S=1 Bilinear-Biquadratic

Size: px
Start display at page:

Download "S=1 Bilinear-Biquadratic"

Transcription

1 S=1 Bilinear-Biquadratic

2

3 i 1983 Haldane S=1 1 Haldane Haldane Affleck-Kennedy-Lieb-Tasaki(AKLT) Valence Bond Solid(VBS) VBS (AKLT ) S=1 Bilinear-Biquadratic 1 Haldane Haldane 1 Haldane AKLT (AKLT ) ( ) S=1 Bilinear-Biquadratic ( ) VBS S=1 Bilinear-Biquadratic 1 Haldane Haldane Uimin-Lai-Sutherland Unknown I Berezinskii-Kosterlitz-Thouless(BKT) massless

4

5 iii i S= 1 XXZ Haldane S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic VBS S= S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic Uimin-Lai-Sutherland Uimin-Lai-Sutherland Uimin-Lai-Sutherland SU(3)

6 iv 7.3 [ ] Unknown I A KOBPACK 83 A.1 KOBPACK A A.3 Householder Lanczos A.4 Lanczos A.5 KOBPACK B 93 B.1 S= B. S= C 97 C C C C C C C.7 A

7 v.1 Mermin-Wagner Berezinskii-Kosterlitz-Thouless Haldane S=1 Bilinear-Biquadratic [56] (6.16)(6.17) S=1 (6.16)(6.17) Unknown I A.1 KOBPACK A. Lanczos A.3 Lanczos C.1 (k) C. f A (k) = J sin(k) C.3 f B (k) = J J cos(k) C.4 f A (k) f B (k) C.5 J > 0 Ė(k) (k) C.6 J < 0 (k) (k)

8

9 vii.1 Ψ (N) αβ S= VBS VBS (a) (b) S=1 BLBQ [43] N VBS p p up p down KOBPACK (a) ξ(α) (b) q IC (α) L α ST [8] ( 1 3 < α < 1) q IC(α) H p,β H p,β S=1 BLBQ P=0 ( 4.6 ) q IC (β) P=0.06 ( 4.6 ) q IC (β) P=0.15 ( 4.6 ) q IC (β) P=0.1 ( 4.6 ) q IC (β) P=0.33 ( 4.6 ) q IC (β) P=-0.06 ( 4.6 ) q IC (β) P=-0.15 ( 4.6 ) q IC (β) P=-0.1 ( 4.6 ) q IC (β) Unknwon L=1 F (0) L=1 F (1) F (0) F (1) L=1 F (10) L=1 F (11) F (10) F (11) L=9 triplet-quintet L=1 triplet-quintet

10 viii 6.3 L=15 triplet-quintet L=18 triplet-quintet p cross (β = 0.66) = a + b 1 L p cross (β = 0.68) = a + b 1 L L=9,1,15 fit β=-0.64 ( 7.1 ) c β= 3 ( 7.1 ) c β=-0.70 ( 7.1 ) c L=1 (1) L=1 () L=1 (3) L=1 (4) L=1 (5) L=1 (6) L=1 (7) L=1 (8) L=1 (9) L=1 (10) L=1 (11) L=15 (1) L=15 () L=15 (3) L=15 (4) L=15 (5) L=15 (6) L=15 (7) L=15 (8) L=15 (9) L=15 (10) L=15 (11) L=15 (1) L=15 (13) L=15 (14) Haldane A.1 KOBP ACK A. AV = V C.1 G = Sym[ m ν m,m C. ν i,j C.3 m ν m,m

11 ix C.4 α i,j = Sym[ ν i,j ν i 1,j+1 m i 1,j ν m,m+1 ] C.5 β i,j = Sym[ ν i 4,j+3 ν i 3,j+ ν j+1,i ν j,i 1 m i,i 1,j,j+1 ν m,m+1 ] C.6 i 1, M 1 ; i, M α C.7 i 1, M 1 ; i, M β C.8 J, J A,B,C,D,,F C.9 C.10 C.18 (J,J ) C.10 A J = 0, J = C.11 B J = 1, J = C.1 C J = 1, J = C.13 D J = 1, J = C.14 J = 0.1, J = C.15 F J = 0.1, J = C.16 G J = 1, J = C.17 H J = 1, J = C.18 I J = 1, J =

12

13 Coulomb ( ) Hall ( ) [1] ( *1 ) *1

14 [1] 1930 Bethe Bethe S = 1 1 * Bethe( ) 1 S = 1 ( ) 1. ( ). ( ) 3. * 3 ( ) ( ) S = 1 1 S Haldane [] 1 S (S = ) 1 3 (S = 1 3 ) 1.. (Haldane gap) ( ) 3. * 4 S=1 Ni(C H 8 N ) NO(ClO 4 )(NNP)[3] [4] (CH 3 ) 4 NNiNO 3 (TMNIN) [5] Y MaNiO 5 [6] [7] 1 Affleck-Kennedy-Lieb-Tasaki[8] [9](AKLT) (valence bond solid,vbs) VBS (AKLT ) [10] AKLT 1 1 S=1 Bilinear-Biquadratic * Bethe *3 S i S j = i j 1 ( ) -1 *4 ξ( ) S i S j = exp( i j ) ξ

15 S=1 Bilinear-Biquadratic ( S=1 BLBQ ) AKLT (AKLT ) Haldane 1 Haldane AKLT (VBS ) S0S z n z = ( 1) n exp( n /ξ(α)) S0S z n z ( ) S=1 BLBQ ( ) VBS S=1 Bilinear-Biquadratic ( S=1 BLBQ ) S=1 BLBQ AKLT (VBS )1 VBS 1 ( S=1 BLBQ ) S=1 BLBQ ( S=1 BLBQ 1 H p,β ) Haldane Haldane Uimin-Lai-Sutherland Unknown I Berezinskii-Kosterlitz-Thouless(BKT) massless 1.3 R (eview) A (nalysis) F (ind) 1 1. R. R 1 a S= 1 S= 1 XXZ b S=1 Haldane c Haldane VBS VBS AKLT d AKLT 1 1 S=1 Bilinear-Biquadratic 3 S=1 Bilinear-Biquadratic R S=1 Bilinear-Biquadratic 4 1. R S=1 Bilinear-Biquadratic ( Haldane ). R S=1 Bilinear-Biquadratic ( )

16 A S=1 Bilinear-Biquadratic 1 H p,β 1 H p,β 4. F 1 H p,β Haldane Unknown I Unknown II 5 1. R. A 1 H p,β ( ) 3. F 1 H p,β 6 Uimin-Lai-Sutherland 1. R Unknown II S=1 Bilinear-Biquadratic Uimin-Lai-Sutherland. A Uimin-Lai-Sutherland 3. F 1 H p,β Uimin-Lai-Sutherland ( ) 4. R R. R q 3. A 6 4. F 6 BKT Unknown II Berezinskii-Kosterlitz-Thouless(BKT) massless 8 Uknown I A F Unknown I 9 1 H p,β

17 5 ( ) * ( ) 1 [11] d d S= 1 Bethe S= 1 XXZ S 1 Haldane ( ) (valence bond solid VBS) VBS AKLT AKLT 1 1 S=1 Bilinear-Biquadratic S= 1 H = L S i S i+1 = i=1 L i=1 1 ( S + i S i+1 + S i i+1) S+ + S z i Si+1 z *1.1.3

18 6 ( ) Neel Neel = i 1 i ( ( ) ) ( ) ( )Neel S i [S i, S j ] = iɛ ijk S k (i, j, k = 1,, 3) ɛ ijk : * S + i S i S= 1 1 S+ i S i+1 Neel S + i S i+1 Neel = S+ i S i+1... i 1 i i+1 i+... =... i 1 i i+1 i+... Neel ( )Neel ( )Neel Neel S= 1 [10].1 1 [1] ( 1 ).1.1 H = S i S j (.) ij ij i j SO(3) SU() XY 1 xy H XY = Si x Sj x + S y i Sy j (.3) ij * ɛ ijk 8 >< 1 ((i, j, k) = (1,, 3) (, 3, 1) (3, 1, )) ɛ ijk = 1 ((i, j, k) = (1, 3, ) (3,, 1) (, 1, 3)) >: 0 (.1)

19 .1 7 XY z SO() U(1) z S z H Ising = σ i σ j (.4) ij σ i ±1 σ i Z XY 3 3 XXZ H XXZ = Si x Si+1 x + S y i Sy i+1 + Sz i Si+1 z (.5) ij > 1 > 1 < 1 XY < 1 XY = 1 3 Z SO() SO(3)/SO() 1.1. SO(3) Z.1.3 Mermin-Wagner Berezinskii-Kosterlitz-Thouless SO(3) SO() 1 (T 0) Mermin-Wagner [13][14][15] 1 XY (T = 0)? 1 ( )

