ 1) 2) ˆ CET 8.6 ˆ one_regon_alt.gms ˆ one_regon_tot.gms p EW p MW 9 Armngton, Paul S. (1969) A Theory of Demand for Products Dstngushed by Place of Producton, URL: Burnaux, Jean-Marc, Jean Château, and Jean Chateau (2008) An Overvew of the OECD ENV-Lnkages Model, DOI: Hertel, Thomas W. ed. (1999) Global Trade Analyss: Modelng and Applcatons, New York: Cambrdge Unversty Press, URL: cbooks: Paltsev, Sergey V., John M. Relly, Henry D. Jacoby, Rchard S. Eckaus, James R. Mcfarland, Marcus Sarom, Malcolm Asadooran, and Mustafa H. Babker (2005) The MIT Emssons Predcton and Polcy Analyss (EPPA) Model: Verson 4, URL: / Takeda, Shro (2010) A computable general equlbrum analyss of the welfare eects of trade lberalzaton under derent market structures, Internatonal Revew of Appled Economcs, Vol. 24, No. 1, pp. 7593, January, DOI: Tosh H. Armura, and Makoto Sugno (2011) Labor Market Dstortons and Welfare- Decreasng Internatonal Emssons Tradng, URL: cfm?abstract_d=

35 10., Tetsuya Hore, and Tosh H. Armura (2012) A Computable General Equlbrum Analyss of Border Adjustments under the Cap-And-Trade System: A Case Study of the Japanese Economy, Clmate Change Economcs, Vol. 03, No. 01, p , February, DOI: Tosh H. Armura, Hanae Tamechka, Carolyn Fscher, and Alan K. Fox (2013) Output-based allocaton of emssons permts for mtgatng the leakage and compettveness ssues for the Japanese economy, Envronmental Economcs and Polcy Studes, Vol. 16, No. 1, pp , August, DOI: (2007) URL jp/jp/publcatons/summary/ html (2004) 10 ˆ : ˆ : ˆ : ˆ : 35

6.5.............................. 18 6.6...... 19 6.7......................... 21 6.7.1......... 21 6.7.2.................. 22 7 23 8 26 8.1..........

6.5.............................. 18 6.6...... 19 6.7......................... 21 6.7.1......... 21 6.7.2.................. 22 7 23 8 26 8.1.......... CGE Part 12 * Date: 2016/04/03, Verson 1.0.0 1 2 2 2 3 Armngton 4 3.1 Armngton.................................. 4 3.2 Armngton................................ 5 3.3..........................................

More information

ˆ CGE ž ž ˆ 2 CGE 2 1 ˆ n = 1,, n n ˆ k f = 1,, k ˆ ˆ ˆ 3

ˆ CGE ž ž ˆ 2 CGE 2 1 ˆ n = 1,, n n ˆ k f = 1,, k ˆ ˆ ˆ 3 CGE 2 * Date: 2018/07/24, Verson 1.2 1 2 2 2 2.1........................................... 3 2.2.......................................... 3 2.3......................................... 4 2.4..................................

More information

: Harberger Conenton ˆ CGE ˆ CGE ˆ 2 CGE 2.1 CGE CGE CES constant elastcty of substtuton Cob

: Harberger Conenton ˆ CGE ˆ CGE ˆ 2 CGE 2.1 CGE CGE CES constant elastcty of substtuton Cob CGE Part 8 Date: 2015/11/21, Verson 1.2 1 2 2 2 2.1 CGE............................... 2 2.2 CES........................... 3 2.3 CES.................................. 3 3 CGE 5 3.1.........................................

More information

Solution Report

Solution Report CGE 3 GAMS * Date: 2018/07/24, Version 1.1 1 2 2 GAMSIDE 3 2.1 GAMS................................. 3 2.2 GAMSIDE................................ 3 2.3 GAMSIDE............................. 7 3 GAMS 11

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

繰り返しゲームの新展開:

繰り返しゲームの新展開: CIRJE-J-65 001 10 001 10 5 New Progress n Repeated Games: Implct Colluson wth Prvate Montorng Htosh Matsushma Faculty of Economcs, Unversty of Tokyo October 5, 001 Abstract The present paper provdes a

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

untitled

untitled CA 04 1,360 100.8 0.1 83 34,176 7.61 0.40 51,532 1.3 322,736 5.9 05 1,369 100.0 0.8 80 57,269 7.86 0.43 55,001 6.7 311,107 3.6 06 1,370 99.8 0.2 83 48,250 7.73 0.46 56,369 2.5 319,129 2.6 06/ 1-3 99.4

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

untitled

untitled Cross [1973]French [1980] Rogalsk [1984]Arel [1990]Arel [1987]Rozeff and Knney [1974]seasonaltycalendar structure [2004] 12 Half-Year Effect [2004] [1983] [1990]ChanHamao and Lakonshok [1991] Fama and

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P = Super perfect numbers and Mersenne perefect numbers 3 2019/2/22 1 m, 2 2 5 3 5 4 18 5 20 6 25 7, 31 8 P = 5 35 9, 38 10 P = 5 39 1 1 m, 1: m = 28 m = 28 m = 10 height48 2 4 3 A 40 2 3 5 A 2002 2 7 11 13

