QuantumComp

Size: px
Start display at page:

Download "QuantumComp"

Transcription

1 !! α!! /

2 ! PauliCliffordnon-Clifford, Solovay-KitaevCNOT!

3 i = 0i + 1i 1 0i = 0 0 1i = 1, 2 C =1,, + =( )/ 2, =( 0 1 )/ 2

4 i = 0i + 1i 1 0i = 0 0 1i = 1, 2 C =1,, + =( )/ 2, =( 0 1 )/ 2 y Bloch sphere z 2 x = cos, = e i sin

5 Pauli Pauli 0 1 X = 1 0 Z = Y = 0 i i 0 anticommute: XZ = iy ZX = XZ

6 Pauli Pauli 0 1 X = 1 0 Z = Y = 0 i i 0 anticommute: XZ = iy ZX = XZ qubit X 0 = 1 X 1 = 0 (bit-flip) Z 0 = 0 Z 1 = 1 (phase-flip) Y 0 = i 1 Y 1 = i 0 (bit&phase-flip + global phase)

7 Pauli Pauli 0 1 X = 1 0 Z = Y = 0 i i 0 anticommute: XZ = iy ZX = XZ qubit X 0 = 1 X 1 = 0 (bit-flip) Z 0 = 0 Z 1 = 1 (phase-flip) Y 0 = i 1 Y 1 = i 0 (bit&phase-flip + global phase) PauliPauli basis Z! 0i, 1i Z basis X! +i ( 0i + 1i)/ p 2, i ( 0i 1i)/ p 2 X basis

8 Bloch sphere ( 0i + i 1i)/ p 2 y 1i i z 2 x +i = cos, = e i sin 0i ( 0i i 1i)/ p 2

9 Bloch sphere ( 0i + i 1i)/ p 2 y e i Y 1i i e i Z z 2 x e i X +i = cos, = e i sin 0i ( 0i i 1i)/ p 2

10 Clifford CliffordPauli Pauli A = UBU Pauli H Hadamard = HXH = Z S Phase = 1 p i SXS = Y

11 Bloch sphere ( 0i + i 1i)/ p 2 y 1i i z 2 x +i = cos, = e i sin 0i ( 0i i 1i)/ p 2

12 non-clifford π y x 1! non-clifford

13 non-clifford π y x 1! non-clifford

14 non-clifford π y x 1! non-clifford

15 non-clifford π y x 1! non-clifford

16 non-clifford π y x 1! non-clifford

17 non-clifford π y x 1! non-clifford

18 non-clifford π y x 1! non-clifford

19 non-clifford π y x 1! non-clifford

20 non-clifford π y x 1! non-clifford

21 non-clifford π y x 1! non-clifford

22 non-clifford y x (3 p 5)

23 non-clifford y x (3 p 5)

24 non-clifford y x (3 p 5)

25 non-clifford y x (3 p 5)

26 non-clifford y x (3 p 5)

27 non-clifford y x (3 p 5)

28 non-clifford y x (3 p 5)

29 non-clifford y x (3 p 5)

30 non-clifford y x (3 p 5)

31 non-clifford y x (3 p 5)

32 non-clifford y x (3 p 5)

33 non-clifford y x (3 p 5)

34 non-clifford y x (3 p 5)

35 non-clifford y x (3 p 5)

36 non-clifford y x (3 p 5)

37 non-clifford y x (3 p 5)

38 non-clifford y x (3 p 5)

39 non-clifford y x (3 p 5)

40 non-clifford y x (3 p 5)

41 non-clifford y x (3 p 5)

42 non-clifford y x (3 p 5) θ

43 non-clifford y x (3 p 5) θ

44 non-clifford y x π (3-5)= (3 p 5) θ

45 non-clifford y x π (3-5)= (3 p 5) θ

46 non-clifford y π (3-5)= x (3 p 5) θ

47 non-clifford y π (3-5)= x (3 p 5) θ

48 non-clifford y π (3-5)= x (3 p 5) θ

49 non-clifford y π (3-5)= x (3 p 5) θ

50 non-clifford y π (3-5)= x (3 p 5) θ

51 non-clifford y (3 π (3-5)= x p 5) θ

52 non-clifford y (3 π (3-5)= x p 5) θ

53 non-clifford y (3 π (3-5)= x p 5) θ

54 non-clifford (3 y π (3-5)= x p 5) θ

55 non-clifford (3 y π (3-5)= x p 5) θ

56 non-clifford (3 y π (3-5)= x p 5) θ

57 non-clifford (3 y π (3-5)= x p 5) θ

58 non-clifford π/8 T = e i( /8)Z

59 non-clifford cos 8, sin 8, cos 8 y π/8 T = e i( /8)Z THTH = cos 2 8 I i h cos 8 (X + Z)+sin 8 Y i sin 8 z x