20 8 1 1 ( ) [16] Mermin-Wagner XY 0 Berezinskii-Kosterlitz-Thouless(BKT) SO()(U(1)) ( 1 U(1) ) [17][18].1 Mermin-Wagner Berezinskii-Kosterlitz-Thouless (T 0) (T = 0) SO(3) 1 A B SO() 1 A XY B Mermin-Wagner A B Berezinskii-Kosterlitz-Thouless SO()(U(1)) 1 U(1). 1 S= 1 XXZ 1 S= XXZ H XXZ = J N ( S x i Si+1 x + S y i Sy i+1 + Sz i Si+1) z i (.6) ( (S N+1 = S 1 ) N ) (.6) 1 S z π J J J>0 J<0 J>0

21 . 1 S= 1 XXZ 9 Jordan-Wigner S z = n i 1 S + i S i = c i Πi 1 j=1 (1 n j) = c i Π i 1 j=1 (1 n j) (.7) S= 1 c i c i i { } c i, c { } { } j = δ ij ci, c j = c i, c j = 0 (.8) n i c i c i (.7) (.7) (.6) H XXZ = J N i {( ) c i c i+1 + c i+1 c i + ( ( n i ) 1 ni+1 ) } 1 (.9) * S= 1 XY [ = 0] = 0 XXZ x y XY (.9) 1 Π i 1 j=1 (1 n j) n i = 1 n i n i *4 k m ( πm N ) ɛ km = J cos k m (.10) *5 ɛ km < 0 π < k < π 1 Si α (α = x y z) 0 = π < k m <π J cos k m = J N π π π cos kdk = NJ π i j 1 (.11) S x i S x j ( 1)i j i j 1 S z i S z j (1 ( 1)i j ) i j 1 (.1) (.13) (.14) *3 C C.1.1 *4 C C.1. *5 C C.1.3

22 10 [19][0] xy *6 S z 1 k < π 1 Sz 1 k > π 1 k > π k < π S Z k S Z J sin k < ω < J sin 1 (.15) 1 S= 1 XY 1 z (.9) 0 S= 1 XXZ 1 Bethe Bethe [1][][3].. [ > 1] > 1 S z M *7 s 1 1 π { M s ( 1) exp π ( 1) 0 } (.17)..3 [ = 1] Hulthen[1] Bethe 1 1 J(log 1 4 ) 0.443J S α i S α j ( 1)i j (log i j ) 1 i j (α = x, y, z) (.18) [4][5] *6 C C.1.3 *7 M s = 1 X e iq r i S i (.16) N i (staggered magnetization) r i i Q

23 .3 Haldane XY [ < 1] 1 XY η S x i S x j ( 1)i j i j η (.19) η = arcsin (.0) π = 1 = S z ( ) S z i S z j ( 1)i j i j 1 η (.1) η < 1 XY [6][7]..5 [ < 1] S z S z = ± S= 1 XXZ Berezinsukii-Kosterlitz-Thouless.1.3 XY BKT XY 1 S= 1 XXZ = 1 < 1 ( ) BKT *8 (massless) ( 1 < 1) c = 1 *9.3 Haldane.3.1 Haldane S = 1 S 1 S S = F.D.M.Haldane (S = 1, 3,... ) S = 1 *8 masslee *9 7

24 1 (S = 1,... ) [] Haldane S = 1 Haldane Haldane Haldane [1].3. AKLT Haldane Affleck-Kennedy-Lieb-Tasaki[8] [9](AKLT) (valence bond solid, VBS) AKLT VBS (AKLT ) AKLT S = 1 1 H AKLT = i P (S i + S i+1 ) (.) P (S i + S i+1 ) S i + S i+1 ( ) S = 1 1 S i + S i+1 = 1 S i S i+1 = 1 (.3) 0 P (S i + S i+1 ) = 1 (S i S i+1 ) (S i S i+1 ) (.4) * 10 AKLT (.) S = 1 S = 1 S = 1 Ψ i.αβ = 1 [ ψ (i,1) α ψ (i,) β + ψ (i,1) β ψ α (i,) ] (.5) i S = 1 ψ (i,j), ψ (i,j) i S = 1 j (j = 1,) Ψ i.αβ S = 1 S z j 1 i, 0 i, 1 i Ψ i. = 1 i, Ψ i. = Ψ i. = 0 i, Ψ i. = 1 i (.6) S = 1 S = 1 S = Ψ 1.α Ψ. β Ψ 1.α Ψ. β = Ψ 1.αγ ɛ γδ Ψ.δβ (.7) *10 C C.1.4

25 .3 Haldane 13 * 11 ɛ γδ (ɛ γδ = ɛ δγ, ɛ = 1) ( (.7)) α, β, S = α β, N Ψ (N) αβ = Ψ 1.αβ 1 ɛ β 1α Ψ.α β ɛ β α 3... ɛ β N 1α N Ψ N.αN β (.8) ( (.)) α β, Ψ (N) i.αβ Ω (N) = Ψ (N) αβ ɛβα (.9) ( ) 1 N-1 N... α β.1 Ψ (N) αβ.1 S = 1 S = 1 (valence bond) (valence bond solid, VBS) (S = 1 S = 1 Haldane ) VBS i [ ] [ ] [ ] Ψi. Ψ g i = i. 0 1 Ψi. Ψ = i. 1 0 Ψ i. Ψ i. Ψ i. Ψ i. (.30) N VBS Ψ (N) i.αβ g i N g i = i=1 [ ] [ 0 1 Ψ (N) 1 0 Ψ (N) * 1 VBS [ N ] Ω (N) = T r g i i=1 Ψ (N) Ψ (N) Ψ i.αβ (ket bra) Ψ i.αβ ] [ Ψ g i = i. Ψ i. Ψ i. Ψ i. ] (.31) (.3) (.33) *11 C C.1.5 *1 C C.1.6

26 14 Ω (N) Ω (N) = ( N ) g i i=1 N g j αα j=1 ββ = T r [ G N ] (.34) * 13 G 4 4 G αβ;γδ = g i,αγ g i,βδ (.35) (.35) G i Ω (N) Si zsz j Ω(N) Ω (N) Si z Sj z Ω (N) = T r [ G i 1 ZG j i 1 ZG N j] (.36) Z Z αβ;γδ = g i,αγ Sz i g i,βδ (.37) 4 4 (.34) (.36) G 1 G Z G = , Z = (.38) * 14 G 3-1(3 ) VBS N S z i S z j = 4 3 ( 1 3) j i (.39) VBS S x, S y ξ = 1 log 3 AKLT VBS Haldane.3.3 VBS (quantum disordered state) S = 1 S = 1 (string order) {S z i i = 1,..., N} ( 1 i, 0 i, 1 i ) (.31) VB g i 0 i g i,. = 1 i, g i,. = 1 i Ψ (N) i.αβ S z S z = 0 S z = 1 S z = 1 *13 C C.1.7 *14 C C.1.8

27 .3 Haldane 15 exp(iπs z ) S z = ±1-1 S z = 0 1 exp(iπ j 1 l=i+1 Sz l ) i j (i j) Sz = ±1 VBS Si z exp(iπ j 1 l=i+1 Sz l )Sz j ( 0) O z (i, j) = S z i exp(iπ j 1 l=i+1 S z l )S z j (.40) exp(iπ j 1 l=i+1 Sz l ) O z (i, j) = Ω (N) S z i exp(iπ j 1 l=i+1 P P αβ;γδ = g i,αγ exp(iπsz i )g i,βδ P = S z l )S z j Ω (N) (.41) (.4) VBS i j O z (i, j) = * 15 y S = 1 lim i j O α (i, j) VBS 84% VBS (valence bond).3.4 [ S= 1 ] (.8) VBS S = 1 S = 1 1 VBS S = 1 S = 1 S z S z i Ψ (N) αβ Sz i Ψ (N) αβ = (Gi 1 ZG N i )ᾱᾱ;ββ (.43) =, = Ψ (N) αβ Sz i Sz i αβ N 1 β Si z αβ = ɛ α ( 1 3 )i (.44) * 16 ɛ = 1, ɛ = 1 Si z αβ i Si z αβ = 1 ɛ α (.45) i=1 1 4 *15 C C.1.10 *16 C C.1.11

28 16 Kennedy S = 1 3 N N exp( N ξ ) 0 S = 1 1 VBS 1 Haldane Haldane Haldane gap.3.5 S > 1 S = 1 Haldane S S > 1 VBS VBS S S S = 1 S = 1 S S VBS S S = 1 S = 1 S = 1 S AKLT VBS VBS S z i exp(iθ j 1 l=i+1 Sz l )Sz j i j θ = π S S S= VBS 1 3 VBS S z VBS.3 S = 3 S = VBS S> 1 Haldane

29 .4 S=1 Bilinear-Biquadratic 17 (a) (b).3 VBS (a) (b).4 S=1 Bilinear-Biquadratic Haldane VBS VBS AKLT AKLT 1 1 S=1 Bilinear-Biquadratic.4.1 S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic * 17 ( S=1 BLBQ ) Bilinear( ) Biquadratic( ) 1 H = S i S i+1a + α(s i S i+1 ) B (.46) [8] A Bilinear( ) B Biquadratic( ) 1 S=1 BLBQ 3 Na 87 Rb [9][30] 1 LiVGe O 6 [31] 1 α = 1 3 AKLT ( AKLT ) 1 < α < 1 Haldane α = 1 Takhtajan-Babujian(TB) [3][33][34] α = 1 Uimin-Lai-Sutherland(ULS) [35][36][37] α < 1 (gapped)dimer [38][39][8] α > 1 (gapless)trimer [40] (.4 ) Trimer Haldane Trimer c = BKT Haldane AKLT *17 1