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

2016 (8) Variety Expansion Effects by Feenstra (1994) 1 Variety Effects Dixit and Stiglitz (1977) CES n n? n t U t = ( nt i=1 σ > 1, a it > 0,

2016 (8) Variety Expansion Effects by Feenstra (1994) 1 Variety Effects Dixit and Stiglitz (1977) CES n n? n t U t = ( nt i=1 σ > 1, a it > 0, 2016 8 29 1 4 Variety Expansion Effects by Feenstra 1994 1 Variety Effects Dix and Stiglz 1977 CES n n? n t U t σ > 1, a > 0, σ a q σ n a 1 σ a p q U t P t E U t, p t U t P t U t V p, I I t a σ p 1 σ a

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

untitled

untitled ( ) δ x V A A V V + x x δ A + x x δ x A V Q AV A+ δx V + δx V A A V AV + A δx+ V δx+ δx V A A δx+ V δx V A A + V ( ) ( AV ) AV Constant Q 1 Text 7.1 ( ) P1 7 7.P8 5 D v g z x + x 1 v ( v+ x ) g + x z z

More information

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS () [REQ] 4. 4. () [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS ) 4. 0 3 ) 4. 0 4. 4 4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG ()

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

製造業における熟練労働への需要シフト:

製造業における熟練労働への需要シフト: * htosh.sasak@boj.or.j ** kench.sakura@boj.or.j No.04-J-17 2004 12 103-8660 30 * ** * 2004 12 1988 2003 * e-mal: htosh.sasak@boj.or.j e-mal: kench.sakura@boj.or.j 1 1. 1980 1990 1 skll-based technologcal

More information

untitled

untitled Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

untitled

untitled PGF 17 6 1 11 1 12 1 2 21 2 22 2 23 3 1 3 1 3 2 3 3 3 4 3 5 4 6 4 2 4 1 4 2 4 3 4 4 4 5 5 3 5 1 5 2 5 5 5 5 4 5 1 5 2 5 3 6 5 6 1 6 2 6 6 6 24 7 1 7 1 7 2 7 3 7 4 8 2 8 1 8 2 8 3 9 4 9 5 9 6 9 3 9 1 9

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

特許侵害訴訟における無効の主張を認めた判決─半導体装置事件−

特許侵害訴訟における無効の主張を認めた判決─半導体装置事件− [*1847] 12 4 11 10 364 54 4 1368 1710 68 1032 120 X Y 6.8.31 29 3 875 X Y 9.9.10 29 3 819 Y 320275 391468 46 12 21 35 2 6 3513745 39 1 30 320249 1) 1 39 1 [*1848] 2) 3) Y 10 51 2 4 39 5 39 1 3 139 7 2

More information

untitled

untitled ( ) l 1991 1) 4) 5),6) 7) 8) 31) 39) 46) : () + +θ (c) l h A - : θ A () (d) 1 ε=/l=θ/cot 1(d) 1 () =tn( ) h + 1 u F m N F m =Ntn N N N F m N F m =Ntn N S α S1 R α+ R = tn( ) = tn = tn( + ) R R d = d ()

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

−g”U›ß™ö‡Æ…X…y…N…g…‰

−g”U›ß™ö‡Æ…X…y…N…g…‰ 1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/ 2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3) Pearson 3 / 74 Pearson Definition 1 ρ

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

Microsoft Word - 田口君最終報告(修正後).doc

Microsoft Word - 田口君最終報告(修正後).doc 2005 7 1 2005 7 2 1 2 2 4 Data Envelopment Analyss 4 Stochastc Fronter Analyss 5 Non-mnmum Cost Functon 6 7 8 9 9 9 13 13 13 14 14 17 19 20 21 24 24 24 25 25 28 31 36 37 40 3 2 2005 7 1950 1960 2003 1004

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

housoku.dvi

housoku.dvi : 1 :, 2002 07 14 1 3 11 3 12 : 3 13 : 5 14 6 141 6 142 8 143 8 144 8 145 9 2 10 21 10 : 2 22 11 23 11 24 11 A : 12 B 14 C 15 ( ) ( ) ( ),, (,, ) 2,, : 1 3 1 11 (t),, ρv 0 (1) t (t) ( A ) ( ) ρ (t) t +ρ

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

:010_ :3/24/2005 3:27 PM :05/03/28 14:39

:010_ :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

Vol.8 No.3 2005 Autumn 066 1 2 2.1 2.2 19 80 Seminar UEDA, Takayuki

Vol.8 No.3 2005 Autumn 066 1 2 2.1 2.2 19 80 Seminar UEDA, Takayuki Vol.8 No.2 2005 Summer 065 Vol.8 No.3 2005 Autumn 066 1 2 2.1 2.2 19 80 Seminar UEDA, Takayuki Computable Urban EconomicCUE Computable General EquilibriumCGE Spatial CGESCGE Micro-economic foundation 3

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information