60 non-clifford π/8 T = e i( /8)Z THTH = cos 2 8 I i h cos 8 (X + Z)+sin 8 Y i sin 8 cos 8, sin 8, cos 8 y = 2 arccos[cos 2 ( /8)] z x {H, T} 1!

61 Solovay-Kitaev Solovay-Kitaev(U,n)! if n=0, return basic approximation of U! else U n-1 =Solovay-Kitaev(U,n-1)! V,W s.t. VWV W =UU n-1! V n-1 = Solovay-Kitaev(V,n-1)! W n-1 = Solovay-Kitaev(V,n-1)! Return V n-1 W n-1 V n-1 W n-1 U n-1!! O(log c (1/ )) Dawson-Nielsen, QIC 6, 81 (2006)

62 a i b i 0i 1i = = C A Kronecker 10 11

63 a i b i 0i 1i = = C A Kronecker (X) CNOT (controlled NOT) = 0 0 I X (Z) CZ (controlled Z) e i /4(Z 1Z 2 Z 1 Z 2 I) = 0 0 I Z

64 Solovay-Kitaev {H, T} 1

65 Solovay-Kitaev {H, T} 1 CNOT + 1 n universal set { (X),H,T}

66 Solovay-Kitaev {H, T} 1 CNOT + 1 n Toffoli gate universal set { (X),H,T} e i 8 Z e i 8 Z e i 8 Z S H e i e i 8 Z 8 Z e i 8 Z e i 8 Z

67 Solovay-Kitaev {H, T} 1 CNOT + 1 n universal set { (X),H,T} { 000i, 111i} X X U X X X X X X.

68 ! PauliCliffordnon-Clifford, Solovay-KitaevCNOT! CliffordGottesman-Knill

69

70 n-: n = c s1 s 2...s n s 1 s 2...s n s 1,s 2,...,s n? s 1 s 2 s n

71 n-: n = Stabilizer s 1,s 2,...,s n c s1 s 2...s n s 1 s 2...s n? s 1 s 2 s n D. Gottesman, Ph.D. thesis, California Institute of Technology (1997); arxiv:quant- ph/

72 Pauli group, Stabilizer group n-qubit Pauli group: {±1, ±i} {I,X,Y,Z} n 2 P n

73 Pauli group, Stabilizer group n-qubit Pauli group: {±1, ±i} {I,X,Y,Z} n 2 P n Stabilizer group S = {S i } Pauli() S i 2 P, S i = S i, [S i,s j ]=0 ) hxx,zzi = {II,XX,ZZ, YY} stabilizer generator even overlap =!

74 Stabilizer states [Gottesman PhD thesis arxiv:quant- ph/ ] Stabilizer statestabilizer S S i = stabilizer group stabilizer generator S i

75 Stabilizer states [Gottesman PhD thesis arxiv:quant- ph/ ] Stabilizer statestabilizer S S i = stabilizer group stabilizer generator S i 1) S 1 = XX,ZZ Bell state ( )/ 2 2) S 2 = ZZ { 00, 11 } generatorqubit

76 Stabilizer state Graph state Z X i Z Z K i = X i Y j2v i Z j measurement-based quantum computation (MBQC)! [Raussendorf-Briegel PRL 01]

77 Stabilizer state Graph state Surface code (Toric code) state Z X i Z Z K i = X i Y j2v i Z j Z Z Af Z Z X X Bv A f = X X Z i i face f B v = X i i vertex v measurement-based quantum computation (MBQC)! [Raussendorf-Briegel PRL 01] Quantum error correction code/ ground state of topologically orderd system [Kitaev Ann Phys 03]

78 Stabilizer(Clifford) CliffordPauli product Pauli product! stabilizer state stabilizer state [Heisenberg] hs i i U S i i = i [Schrödinger] i U S 0 i = US i U hs 0 ii S 0 i 0 i = 0 i 0 i = U i