30 18 Dimer Haldane C IC Trimer TB AKLT ULS α.4 S=1 BLBQ (α = 1 3 ) 1 < α < 1 3 (Commensurate)* < α < 1 (Incommensurate) * 19 [41][4] *18.4 C *19.4 IC

31 19 3 S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic ( S=1 BLBQ ) S=1 Bilinear-Biquadratic S=1 BLBQ 1 [43] S=1 BLBQ AKLT VBS p 0.34 p 0.3 VBS H p = i h i,i+1,i+ (3.1) h i,i+1,i+ = 1 (S i S i+1 + S i+1 S i+ ) + 1 4p [(S i S i+1 ) + (S i+1 S i+ ) ] 6 +p[s i S i+ (S i S i+ ) ] (3.) S=1 Bilinear-Biquadratic H = S i S i+1 + α(s i S i+1 ) (3.3) AKLT (α = 1 3 ) VBS ( ) α α = VBS [43] S=1 BLBQ

32 0 3 S=1 Bilinear-Biquadratic 3. VBS S= [43] (AKLT )VBS S=1 1 (S=1 ) ( S=1 S=1 BLBQ ) [43] 1 ( 1) VBS ( ) 1 VBS ( 3) 3.. [ 1 ] 1 S=1 1 H J1,,J N,K 1,,K N H J1,,J N,K 1,,K N = 1 N N 1 [J k S i S i+k + K k (S i S i+k ) ] (3.4) i=1 k=1 ( S i i S=1 N ) J N m = J m K N m = K m S=1 1 H Jk,K k VBS VBS S = 1 i S = 1 i-1 i VBS G = Sym[ m ν m,m+1 ] (3.5) ( Sym (3 ) m ) ν i,j ( i j i j )/ *1 i j S = 1 1 * α i,j = Sym[ ν i,j ν i 1,j+1 m i 1,j ν m,m+1 ] (3.6) β i,j = Sym[ ν i 4,j+3 ν i 3,j+ ν j+1,i ν j,i 1 m i,i 1,j,j+1 ν m,m+1 ] (3.7) ( i < j ) i 1, M 1 ; i, M α = M 1 i1 1 M 1 i1 M i M i+1 m i1 1,i 1,i,i +1 0 m, (3.8) i 1, M 1 ; i, M β = M 1 i1 M 1 i1 1 M 1 i1 M i M i+1 M i+ m i1,i 1 1,i 1,i,i +1,i + 0 m (3.9) (i 1 < i ) M i i (S=1 )1 S z i M i = M M i α i 1, +1; i, 1 G, β i 1, +1; i, 1 G, α i 1, +1; i, 1 β i,j, β i 1, +1; i, 1 α i,j *1 ( i j i j )/ *.3. [43]

33 3. VBS S=1 1 *3 α i 1, +1; i, 1 α i,j, β i 1, +1; i, 1 β i,j i = i 1 j = i *4 VBS S=1 1 H Jk,K k β 1, +1; 1 + m, 1 H Jk,K k G = 0 (3.10) α 1, +1; 1 + m, 1 H Jk,K k G = 0 (3.11) *5 S i S i+1 G = 3 G + 1 α i,i+1, (3.13) (S i S i+1 ) G = 5 G 3 α i,i+1, (3.14) S i S i+ G = 1 [ G α i+1,i+ α i,i+1 + α i,i+ ], (3.15) (S i S i+ ) G = 1 [ G + α i+1,i+ + α i,i+1 + α i,i+ ], (3.16) S i S i+l G = 1 [ α i+1,i+l 1 α i+1,i+l α i,i+l 1 + α i,i+l ], (3.17) (S i S i+l ) G = 1 [ α i+1,i+l 1 + α i+1,i+l + α i,i+l 1 + α i,i+l ] + β i+1,i+l 1, (3.18) (l 3 ) (3.11) (3.18) l 3 K l = 0 VBS (bilinear) (J 1 J, J N ) (biquadratic) (K 1 K ) ( (J 1 J, J N K 1 K ) S=1 1 VBS S=1 H J1,,J N,K 1,K ) m 3 (3.11) J l + J l+ = J l+1 (l 3) (3.19) (3.19) J 3 = J 4 = m = 1 m = (3.11) K = J + J 3 (3.0) K 1 = (J 1 4J + 3J 3 )/3 (3.1) J 1 J J 3 K 1 K J l (l 4) J 1 J J 3 ( VBS S=1 H J1,,J N,K 1,K 3 J 1 J J 3 ( ) H J1,,J N,K 1,K H J1,J,J 3 ) *3 C C..1 *4 C C.. *5 G ( (3.4)) H G = G G β 1, +1; 1 + m, 1 H G = G β 1, +1; 1 + m, 1 G = 0 (3.1)

34 3 S=1 Bilinear-Biquadratic 3..3 VBS S=1 H J1,J,J 3 H J1,J,J 3 = J H 3 + (J 1 J 3 ) H p (3.) H = S i S j (3.3) (i,j) H p = i h i,i+1,i+ (3.4) h i,i+1,i+ = 1 (S i S i+1 + S i+1 S i+ ) + 1 4p [(S i S i+1 ) + (S i+1 S i+ ) ] 6 +p[s i S i+ (S i S i+ ) ] (3.5) ( p = (J J 3 ))/(J 1 J 3 ) (i,j) i j( i) ) 1 H VBS 1 1 H p VBS [ (+10p) 3 ]N H p VBS 3..4 H p VBS [ 3] 31 H p VBS [43] 16 KOBPACK *6 VBS ( ) p down 0.34 p up 0.3 (3.6) Lange 1 4 p 1 4 [44] ( Lange p = 1 4 ) 3..5 S=1 Bilinear-Biquadratic [43] S=1 BLBQ 3..3 VBS S=1 H J1,J,J 3 1 H p S=1 BLBQ (1 H p ) 3 S=1 BLBQ *6 KOBPACK A

35 3. VBS S=1 3 -p down p up 3.1 [43] N VBS p p up p down 0.4 -Pdown Pup -Pdown,Pup /N 3. KOBPACK 3.1

36

37 5 4 Haldane 1 (AKLT ) (VBS ) 3 (VBS ) S=1 BLBQ ( (3.1) (3.)) S=1 Bilinear-Biquadratic ( S=1 BLBQ ) Haldane S=1 BlBQ λ ( ) λ = kλ k k [45][46] 4.1. S=1 Bilinear-Biquadratic S=1 BLBQ Haldane S=1 BLBQ Haldane (n 1) (Commensurate region) S0S z n z = ( 1) n n 1 exp( n /ξ(α)) (4.1) (Incommensurate region) S0S z n z = ( 1) n cos(q IC (α)n) n 1 exp( n /ξ(α)) (4.) ξ : [47] ( )

38 6 4 S0S z n z 0 S0 z n Sz n n *1 n * S=1 BLBQ ( 1 < α < 1 3 ) ( 1 3 < α < 1) 1 AKLT S0S z n z = ( 1) n exp( n /ξ(α)) (4.3) (disordered point) Haldane ( 4.1 ) α ξ(α) q IC (α) 4.1 [8] (α = 1 3 ) *3 4.1 Haldane (Commensurate region) ( 1 < α < 1 3 ) (Disordered point) (α = 1 3 ) (Incommensurate region) ( 1 3 < α < 1) S z 0S z n = ( 1) n n 1 exp( n /ξ(α)) S z 0S z n = ( 1) n exp( n /ξ(α)) S z 0S z n = ( 1) n cos(q IC (α)n) n 1 exp( n /ξ(α)) 4.1 (a) ξ(α) (b) q IC(α) *1 (4.1) n 1 exp( n /ξ(α)) n 1 S z n = * (4.) cos(q IC (α)n) n ( ) *3 (.39)

39 4. S=1 Bilinear-Biquadratic 7 4. S=1 Bilinear-Biquadratic 4..1 ( 1 3 < α < 1) q IC(α) [8] (open boundary condition : OBC) 3 (triplet) 1 (singlet) ( ST ) 3 ( triplet ) 1 ( singlet ) ST triplet singlet (4.4) (OBC) S=1 BLBQ N H = h i (4.5) i=1 h i = S i S i+1 + α(s i S i+1 ) (4.6) h i N h i L N N = L 1 (4.7) * 4 S=1 BLBQ triplet singlet N α triplet (N, α) singlet (N, α) N α ST (N, α) 4.. S=1 Bilinear-Biquadratic ST (N, α) S=1 BLBQ α N N α ( 4. ) n α α n (N) q IC (α) N α n (N) q IC (α n (N)) = πn N (4.9) [8][47][48] S=1 BLBQ (4.9) 4.3 ( L ) 4.1 q IC (α) *4 L S=1 BLBQ H = ˆS 1 S + α(s 1 S ) + + ˆS L 1 S L + α(s L 1 S L ) L 1 X = h i (4.8) N = L 1 i=1

40 8 4 1 AKLT ( VBS ) ST (N, α = 1 3 ) N.3.4 (OBC) VBS S=1 S = 1 S = 1 VBS 4 1 ( singlet ) 3 ( triplet ) AKLT (α = 1 3 ) 0 q IC (α 0 (N) = 1 3 ) = 0 π N = 0 (4.10) ( 4.3 L AKLT q IC (α(n)) = 0 ) 4.3 S=1 Bilinear-Biquadratic S=1 BLBQ q IC (α) S=1 BLBQ 4. L α ST [8] L=7 L=8 L=9 L=10 L=11 L=1 L=14 q ic AKLT α 4.3 ( 1 3 < α < 1) q IC(α)

41 4.3 S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic S=1 BLBQ S=1 BLBQ AKLT VBS p 0.34 p 0.3 VBS VBS 4.1 S=1 BLBQ α VBS AKLT AKLT 1 S=1 BLBQ VBS S=1 BLBQ α 1 (AKLT ) S=1 BLBQ H p,β p S=1 BLBQ ( (3.1) (3.)) β β i 1 (S i S i+1 + S i+1 S i+ ) 1 H p,β H p,β = i [ h i,i+1,i+ + 1 ] β (S i S i+1 + S i+1 S i+ ) (4.11) = i [ 1 (1 + β)(s i S i+1 + S i+1 S i+ ) + 1 4p [(S i S i+1 ) + (S i+1 S i+ ) ] 6 +p[s i S i+ (S i S i+ ) ] ] (4.1) 1 H p,β p β H p,β S=1 BLBQ (A) S=1 BLBQ p 0.34 p 0.3 VBS 1 (A ) S=1 BLBQ p = 0 AKLT

42 30 4 *5 1 H p,β (B) 1 H p,β β (p = 0 ) S=1 BLBQ *6 S=1 BLBQ *7 (C) 1 H p,β β (p = 0 ) 1 < β 0 α AKLT ( 1 3 α) S=1 BLBQ β S=1 BLBQ α AKLT (α = 1 3 ) * *5 C C.3.1 *6 C C.3. *7.3. AKLT H AKLT = X i 1 S i S i (S i S i+1 ) (4.13).4 AKLT H AKLT = X i S i S i (S i S i+1 ) (4.14) *8 C C.3.3

43 4.3 S=1 Bilinear-Biquadratic 31 S=1 BLBQ Dimer Haldane C IC Trimer α β 0-1 p (A) H p,0 VBS (A ) p = 0 AKLT (B) β H 0,β S=1 BLBQ (C) β 1 < β 0 S=1 BLBQ α AKLT (C) H p,β β 0-1 p H p,β

44 H p,β (4.9) 4.6 KOBPACK *9 p β ( L n q(β n (N), p) = πn N ) p β q IC (β) ( q(β n (N), p) ) [ ] VBS S=1 BLBQ VBS 0.34 p 0.3 p p=0 S=1 BLBQ ( ) ( 4.1) ( ) S=1 BLBQ ( 4.1) β 0.6 ( (4.9)) S=1 BLBQ ( (4.9)) Haldane S=1 BLBQ ( 4.1) Haldane H p,β (B) (C) S=1 BLBQ Uimin-Lai-Sutherland(ULS) (α = 1) (Uimin-Lai-Sutherland ) H = S i S i+1 + (S i S i+1 ) (4.15) p = 0 β = 3 * 10 1 H p,β Haldane ( ) 1 H p,β Haldane ( ) ULS Unknown II Unknown I ( 4.15 ) Haldane ( ) 4.. ST (N, α) (N α ) ST (N, α) *9 KOBPACK A *10 (4.1) p = 0 β = 3 H 0, = X " # (1 3 3 ) S i S i (1 i 3 ) (S i S i+1 ) = X 1 ˆSi S i+1 + (S i S i+1 ) 3 i (4.16)

45 4.3 S=1 Bilinear-Biquadratic 33 q(β n (N), p) Unknown I II ST (N, α) ( 4.6 Unknown I II q(β n (N), p) ) ( ) 6 7 Unknown II, 8 Unknown I

46 β L= 4 0 0/ π L= 4 1 1/ π L= 5 0 0/ 3π L= 5 1 1/ 3π L= 5 / 3π L= 7 0 0/ 5π L= 7 1 1/ 5π L= 7 / 5π L= 7 3 3/ 5π L= 7 4 4/ 5π L= 7 5 5/ 5π L= 7 6 6/ 5π L= 7 7 7/ 5π L= 7 8 8/ 5π L= 7 9 9/ 5π L= 8 0 0/ 6π L= 8 1 1/ 6π L= 8 / 6π L= 8 3 3/ 6π L= 9 0 0/ 7π L= 9 1 1/ 7π L= 9 / 7π L= 9 3 3/ 7π L= 9 4 4/ 7π L= 9 5 5/ 7π L= 9 6 6/ 7π L= 9 7 7/ 7π L= 9 8 8/ 7π L= 9 9 9/ 7π L= / 7π L= / 7π L= 9 1 1/ 7π L= / 7π L= / 7π L= / 7π L= / 7π L= / 7π L= / 7π L= / 7π L= 9 0 0/ 7π L=10 0 0/ 8π L=10 1 1/ 8π L=10 / 8π L=10 3 3/ 8π L=10 4 4/ 8π L=11 0 0/ 9π L=11 1 1/ 9π L=11 / 9π L=11 3 3/ 9π L=11 4 4/ 9π L=11 5 5/ 9π L=11 6 6/ 9π L=11 7 7/ 9π L=11 8 8/ 9π L=1 0 0/10π L=1 1 1/10π L=1 /10π L=1 3 3/10π L=1 4 4/10π L=1 5 5/10π L=13 0 0/11π L=13 1 1/11π L=13 /11π L=13 3 3/11π L=13 4 4/11π L=13 5 5/11π L=13 6 6/11π L=13 7 7/11π L=13 8 8/11π L=13 9 9/11π L= /11π L= /11π L=13 1 1/11π L= /11π L= /11π L= /11π L= /11π L= /11π L= /11π L= /11π L=13 0 0/11π L=13 1 1/11π L=13 /11π L=13 3 3/11π L=13 4 4/11π L=13 5 5/11π L=13 6 6/11π P 4.6 S=1 BLBQ

47 4.3 S=1 Bilinear-Biquadratic 35 q(β, p) P= L= 4 0 0/ π L= 5 0 0/ 3π L= 7 0 0/ 5π L= 8 0 0/ 6π L= 9 0 0/ 7π L=10 0 0/ 8π L=11 0 0/ 9π L=1 0 0/10π L=13 0 0/11π L=13 1 1/11π L=1 1 1/10π L=11 1 1/ 9π L=10 1 1/ 8π L= 9 1 1/ 7π L= 8 1 1/ 6π L=13 /11π L= 7 1 1/ 5π L=1 /10π L=11 / 9π L=10 / 8π L=13 3 3/11π L= 9 / 7π L=1 3 3/10π L= 5 1 1/ 3π L= 8 / 6π L=11 3 3/ 9π L=10 3 3/ 8π L=1 4 4/10π L= 9 3 3/ 7π L= 4 1 1/ π L= 5 / 3π β 4.7 P=0 ( 4.6 ) q IC(β) q(β, p) P= L= 4 0 0/ π L= 5 0 0/ 3π L= 7 0 0/ 5π L= 8 0 0/ 6π L= 9 0 0/ 7π L=10 0 0/ 8π L=11 0 0/ 9π L=1 0 0/10π L=13 0 0/11π L=13 1 1/11π L=1 1 1/10π L=11 1 1/ 9π L=10 1 1/ 8π L= 9 1 1/ 7π L= 8 1 1/ 6π L=13 /11π L= 7 1 1/ 5π L=1 /10π L=11 / 9π L=10 / 8π L=13 3 3/11π L= 9 / 7π L=1 3 3/10π L= 5 1 1/ 3π L= 8 / 6π L=11 3 3/ 9π L=13 4 4/11π L=10 3 3/ 8π L= 7 / 5π L=1 4 4/10π L= 9 3 3/ 7π L=11 4 4/ 9π L=13 5 5/11π L= 4 1 1/ π L= 8 3 3/ 6π L=10 4 4/ 8π L=1 5 5/10π L=11 5 5/ 9π L= 7 3 3/ 5π β 4.8 P=0.06 ( 4.6 ) q IC (β)