79 Stabilizer(Clifford) CliffordPauli product Pauli product! stabilizer state stabilizer state [Heisenberg] hs i i U S i i = i [Schrödinger] i U S 0 i = US i U hs 0 ii S 0 i 0 i = 0 i 0 i = U i CliffordU stabilizer S i! S 0 i = US i U

80 Clifford H Hadamard = HXH = Z

81 Clifford H Hadamard S Phase = = p i HXH = Z SXS = Y

82 Clifford H Hadamard S Phase = = p i HXH = Z SXS = Y (X) X X Z X Z Z CNOT (controlled NOT) = 0 0 I X (X)(X I) (X) =X X (X)(I Z) (X) =Z Z

83 Clifford H Hadamard S Phase = = p i HXH = Z SXS = Y (X) X X Z X Z Z CNOT (controlled NOT) = 0 0 I X (X)(X I) (X) =X X (X)(I Z) (X) =Z Z (Z) X X Z Z X X CZ (controlled Z) e i /4(Z 1Z 2 Z 1 Z 2 I) = 0 0 I Z (Z)(X I) (Z) =X Z (Z)(I X) (Z) =Z X

84 Clifford +i H X +i X H Z +i H +i H 0i +i H H 0i +i X H H Z 0i 0i H H 0i 0i X H H Z 0i H 0i X H Z

85 Gottesman-Knill (Clifford classically simulatable) Input!!! Pauli.! Operation!! Clifford! Measurement!Pauli n qubit stabilizer state n [Heisenberg] [Schrödinger] hs i i S i i = i U i U S 0 i = US i U hs 0 ii S 0 i 0 i = 0 i 0 i = U i

86 Gottesman-Knill (Clifford classically simulatable) Input!!! Pauli.! Operation!! Clifford! Measurement!Pauli Classically simulatable! n qubit stabilizer state n [Heisenberg] [Schrödinger] hs i i S i i = i U i U S 0 i = US i U hs 0 ii S 0 i 0 i = 0 i 0 i = U i

87 Gottesman-Knill (Clifford classically simulatable) Input!!! Pauli.! Operation!! Clifford! Measurement!Pauli Classically simulatable! n qubit stabilizer state n [Heisenberg] [Schrödinger] hs i i S i i = i U i U S 0 i = US i U hs 0 ii S 0 i 0 i = 0 i 0 i = U i Paulistabilizer! Gottesman-Knill

88 Magic state (noisy magic state is enough for universal QC) INPUT!!!! Pauli! OPERATION!! Clifford! MEASUREMENT! Pauli Pauli classically simulatable Bloch y z x (Tr[ X], Tr[ Y ], Tr[ Z])

89 Magic state (noisy magic state is enough for universal QC) INPUT!!!! Pauli! OPERATION!! Clifford! MEASUREMENT! Pauli Pauli classically simulatable Bloch y z Hi = cos( /8) 0i + sin( /8) 1i magic state H =(1 p) HihH + p H? ihh? p = 1 2 (1 1/p 2) z x (Tr[ X], Tr[ Y ], Tr[ Z]) x Clifford pure magic state Bravyi-Kitaev, PRA 71, (2005); Reichardt, QIP 4, 251 (2005)

90 ! PauliCliffordnon-Clifford, Solovay-KitaevCNOT! CliffordGottesman-Knill

91 Graph state (cluster state) Graph state stabilizer generators: K i = X i Y j2v i Z j i K i Gi = Gi for all i 2 V graph G=(V,E) V:E: Z X Z Z

92 Graph state (cluster state) Graph state stabilizer generators: K i = X i Y j2v i Z j i K i Gi = Gi for all i 2 V graph G=(V,E) V:E: Z X Z Z Gi = Y e2e e (Z) +i V

93 Graph state (cluster state) Graph state stabilizer generators: K i = X i Y j2v i Z j i K i Gi = Gi for all i 2 V graph G=(V,E) V:E: Z X Z Z Gi = Y e2e e (Z) +i V XI XZ IX ZX X X Z Z X X CZ (controlled Z) = 0 0 I Z e i /4(Z 1Z 2 Z 1 Z 2 I)