48 36 4 q(β, p) P= L= 4 0 0/ π L= 5 0 0/ 3π L= 7 0 0/ 5π L= 8 0 0/ 6π L= 9 0 0/ 7π L=10 0 0/ 8π L=11 0 0/ 9π L=1 0 0/10π L=13 0 0/11π L=13 1 1/11π L=1 1 1/10π L=11 1 1/ 9π L=10 1 1/ 8π L= 9 1 1/ 7π L= 8 1 1/ 6π L=13 /11π L= 7 1 1/ 5π L=1 /10π L=11 / 9π L=10 / 8π L=13 3 3/11π L= 9 / 7π L=1 3 3/10π L= 5 1 1/ 3π L= 8 / 6π L=11 3 3/ 9π L=13 4 4/11π L=10 3 3/ 8π L= 7 / 5π L=1 4 4/10π L= 9 3 3/ 7π L=11 4 4/ 9π L=13 5 5/11π L= 4 1 1/ π L= 8 3 3/ 6π L=10 4 4/ 8π L=1 5 5/10π L=11 5 5/ 9π L= 7 3 3/ 5π β 4.9 P=0.15 ( 4.6 ) q IC(β) q(β, p) P= L= 4 0 0/ π L= 5 0 0/ 3π L= 7 0 0/ 5π L= 8 0 0/ 6π L= 9 0 0/ 7π L=10 0 0/ 8π L=11 0 0/ 9π L=1 0 0/10π L=13 0 0/11π L=13 1 1/11π L=1 1 1/10π L=11 1 1/ 9π L=10 1 1/ 8π L= 9 1 1/ 7π L= 8 1 1/ 6π L=13 /11π L= 7 1 1/ 5π L=1 /10π L=11 / 9π L=10 / 8π L=13 3 3/11π L= 9 / 7π L=1 3 3/10π L= 5 1 1/ 3π L= 8 / 6π L=11 3 3/ 9π L=13 4 4/11π L=10 3 3/ 8π L= 7 / 5π L=1 4 4/10π L= 9 3 3/ 7π L=11 4 4/ 9π L=13 5 5/11π L= 4 1 1/ π L= 8 3 3/ 6π L=10 4 4/ 8π L=1 5 5/10π L=13 6 6/11π L=11 5 5/ 9π L= 9 4 4/ 7π L= 7 3 3/ 5π L=13 7 7/11π L=11 6 6/ 9π L= 9 5 5/ 7π L=13 8 8/11π L= 7 4 4/ 5π L=13 9 9/11π L= 9 6 6/ 7π L= /11π L= 9 7 7/ 7π L= /11π L=13 1 1/11π L= 9 8 8/ 7π L= /11π L= /11π L= 9 9 9/ 7π L= /11π L= / 7π L= /11π L= /11π L= / 7π L= /11π L= 9 1 1/ 7π L= /11π L=13 0 0/11π L= / 7π L=13 1 1/11π L= / 7π L=13 /11π L=13 3 3/11π L= / 7π L=13 4 4/11π L= / 7π L= / 7π L= / 7π L= / 7π L= 9 0 0/ 7π β 4.10 P=0.1 ( 4.6 ) q IC (β)

49 4.3 S=1 Bilinear-Biquadratic 37 q(β, p) P= L= 7 0 0/ 5π L= 9 0 0/ 7π L=13 0 0/11π L=13 1 1/11π L= 9 1 1/ 7π L=13 /11π L= 7 1 1/ 5π L=13 3 3/11π L= 9 / 7π L=13 4 4/11π L= 7 / 5π L= 9 3 3/ 7π L=13 5 5/11π L=13 6 6/11π L= 9 4 4/ 7π L=13 7 7/11π L= 9 5 5/ 7π L=13 8 8/11π L=13 9 9/11π L= 9 6 6/ 7π L= 9 7 7/ 7π β 4.11 P=0.33 ( 4.6 ) q IC(β) q(β, p) P= L= 4 0 0/ π L= 5 0 0/ 3π L= 7 0 0/ 5π L= 8 0 0/ 6π L= 9 0 0/ 7π L=10 0 0/ 8π L=11 0 0/ 9π L=1 0 0/10π L=13 0 0/11π L=13 1 1/11π L=1 1 1/10π L=11 1 1/ 9π L=10 1 1/ 8π L= 9 1 1/ 7π L= 8 1 1/ 6π L=13 /11π L= 7 1 1/ 5π L=1 /10π L=11 / 9π L=10 / 8π L= 9 / 7π L=1 3 3/10π L= 5 1 1/ 3π L= 8 / 6π L=11 3 3/ 9π L=1 4 4/10π L= 9 3 3/ 7π L= 4 1 1/ π L= 5 / 3π β 4.1 P=-0.06 ( 4.6 ) q IC (β)

50 38 4 q IC (β) P= N= 4 0 0/ π N= 5 0 0/ 3π N= 7 0 0/ 5π N= 8 0 0/ 6π N= 9 0 0/ 7π N=10 0 0/ 8π N=11 0 0/ 9π N=1 0 0/10π N=13 0 0/11π N=13 1 1/11π N=1 1 1/10π N=11 1 1/ 9π N=10 1 1/ 8π N= 9 1 1/ 7π N= 8 1 1/ 6π N=13 /11π N= 7 1 1/ 5π N=1 /10π N=11 / 9π N=10 / 8π N= 9 / 7π N=1 3 3/10π N= 5 1 1/ 3π N= 8 / 6π N= 4 1 1/ π N= 5 / 3π β 4.13 P=-0.15 ( 4.6 ) q IC(β) q(β, p) P= L= 4 0 0/ π L= 5 0 0/ 3π L= 7 0 0/ 5π L= 8 0 0/ 6π L= 9 0 0/ 7π L=10 0 0/ 8π L=11 0 0/ 9π L=1 0 0/10π L=13 0 0/11π L=13 1 1/11π L=1 1 1/10π L=11 1 1/ 9π L= 9 1 1/ 7π L= 8 1 1/ 6π L=13 /11π L= 7 1 1/ 5π L=1 /10π L=11 / 9π L= 9 / 7π L= 5 1 1/ 3π L= 9 3 3/ 7π L= 4 1 1/ π L= 5 / 3π β 4.14 P=-0.1 ( 4.6 ) q IC (β)

51 4.3 S=1 Bilinear-Biquadratic Unknwon

52

53 H p,β ( ) [1][49] 1 ( ) 5.1 S H = x,x J( x x )S(x) S(x ) (5.1) J( x x ) S x J ( ) x,x x = x [S i, S j ] = iɛ ijk S k (i, j, k = 1,, 3) (5.) ɛ ijk : * 1 (5.3) [S 1 (x), S (x )] = iδ x,x S 3 (x) ( ) (5.4) x x, s, m S (x) x, s, m = s(s + 1) x, s, m (5.5) S z (x) x, s, m = m x, s, m (5.6) (m = s, s 1,..., s) *1 ɛ ijk (.1)

54 ( (5.1)) m = s x, s, m S ± S x ± is y (5.7) [ S z (x), S ± (x ) ] = ±δ x,x S ± (x) (5.8) [ S + (x), S (x ) ] = δ x,x S z (x) (5.9) S + (x) x, s, s = 0 (5.10) S z (x) x, s, s = s x, s, s (5.11) * Φ 0 Π x x, s, s (5.1) H = [ J( x x ) S z (x)s z (x ) + 1 ( S + (x)s (x ) + S (x)s + (x ) )] (5.13) x,x H Φ 0 (5.10) (5.11) HΦ 0 = 0 Φ 0 (5.14) 0 = x,x J( x x )m (5.15) Φ 0 H 5.3 [ H, S (x) ] = J( x x ) ( S (x)s z (x ) S (x )S z (x) ) (5.16) x *3 (5.8) (5.9) x S z (x) s 1 Φ(x) Φ(x) S (x)φ 0 (5.17) HΦ(x) = H S (x)φ 0 = S (x) HΦ 0 + [H, S (x)] Φ 0 = 0 S (x)φ 0 + s J( x x ) ( S (x) S (x ) ) Φ 0 x = 0 Φ(x) + s x J( x x )Φ(x) s x J( x x )Φ(x ) (5.18) * (5.10) B (B.4) *3 C C.4.1

55 *4 Φ(x) H Φ(x) 1 Φ 1 x a(x)φ(x) (5.19) HΦ 1 = 0 Φ 1 + s x J( x )Φ 1 s x,x J( x x )a(x)φ(x ) (5.0) a(x) = 1 Ns e i k x (N = N x N y N z ) (5.1) (N x, N y, N z ) Φ 1 Φ(k) Φ(k) = 1 e i k x Φ(x) = 1 e i k x S (x)φ 0 (5.) Ns Ns x x HΦ(k) = 0 Φ(k) + s J( x )Φ(k) s J( x x 1 ) e i k x Φ(x ) x x,x Ns ( = 0 + s ) J( x ) Φ(k) s J( x x 1 ) e i kx Φ(x ) x x,x Ns ( = 0 + s ) J( x ) Φ(k) s J( x )e i k x Φ(k) (5.3) x x *5 ɛ(k) = s x J( x )(1 e i k x ) (5.5) (H 0 )Φ(k) = ɛ(k)φ(k) (5.6) Φ(k) H k k = k x b x + k y b y + k z b z (b x, b y, b z ) (5.7) *4 P x J( x x )Φ(x) = P x J( x )Φ(x) P x x Φ(x) P x x = x J( x x ) x x *5 P x,x J( x x 1 ) e i kx Φ(x ) = P Ns x J( x )e i kx Φ(k) X J( x x 1 ) e i k x Φ(x ) = X J( x x 1 ) e i k (x x ) e i k x Φ(x ) Ns x,x Ns x,x X x x,x = X! X J( x x 1 ) e i k (x x ) e i k x Φ(x ) x x Ns x 1 Ns e i k x Φ(x ) = X x X! 1 Ns e i k x Φ(x ) J( x )e i k x x X x = 0 x = X x J( x )e i k x Φ(k) (5.4)

56 44 5 k i = /N i (i = x, y, z) ɛ(k) k k + K Φ(k) Φ(k ) = δ k,k (5.8) *6 (5.6) k ɛ(k) ɛ(k) ( ) * H ( (5.1)) J > 0 Φ 0 ( *8 )Φ(k) Φ 0 Φ(k) Φ(k) 0 Φ(k) = 1 Ns x ei k x Φ(x) 0 + ɛ(k) ( (5.15)) ( (5.)) ( (5.6)) 5.4 S=1 Bilinear-Biquadratic S=1 BLBQ S=1 BLBQ β β i S i S i+1 1 H p,β = i = i S i S i p (S i S i+1 ) + p[s i S i+ (S i S i+ ) ] + β S i S i+1 3 (1 + β)s i S i p (S i S i+1 ) + p[s i S i+ (S i S i+ ) ] 3 (5.30) *6 C C.4. *7 ɛ(k) [49]p93 *8 Φ(k) J > 0 Φ 0 Φ(k) ( 0 + ɛ(k)) 0 = ɛ(k) = s X J( x )(1 e i k x ) (5.9) x J > 0 ɛ(k) > 0 Φ(k) Φ 0 Φ(k)

57 5.4 S=1 Bilinear-Biquadratic x S(x) a i x = n x a x + n y a y + n z a z (n x, n y, n z ) (5.31) e i x = n x e x *9 n x = i S(x = i) = S i (5.3) (i ie x ) ( ) 1 Φ 0 = Π i i, s, s (5.33) Φ(k) = 1 e i k i Φ i = 1 e i k i S i Φ 0 (5.34) Ns Ns i Φ(k m ) = 1 e i kmi Φ i = 1 e i kmi S i Φ 0 (5.35) Ns Ns i Φ(x = i) = Φ i k = m/n b x (m ) i = ie x k i = m/n b x ie x = π i m/n i i = πm N i = k m i (5.36) (5.30) 1 (5.30) 1 [ N i=1 S i S i+1, S j ] [ N ] S i S i+1, S j = Sj z S j+1 + S j 1 Sz j S j Sz j+1 Sj 1S z j (5.37) i=1 *9 1 1

58 46 5 * 10 N i=1 S i S i+1 Φ(k m ) N N S i S i+1 Φ(k m ) = S i S i+1 1 e i kmj S j Φ 0 Ns i=1 i=1 = 1 Ns j e i k mj j ( N ) S i S i+1 S j Φ 0 i=1 ( = 1 N ) e i kmj S j S i S i+1 Ns j i=1 Φ 0 [ + 1 N ] e i kmj S i S i+1, S j Ns j i=1 ( ) N Φ 0 0 ( S i S i+1 )Φ 0 = 0 Φ 0 1 = 0 e i kmj S j Φ Ns Ns Φ 0 i=1 e i k mj j j i=1 [ N ] S i S i+1, S j = 0 Φ(k m ) + [cos(k m ) 1] Φ(k m ) = ( 0 + [cos(k m ) 1]) Φ(k m ) (5.38) * 11 Φ 0 (5.30) 3 3 [ N i=1 S i S i+, S j ] [ N ] S i S i+, S j = Sj z S j+ + S j Sz j S j Sz j+ Sj S z j (5.39) i=1 * 1 N i=1 S i S i+ Φ(k m ) N N S i S i+ Φ(k m ) = S i S i+ 1 e i kmj S j Φ 0 Ns i=1 i=1 = 1 Ns j j e i k mj j ( N ) S i S i+ S j Φ 0 i=1 ( = 1 N ) e i kmj S j S i S i+ Ns i=1 Φ 0 [ + 1 N ] e i kmj S i S i+, S j Ns j i=1 ( ) N Φ 0 0 ( S i S i+ )Φ 0 = 0 Φ 0 Φ 0 i=1 [ = 0 Φ(k m ) + 1 N ] e i kmj S i S i+, S j Ns j i=1 = 0 Φ(k m ) + [cos(k m ) 1] Φ(k m ) = ( 0 + [cos(k m ) 1]) Φ(k m ) (5.40) *10 C C.4.3 h *11 1 PN i Ns Pj ei k mj i=1 S i S i+1, S j Φ 0 = [cos(k m ) 1] Φ(k m ) C C.4.4 *1 C C.4.3 Φ 0

59 5.4 S=1 Bilinear-Biquadratic 47 * 13 (5.30) 4 (5.30) 1 3 ( )Φ 0 1 Φ(k m ) 4 B (B.11) (S i S i+1 ) (S i S i+ ) Φ 0 Φ(k m ) (S i S i+1 ) (S i S i+1 ) Φ 0 = (S i S i+1 ) Π j j, s, s s = 1 = (S i S i+1 ) Π j j, 1, 1 = (S i S i+1 ) i, 1, 1 i + 1, 1, 1 Π j i,i+1 j, 1, 1 B (B.11) * 14 = i, 1, 1 i + 1, 1, 1 Π j i,i+1 j, 1, 1 = Φ 0 (5.41) (S i S i+1 ) Φ(k m ) = (S i S i+1 ) 1 e i kmi S l Π j j, 1, 1 Ns = 1 e i kmi (S i S i+1 ) S l Π j j, 1, 1 Ns l l ( ) = 1 e i kmi (S i S i+1 ) S l i, 1, 1 i + 1, 1, 1 Π j i,i+1 j, 1, 1 Ns l l i, i + 1 (5.41), l = 1 ) (e i kmi (S i S i+1 ) S i + e i km(i+1) (S i S i+1 ) S i+1 i, 1, 1 i + 1, 1, 1 Π j i,i+1 j, 1, 1 Ns + 1 Ns l ı,i+1 e i k mi S l Π j j, 1, 1 = 1 ( e i k mi (S i S i+1 ) i, 1, 0 i + 1, 1, 1 Π j i,i+1 j, 1, 1 Ns ) +e i km(i+1) (S i S i+1 ) i, 1, 1 i + 1, 1, 0 Π j i,i+1 j, 1, Ns l ı,i+1 e i k mi Π j j, 1, 1 B (B.11) * 15 = 1 e i kmi S l Π j j, 1, 1 Ns l = Φ(k m ) (5.4) *13 1 P h PN i Ns j ei kmj i=1 S i S i+, S j Φ 0 = [cos(k m ) 1] Φ(k m ) C.4.5 *14 (S i S i+1 ) i, 1, 1 i + 1, 1, 1 = i, 1, 1 i + 1, 1, 1 B B. i, 1, 1 i + 1, 1, 1 = 1 i 1 i+1

60 48 5 Φ 0 1 Φ(k m ) Φ(k m ) ( ) (1 + β)s i S i+1 + ps i S i+ Φ(k m ) i = ((1 + β) ( 0 + [cos(k m ) 1]) + p ( 0 + [cos(k m ) 1])) Φ(k m ) ( ) = (1 + β + p) 0 + (1 + β) [cos(k m ) 1] + p [cos(k m ) 1] Φ(k m ) (5.44) Φ 0 ( ) (1 + β)s i S i+1 + ps i S i+ Φ 0 = (1 + β + p) 0 Φ 0 (5.45) i Φ 0 Φ(k m ) (1+β) [cos(k m ) 1]+p [cos(k m ) 1] 1 Φ(k m ) Φ 0 (1 + β) [cos(k m ) 1] + p [cos(k m ) 1] 0 (5.46) (5.46) (1 + β) 0 p (1 + β) 1 4 (5.47) * 16 β, p ( (5.47)) (k) = (1 + β) [cos(k m ) 1] + p [cos(k m ) 1] (5.48) (k) < 0 k *15 (S i S i+1 ) i, 1, 0 i + 1, 1, 1 = i, 1, 0 i + 1, 1, 1 (S i S i+1 ) i, 1, 1 i + 1, 1, 0 = i, 1, 1 i + 1, 1, 0 (5.43) B B. i, 1, 0 i + 1, 1, 1 = 0 i 1 i+1 i, 1, 1 i + 1, 1, 0 = 1 i 0 i+1 *16 C C.4.6