94 Cluster state computation Raussendorf-Briegel PRL (2001); Raussendorf-Browne-Briegel PRA (2003). 2D cluster state projective measurement Z i +w Z i +n X Z i i +e Z i +s 2D resource state K i = X i Z i+n Z i+e Z i+s Z i+w

95 Cluster state computation Raussendorf-Briegel PRL (2001); Raussendorf-Browne-Briegel PRA (2003). 2D cluster state projective measurement Z i +w Z i +n X Z i i +e Z i +s 2D resource state K i = X i Z i+n Z i+e Z i+s Z i+w

96 Cluster state computation Raussendorf-Briegel PRL (2001); Raussendorf-Browne-Briegel PRA (2003). 2D cluster state projective measurement Z i +n Z i +w X Z i i +e Z i +s 2D resource state! O h i Gi i K i = X i Z i+n Z i+e Z i+s Z i+w

97 Cluster state computation Raussendorf-Briegel PRL (2001); Raussendorf-Browne-Briegel PRA (2003). 2D cluster state projective measurement Z i +n Z i +w X Z i i +e Z i +s 2D resource state =! O h i Gi i K i = X i Z i+n Z i+e Z i+s Z i+w space U1 U2 U4 time U3 U5 h0 N U n U 1 0i N

98 Cluster state computation Raussendorf-Briegel PRL (2001); Raussendorf-Browne-Briegel PRA (2003). 2D cluster state projective measurement Z i +n Z i +w X Z i i +e Z i +s 2D resource state =! O h i Gi i K i = X i Z i+n Z i+e Z i+s Z i+w space U1 U2 U4!! time U3 U5 h0 N U n U 1 0i N

99 [Bennet et al., PRL 93] X X, Z Z Bell measurement output input Bell state! (maximally entangled state) i 00i + 11i p 2 = identity gate

100 [Bennet et al., PRL 93] X X, Z Z Bell measurement UX m 1 Z m 2 i output U input Bell state! (maximally entangled state) i 00i + 11i p 2 = U identity unitary gate

101 [Bennet et al., PRL 93] X X, Z Z Bell measurement UX m 1 Z m 2 i output U input Bell state! (maximally entangled state) i 00i + 11i p 2 = U identity unitary gate =

102 One-bit teleportation one-bit teleportation Zhou-Leung-Chuang, Phys. Rev. A 62, (2000). input + X X m H i output! Pauli byproduct

103 One-bit teleportation one-bit teleportation Zhou-Leung-Chuang, Phys. Rev. A 62, (2000). input + X X m H i output! Pauli byproduct input state X i X m H i H X m H i = X m circuit diagram

104 One-bit teleportation Z( ) =e i Z/2 + Z( ) X

105 One-bit teleportation + Z( ) =e i Z/2 Z( ) X Z( ) i = + X

106 One-bit teleportation + Z( ) =e i Z/2 Z( ) X Z( ) i = + X X m HZ( ) i

107 One-bit teleportation + Z( ) =e i Z/2 Z( ) X Z( ) i = + X X m HZ( ) i = input state = Z( ) H X m X m HZ( ) i X m HZ( ) i

108 One-bit teleportation + Z( ) =e i Z/2 Z( ) X Z( ) i = + X X m HZ( ) i = input state = Z( ) H X m X m HZ( ) i X m HZ( ) i 1D cluster state Hadamard gate, Z-rotation gate

109 Gate teleportation Gate teleportationd. Gottesman and I. L. Chuang, Nature (London) 402, 390 (1999). input input 2 X output 1 output 2 X

110 Gate teleportation Gate teleportationd. Gottesman and I. L. Chuang, Nature (London) 402, 390 (1999). input 1 + X output 1 input 1 circuit diagram H output 1 + output 2 = input 2 H output 2 input 2 X

111 Gate teleportation Gate teleportationd. Gottesman and I. L. Chuang, Nature (London) 402, 390 (1999). input 1 + X output 1 input 1 circuit diagram H output 1 + output 2 = input 2 H output 2 input 2 X = input 1 + X + input 2 X

112 Gate teleportation Gate teleportationd. Gottesman and I. L. Chuang, Nature (London) 402, 390 (1999). input 1 + X output 1 input 1 circuit diagram H output 1 + output 2 = input 2 H output 2 input 2 X = input X = X input 2 X X

113 Gate teleportation Gate teleportationd. Gottesman and I. L. Chuang, Nature (London) 402, 390 (1999). input 1 + X output 1 input 1 circuit diagram H output 1 + output 2 = input 2 H output 2 input 2 X = input input 2 X X = X X 2D cluster state! two-qubit gate

114 MBQC on 2D cluster state Z X Z Z Z Z X Z Z Z Z X Z Z Z Z X Z Z Z Z Z Z X Z Z Z Z Z Z Z X Z Z Z Z X X Z Z Z Z X Z Z X Z X Z Z Z Z X Z Z X Z X Z Z

115 MBQC on 2D cluster state

116 MBQC on 2D cluster state

117 MBQC on 2D cluster state

118 MBQC! ()

119 MBQC Bell pair! micro-cluster! ~divide and conquer ~! 1/2 () brute force MBQC! Measurement-based quantum computation! Nielsen Phys. Rev. Lett. 93, (2004) micro-cluster! Yoran-Reznik Phys. Rev. Lett. 91, (2003)! Browne-Rudolph Phys. Rev. Lett. 95, (2005) fusion gate! Duan-Raussendorf Phys. Rev. Lett. 95, (2005) cross-strategy! K. Kieling, T. Rudolph, and J. Eisert Phys. Rev. Lett. 99, (2007) percolation

120 MBQC snowflake! by Matsuzaki-Benjamin-Fitzsimons! Phys. Rev. Lett. 104, (2010) star-cluster! by KF & Tokunaga! Phys. Rev. Lett. 105, (2010)! () Li et al.! Phys. Rev. Lett. 105, (2010) ps = 0.1, pu = 10-4 ps = 0.1, pu = 10-4 fault-tolerant!

121 MBQC! ()

122 MBQC Valence-bond solid (VBS):! edge state () singlet = maximally entangled state Matrix product state (MPS): i = X single site measurement site edge state i 1,,i N hr A[i N ] A[i 1 ] Li i 1 i N i correlation space Gross-Eisert, PRL (2007)! Brennen-Miyake PRL (2008)! Miyake, Ann. Phys. (2011)! Wei et al., PRL (2011)! Li et al., PRL (2011)! KF-Morimae PRA (2012), KF et al., PRL (2013). Affleck-Kennedy-Lieb-Tasaki : H = J i Affleck-Kennedy-Lieb-Tasaki, Comm.! Math. Phys. 115, 477 (1988). [S i S i+1 1/3(S i S i+1 ) 2 ]

123 MBQC! ()

124 MBQC! c (t) 1 c 2 c (t0 ) 1 () c 0(t0 ) c 2 Raussendorf-Harrington-Goyal, Annals Phys. 321, 2242 (2006); NJP 9, 199 (2007).

125 MBQC! ()

126 MBQC! () Broadbent-Fitzsimons-Kashefi, FOCS 2009! Morimae-Fujii, Nature Comm. 2012; PRL 2013; PRA 2013

127 MBQC! ()

128 MBQC! () Matsuo-KF-Imoto, PRA (2014)

129 MBQC! ()

? MERA, MPS classically simulatable Clifford circuit??? not classically simulatable = universal quantum computation unphysical (black hole firewall)

? MERA, MPS classically simulatable Clifford circuit??? not classically simulatable = universal quantum computation unphysical (black hole firewall) 12 4-6 / ? MERA, MPS classically simulatable Clifford circuit??? not classically simulatable = universal quantum computation unphysical (black hole firewall) 02-06 06-11 ( ) 11-13 13- The goal of quantum

More information

QR_rims

QR_rims QUANTUM COMPUTING AND THE ENTANGLEMENT FRONTIER QUANTUM COMPUTING AND THE ENTANGLEMENT FRONTIER The 25th Solvay Conference on Physics 9-22 October 2; arxiv:23.583 Quantum information science explores the

More information

IntroductionToQuantumComputer

IntroductionToQuantumComputer http://quantphys.org/wp/keisukefujii/?p=433 Twitter Keisuke Fujii@fgksk ? 1687: () Isaac Newton (1642-1727) http://www.newton.cam.ac.uk/art/portrait.html Equation of motion ? 1687: () 1873: () James C.