61 5.5 S=1 Bilinear-Biquadratic S=1 Bilinear-Biquadratic 1 H p,β ( (5.30)) Φ 0 Φ 0 Φ(k m ) Φ 0 Φ(k m ) (1 + β + p) 0 ((1 + β + p) 0 + (1 + β) [cos(k m ) 1] + p [cos(k m ) 1]) ( (5.45)) ( (5.44)) Φ 0 Φ(k m ) ( (5.46)) (1 + β) 0 p (1+β) 1 4 (5.47) β = 1, p 0 k = π β < 1, p = 1 1+β 4 (1 + β) k = ± arccos ( 4p ) ( 5.1 ) * 17 p p (β = 1 p = 0) β k = ± arccos ( 1+β 4p ) (β = 1 p = 0) β k = π β = 1 p = 0 1 k (k) = (1 + β) [cos(k m ) 1] + p [cos(k m ) 1] = 0 (5.49) ( C C.4.7 C.10 ) 1 H 0, 1 L (L: ) [50] 5.5 S=1 Bilinear-Biquadratic ( )Φ Φ(k m ) ( (5.46)) 1 H p,β Φ (Φ(k m )) 0 (Φ(k m )) 0 0 (5.50) *17 C C.4.7

62 50 5 KOBPACK * 18 L = 1, 15 Stotal z (= k Sz k ) l 0 (S z total = l) Φ 0 0 F (l) = 0 (S z total = l) 0 (5.51) z ( ) F (l) 0 (l) ( ) p = 1 4 (1 + β) L Φ = 0 (S z total = L) (5.5) ( L = 1 Φ (S z total = 1) ) F (0) F (1) F (L 1) F (L) F (l) (3 l L ) (1 + β) 0 p (1 + β) 1 4 Φ 0 Φ (Stotal z = l) z F = 0 (S total = 0) - z 0 (S total =1) z F = 0 (S total = 1) - z 0 (S total =1) F P β F P β 5. L=1 F (0) 5.3 L=1 F (1) *18 KOBPACK A

63 5.5 S=1 Bilinear-Biquadratic 51 z F = 0 (S total = 0) - z 0 (S total =1) z F = 0 (S total = 1) - z 0 (S total =1) P P β β F (0) F (1) z F = 0 (S total =10) - z 0 (S total =1) z F = 0 (S total =11) - z 0 (S total =1) F P β F P β 5.6 L=1 F (10) 5.7 L=1 F (11) z F = 0 (S total =10) - z 0 (S total =1) z F = 0 (S total =11) - z 0 (S total =1) P P β β F (10) F (11)

64

65 53 6 Uimin-Lai-Sutherland 4 p = 0 β = 3 ( )Uimin-Lai-Sutherland(ULS) 1 H p,β p = 0 β = 3 ULS p 0 S=1 Bilinear-Biquadratic ( S=1 BLBQ ) Haldane Trimer (.4 ) Uimin-Lai-Sutherland(ULS) *1 (ULS ) ULS 1 H p,β ULS p 0 ULS ULS 6.1 Uimin-Lai-Sutherland Uimin-Lai-Sutherland(ULS) Bethe Wess-Zumino-Witten(WZW) massless ( ) Uimin-Lai-Sutherland ULS I * q = ± 3π [51][5][53] II SU(3) [54][55] ULS SU(3) SU() 3 (triplet) 5 (quintet) SU(3) BKT [56] ULS I II 1 H p,β *1 1 H p,β p = 0 β = 3 1 H p,β ULS * 7..

66 54 6 Uimin-Lai-Sutherland 6.1. ULS I II? I II 3 3 (triplet) 5 (quintet) ( ) I q = ± 3π( 3 ) II SU(3) 3 (triplet) 5 (quintet) ULS SU(3) 6. Uimin-Lai-Sutherland SU(3) 6..1 ULS SU(3) S=1 H(θ) = L [ cos θ(sj S j+1 ) + sin θ(s j S j+1 ) ] (6.1) j=1 1 θ [θ [0,π)] θ = π/4 H(γ) = 1 L cos θ H(θ) = [ (Sj S j+1 ) + γ(s j S j+1 ) ] (6.) j=1 (γ = tan θ ) c j,α c j,α S j = 3 αβ=1 ( )(L x L y L z S=1 ) c j,α (L) αβc j,β (6.3) (L i ) αβ (L i ) γη = δ βγ δ αη δ αγ δ βη, (6.4) [ L i L j] [ αβ L i L j] γη = δ αβδ γη δ αγ δ βη (6.5) S j S j+1 = c j,α c j,βc j+1,β c j+1,α c j,α c j,βc j+1,α c j+1,β (6.6)

67 6. Uimin-Lai-Sutherland SU(3) 55 *3 ( ) 3 c j,α c j,α = 1 (6.7) α=1 *4 (S j S j+1 ) = 1 + c j,α c j,βc j+1,α c j+1,β (6.8) *5 (6.) (6.6) (6.8) H(γ) = = L [ (Sj S j+1 ) + γ(s j S j+1 ) ] j=1 L j=1 [ ] c j,α c j,βc j+1,β c j+1,α + (γ 1)c j,α c j,βc j+1,α c j+1,β (6.9) 6.. Uimin-Lai-Sutherland SU(3) (6.9) γ = 1 ULS H(γ = 1) = L j=1 [ ] c j,α c j,βc j+1,β c j+1,α (6.10) SU(3) 3 3 U c j,α (U) αβ c j,β (6.11) β ( (6.11)) H(1) = ] [[(U) αγ ] c j,γ (U) βηc j,η [(U) βγ ] c j+1,γ (U) αη c j+1,η j=1 (6.1) ] H(1) = [[(U) αγ ] (U) αη (U) βη [(U) βγ ] c j,γ c j,ηc j+1,γ c j+1,η ] [δ γη δ ηγ c j,γ c j,ηc j+1,γ c j+1,η = j=1 = j=1 [ ] c j,γ c j,ηc j+1,η c j+1,γ γ α η β = (6.10) (6.13) (U) αβ ] (U) αγ = (U) βα ] (U) αγ = δ βγ ULS SU(3) [54][55] *3 C C.5.1 *4 C C.5. *5 C C.5.3

68 56 6 Uimin-Lai-Sutherland KOBPACK *6 3 L= ( ) L= p cross,l (β) x 1 L y p cross (β) p cross (β) = a + b 1 L (6.14) a b (gnuplot fit ) a L = ( ) p cross, (β) β β = 0.66 β = ( β = 0.66( 0.68) p cross, (β) = ( ) ) ( 6.7 ) p 0 ULS I II ( ) ULS ( ) [56] ( ) P 0.4 L= ULS POINT / β L=9 triplet-quintet 6. L=1 triplet-quintet P 0.4 L= ULS POINT /3 β *6 KOBPACK A

69 [56] S=1 L [ H(θ) = cos θ(sj S j+1 ) + sin θ(s j S j+1 ) ] (6.15) j=1 θ = π 4 (ULS ) θ > π 4 massless ULS massless Haldane Berezinskii-Kosterlitz-Thouless(BKT) ( Fath Solyom [57] ) ULS SU(3)Wess-Zumino-Witten(WZW) ( Bethe ) ULS SU(3) WZW SU(3) (marginal operator) ( SU(3) 0.4 L= L= ULS POINT ULS POINT P 0 P / / β β 6.3 L=15 triplet-quintet 6.4 L=18 triplet-quintet P cross (β = -0.66) p cross (β = -0.66)=a + b*1/l a= /-.4111e-07( %) b= / e-05( %) P cross, (β)= /L P cross (β =-0.68) p cross (β =-0.68)=a + b*1/l a= / e-06( %) b= / ( %) P cross, (β)= /L 6.5 p cross (β = 0.66) = a + b 1 L 6.6 p cross (β = 0.68) = a + b 1 L

70 58 6 Uimin-Lai-Sutherland BKT ) (conformal field theory(cft)) BKT SU() ν > SU(ν) ν > BKT ν = massless 1 Ludwig Cardy[58][59] L (Ground-State(GS)) ε GS = ɛ πv 6L c(l) c(l) = c vir + d GS (ln L) 3 + O ( ) ln (ln L) (ln L) 4, 1 (6.16) (ln L) 4 c(l) ɛ v *7 x n (primary field) ε n = ε GS + πv L γ n(l) γ n (L) = x n + d n (ln L) + O ( ln (ln L) (ln L), 1 (ln L) ) (6.17) x n d n 3 (x n d n n ) 0.4 Fitting L= 9,1, ULS POINT P / β 6.7 L=9,1,15 fit *7 7..