More information

MBQC Surface MBQC 2

MBQC Surface MBQC 2 2012/11/29-30 ψ p L e iθlp Z ψ p L 1 MBQC Surface MBQC 2 : Pauli,, Pauli, Stabilizer, Stabilizer CliffordPauliGottesman-Knill non-cliffordkitaev-solovay 3 Qubit qubit = 0 = 1 0 1 = 0 1 ψ = α 0 + β 1 α,

More information

量子情報科学−情報科学の物理限界への挑戦- 2018

量子情報科学−情報科学の物理限界への挑戦- 2018 1 http://qi.mp.es.osaka-u.ac.jp/main 2 0 5000 10000 15000 20000 25000 30000 35000 40000 1945 1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989

More information

Intro

Intro 8 W 11 W1101 / 1999-2002: (54 ) 2002-2006: 2006-2011: 2011-2013: 2013-: http://quantphys.org/keisukefujii/lecture.html keisuke.fujii@i.kyoto-u.ac.jp Twitter Keisuke Fujii@fgksk ? 1687: ( ) Isaac Newton

More information

4 i

4 i 22 Quantum error correction and its simulation 1135071 2011 3 1 4 i Abstract Quantum error correction and its simulation Hiroko Dehare Researches in quantum information theory and technology, that mix

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

21 Quantum calculator simulator based on reversible operation

21 Quantum calculator simulator based on reversible operation 21 Quantum calculator simulator based on reversible operation 1100366 2010 3 1 i Abstract Quantum calculator simulator based on reversible operation Ryota Yoshimura Quantum computation is the novel computational

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson

Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson 量子情報基礎 阿部英介 慶應義塾大学先導研究センター 応用物理情報特別講義 A 216 年度春学期後半金曜 4 限 @14-22 Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson

More information

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2 Hubbard 2 1 1 Pauli 0 3 Pauli 4 1 Vol. 51, No. 10, 1996, pp. 741 747. 2 http://www.gakushuin.ac.jp/ 881791/ 3 8 4 1 1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r

More information

2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

研究室ガイダンス(H28)福山研.pdf

研究室ガイダンス(H28)福山研.pdf 1 2 3 4 5 4 He M. Roger et al., JLTP 112, 45 (1998) A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Born in 2004 (hcp 4 He) E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305,

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f : ( ) 2008 5 31 1 f(t) t (1) d 2 f(t) + f(t) = 0 dt2 f(t) = sin t f(t) = cos t (1) 1 (2) d dt f(t) + f(t)2 = 0 (1) (2) t (c ) (3) 2 2 u(t, x) c2 u(t, x) = 0 t2 x2 1 (1) (1) 1 t, x (4) 3 u(t, x) + 6u(t,

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein.

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein. * 1 1 3 5.1.............................. 5............................ 6.3 Bose-Einstein........................ 7 3 Bogoliubov-de Gennes 8 3.1 Bogoliubov-de Gennes.............................. 9 3.

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1.....................

More information

2014 3 10 5 1 5 1.1..................................... 5 2 6 2.1.................................... 6 2.2 Z........................................ 6 2.3.................................. 6 2.3.1..................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

Verification of quantum supremacy

Verification of quantum supremacy 量子スプレマシー セキュアクラウド 量子計算 量子計算の検証 森前智行 (京都大学基礎物理学研究所) 大阪市立大コロキウム 内容 量子スプレマシー セキュアクラウド量子計算 量子計算の検証 小柴 藤井 森前 コロナ社 森前 森北出版 量子スプレマシー ( 量子超越性 ) 弱い量子計算機が古典より強いことを強い基盤に基づいて証明する 量子計算の歴史は約 36 年 おもいついた 1982 年 36 年間の間に非常に多くの理論的

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2 2 ( M2) ( )

2 2 ( M2) ( ) 2 2 ( M2) ( ) 2007 3 3 1 2 P. Gaudry and R. Harley, 2000 Schoof 63bit 2 8 P. Gaudry and É. Schost, 2004 80bit 1 / 2 16 2 10 2 p: F p 2 C : Y 2 =F (X), F F p [X] : monic, deg F = 5, J C (F p ) F F p p Frobenius

More information

特集_03-07.Q3C

特集_03-07.Q3C 3-7 Error Detection and Authentication in Quantum Key Distribution YAMAMURA Akihiro and ISHIZUKA Hirokazu Detecting errors in a raw key and authenticating a private key are crucial for quantum key distribution

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> Visual Basic でわかるやさしい有限要素法の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/092001 このサンプルページの内容は, 初版 1 刷発行当時のものです. URL http://www.morikita.co.jp/soft/92001/ horibe@mx.ibaraki.ac.jp

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

untitled

untitled 2012 R. Leturcq IEMN CNRSK. Ensslin A. C. Gossard Univ. California Markus Büttiker, Peter Hänggi, Pierre Gaspard, (S) 1 2 1980 etc. Exotic materials MEMS micro electro mechanical systems etc. ~ 0.8μm Webb

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

修士論文.dvi

修士論文.dvi 3 2 4 2...................... 5 2.2..................... 0 2.3 ( )............ 2 2.4... 5 3 8 3............................. 9 3.2................... 20 3.3... 24 3.4................... 27 3.4.............

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing 1 2 2.1 [1] [2] 2.1 STM [3, 4, 5, 6] 2.1: 2 ( 3 [1] ) [7, 8] [9]( 2.2) 2 2 2.1.1 (extended state) L (2 L 1, O(1), d O(V), V = L d V V 2.1.2 1985 2 e 2 /h 1980 Klitzing 2.1. 3 [7, 8] 2.2 [10] [8] 2.2: (a)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2, 1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H 3 ( ) 208 2 3 7.5 A-D/D-A D-A/A-D A-D/D-A CCD D () ( ) A-D (ADC) D-A (DAC) LSI 7.5. - 7.4(a) n 2 n V S 2 n R ( ),, 2 n i i i V S /2 n MOS i V S /2 n 8 256 MOS 7.4(b) DA n R n 2 2R n MOS 2R R 2R 2R OP OP

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

MAIN.dvi

MAIN.dvi 01UM1301 1 3 1.1 : : : : : : : : : : : : : : : : : : : : : : 3 1.2 : : : : : : : : : : : : : : : : : : : : 4 1.3 : : : : : : : : : : : : : : : : : 6 1.4 : : : : : : : : : : : : : : : 10 1.5 : : : : : :

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

09kyoto

09kyoto F [ ] F [ ] Nambu( 60), Goldstone(61), Nambu Jona-Lasinio( 61), Goldstone, Salam, Weinberg( 62). N NG = N BS NG : CC by-sa Aney CC by Zouavman Le Zouave CC by-sa Roger McLassus U(1) CC by-sa Aney -Goldstone

More information

30 3..........................................................................................3.................................... 4.4..................................... 6 A Q, P s- 7 B α- 9 Q P ()

More information

S=1 Bilinear-Biquadratic

S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic i 1983 Haldane S=1 1 Haldane Haldane Affleck-Kennedy-Lieb-Tasaki(AKLT) Valence Bond Solid(VBS) VBS (AKLT ) S=1 Bilinear-Biquadratic 1 Haldane Haldane 1 Haldane AKLT (AKLT ) (

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

3 13:25 15:05 D3-1 (D051.pdf) D3-2 (D049.pdf) Spectral Mapping Theorem

3 13:25 15:05 D3-1 (D051.pdf) D3-2 (D049.pdf) Spectral Mapping Theorem 2018 (12/13( ) 12/15( ), ) 30 11 19 1 6, 619 25 ( ) 12 13 9:00 18:30 1 9:00 10:15 D1-1 (D040.pdf) Cheegercut.......................................... 3 / / D1-2 (D046.pdf) edge connectivity restricted

More information

H. Kuninaka and H. Hayakawa Phys. Rev. Lett. 93, 543 (4) M. Y. Louge & E. Adams Phys. Rev. E 65, 33 () Y.Tanaka et. al. Europhys. Lett. 63, 46 (3) K. Okumura et. al. Europhys. Lett. 6, 37 (3) R +X h R

More information

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2 2003 1 1 (Emmy Noether 1) [1] [2] [ (Paul Gordan Clebsch-Gordan ] 1915 habilitation habilitation außerordentlicher Professor Außerordentlich(=extraordinary) 1 1: (Emmy Noether; 1882-1935) (Feynman) [3]

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

Microsoft PowerPoint - Tsukuba2006提出.ppt

Microsoft PowerPoint - Tsukuba2006提出.ppt 量子暗号の安全性と量子系の基本的性質 小芦雅斗 阪大基礎工 Introduction Constraint on disturbance-free operations - Quantifying quantum information Monogamy of entanglement - Quantifying entanglement in unit of bits Unconditional

More information