71 [56] (6.16) (6.17) [56] (6.16)(6.17) 1, SU(3) Wess-Zumino-Witten ( SU(3) SU() ), BKT massless c = 3, 6. γ ( (6.15)) 6. S=1 (6.16)(6.17) SU(3) WZW (γ = 1) 3 SU(3) WZW (γ 1) 3 Bethe 3 c vir x q x t x s d GS d q d t d s H(γ) = 1 L cos θ H(θ) = [ (Sj S j+1 ) + γ(s j S j+1 ) ] (6.18) j=1 γ = tan θ x q d q x t d t x s d s 5 (quintet) 3 (triplet) 1 (singlet) [56] ULS c = BKT BKT ULS BKT BKT.1.3 S= 1 XY 1 XXZ 1 XXZ massless c = 1 nassless c = ULS BKT

72

73 H p,β p 0 Uimin-Lai- Sutherland(ULS) I II ( ) *1 ( ) q 1 H p,β 7.1 c = (CFT) ( (6.17)) 1 ln L ( (6.16)) 1 (ln L) { (T 0) 1 (T = 0) ( (ξ = )) 7.1. [massless(ξ = ) ] c 0 (L) = ɛ 0 L πvc 6L (7.1) *1 I II 6.1.1

74 6 7 L : c : v : ɛ 0 : 0 (L) : L L v v = L π (q = π L ) (7.) (q = π L ) (q = π L ) 0(q = π L ) 0(q = 0) (7.3) 0 (q = π L ) : q = π L 0 (q = 0) : q = 0 q ( ) ( ) * ( p ) [massive( 1 ξ 0) ] (7.1) (7.3) 0 (L) L = ɛ 0 c exp ( L ξ ) (7.4) (q = π L ) v (q + ξ ) L const (7.5) 7. c q 7..1 [60] (D ) ( ) H = [ J (S z i S z j ) + J (S + i S j + S i S + j )] D [ ] 1 3 S(S + 1) (Sz k) (7.6) <i,j> * k

75 7. 63 ( <i,j> 1 ) H H Stotal z (= k Sz k ) H Sz total H Stotal z ( Stotal z ) ( S z ) Stotal z S z *3 7.. [ ] n ( H n ) Bonner Fisher i i+1 ( ) T T n 1 πl i p, l = e n j (T ) j p (7.7) j=0 e i πl n *4 l 0 < l < n p ( p Si z ) T H *5 ( l *6 ) Bonner Fisher e i πl n q(= πl n πl n ) H T q(= πl n ) p H i (H i = i i ) q(= πl n ) H i, l (1 ) q (7.7) ( ) q = πl L π(n l) q = L *7 *3 S z total S z total H ( ) Sz total S z total *4 C C.6.1 *5 Stotal z T *6 C C.6. *7 A A A.5. C C.6.7

76 i n-i+1 ( ) U H T UT = T 1 U * 8 p ± 1 p ±, l = (1 ± U)( p, l + p, n l ), (7.8), l = i(1 ± U)( p, l p, n l ) (7.9) *9 p, l * 10 * 11 l 0 l n p i, l p + πl i, l q = L ( q = π(n l) L ) * p KOBPACK q KOBPACK (7.8) (7.9) p 1, l = 1 N ( p, l + p, n l ), (7.10) p, l = 1 N ( p, l p, n l ) (7.11) ( * 13 ) KOBPACK q KOBPACK 3 Lanczos A 7.3 [ ] [ ] *8 i i T i + 1 U n (i + 1) + 1 = n i i U n i + 1 T 1 n i UT = T 1 U *9 T + T 1 [ C C.6.6 ] *10 C C.6.4 *11 C C.6.5 *1 C C.6.7 *13 C C.6.8

77 7.3 [ ] 65 (7.1) ɛ L 3 L+3 0 (L) = ɛ 0 L πvc 6L 0 (L + 3) = ɛ 0 (L + 3) πvc 6(L + 3) (7.1) (7.13) * 14 0 (L) = ɛ 0 πvc L 6L (7.14) 0 (L + 3) πvc = ɛ 0 L + 3 6(L + 3) (7.15) (7.15) (7.14) 0 (L + 3) L + 3 0(L) L ( ɛ 0 ) ( ɛ 0 πvc ) 6L πvc = 6(L + 3) = πvc 6L πvc 6(L + 3) ( πv ) ( (L + 3) L ) = 6 L (L + 3) c ( πv ) ( ) 6L + 9 = 6 L (L + 3) c c ( ) ( 6 L (L + 3) ) ( 0 (L + 3) c eff = ) 0(L) πv 6L + 9 L + 3 L (7.16) (7.17) (7.1) (7.15) v v = 1 ( L π (q = π L ) + L + 3 ) π (q = π L + 3 ) (7.18) ɛ 0 c eff L L [c eff c] (7.17) c c eff (7.1) L ( L=18) c eff c c eff massless ( ) lim eff = c L massive ( ) lim eff = 0 L *14 1 H p,β ( 1 )

78 β p (7.17) p ULS (β ) - [56] Trimer c = H p,β (B) 1 H p,β β (p = 0 ) 1 < β 0 S=1 BLBQ (C) S=1 BLBQ 1 H p,β β β S=1 BLBQ α AKLT (α = 1 3 ) 1 H p,β ULS (p = 0 β = 3 ) p = 0 β 3 c = p p ULS ( ) c = L c= c= BKT 0.4 ULS crosspoint P β 7.1

79 7.3 [ ] ULS [56] c = CFT BKT massless 3.5 β= site 9,1 site 1,15 site 15,18 Central Charge P 7. β=-0.64 ( 7.1 ) c

80 β= site 9,1 site 1,15 site 15,18 Central Charge P 7.3 β= 3 ( 7.1 ) c 3.5 β= site 9,1 site 1,15 site 15,18 Central Charge P 7.4 β=-0.70 ( 7.1 ) c

81 69 8 Unknown I 1 H p,β Haldane BKT massless Unknown I Unkown I Φ (Stotal z = l) L Unknown I Stotal z = l (0 l L 1) 0 (Stotal z = l) L= (Stotal z = 0) 0(Stotal z = l) (l) 0 (Stotal z = 0) 0 (Stotal z = l) (8.1) ( ) ( (l) ) Uimin-Lai-Sutherland(ULS) (ULS crosspoint) ( triplet ) 1 ( singlet ) Unknown I 0 l L 1 0 (Stotal z = l) 8.1 Unknown I 8.1 Unknown I (OBC) 3 3 ( triplet ) 1 ( singlet ) 0 (Stotal z = l) (0 l L 1) [ 0 (Stotal z = l) (0 l L 1) < 0] l

82 70 8 Unknown I Unknown I Haldane Haldane (PBC) 1 S 1 (OBC) 1 singlet 3 triplet S Unknown I Haldane 0 (Stotal z = 0) 0(Stotal z = 1) Unknown I 0 (Stotal z = 0) 0(Stotal z = 1) Unknown I Haldan = 0 (S total z z =0) - 0 (S total = 1) = 0 (S total z z =0) - 0 (S total = ) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.1 L=1 (1) 8. L=1 () = 0 (S z z total =0) - 0 (S total = 3) = 0 (S z z total =0) - 0 (S total = 4) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.3 L=1 (3) 8.4 L=1 (4)

83 71 = 0 (S total z z =0) - 0 (S total = 5) = 0 (S total z z =0) - 0 (S total = 6) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.5 L=1 (5) 8.6 L=1 (6) = 0 (S total z z =0) - 0 (S total = 7) = 0 (S total z z =0) - 0 (S total = 8) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.7 L=1 (7) 8.8 L=1 (8) = 0 (S z z total =0) - 0 (S total = 9) = 0 (S z z total =0) - 0 (S total =10) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.9 L=1 (9) 8.10 L=1 (10)

84 7 8 Unknown I = 0 (S total z z =0) - 0 (S total =11) P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.11 L=1 (11) = 0 (S total z z =0) - 0 (S total = 1) = 0 (S total z z =0) - 0 (S total = ) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.1 L=15 (1) 8.13 L=15 () = 0 (S z z total =0) - 0 (S total = 3) = 0 (S z z total =0) - 0 (S total = 4) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.14 L=15 (3) 8.15 L=15 (4)

85 73 = 0 (S total z z =0) - 0 (S total = 5) = 0 (S total z z =0) - 0 (S total = 6) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.16 L=15 (5) 8.17 L=15 (6) = 0 (S total z z =0) - 0 (S total = 7) = 0 (S total z z =0) - 0 (S total = 8) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.18 L=15 (7) 8.19 L=15 (8) = 0 (S z z total =0) - 0 (S total = 9) = 0 (S z z total =0) - 0 (S total =10) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.0 L=15 (9) 8.1 L=15 (10)

86 74 8 Unknown I = 0 (S total z z =0) - 0 (S total =11) = 0 (S total z z =0) - 0 (S total =1) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8. L=15 (11) 8.3 L=15 (1) = 0 (S total z z =0) - 0 (S total =13) = 0 (S total z z =0) - 0 (S total =14) P P β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π β ULS cross point L= 6 1 1/ 4π L= 9 3 3/ 7π L= 1 3 3/ 10π 8.4 L=15 (13) 8.5 L=15 (14)

87 S=1 Bilinear-Biquadratic ( S=1 BLBQ ) 1 H p,β. 1 H p,β Haldane ( ) a b Berezinskii-Kosterlitz-Thouless(BKT) massless c Unknown I 1. 1 H p,β S=1 Bilinear-Biquadratic ( S=1 BLBQ ) ( 4.1) S=1 BLBQ (ULS ) Haldane ( ). a 1 H p,β β S=1 BLBQ ( 3 < β 0) ((1 + β) 0 p (1+β) 1 4 ) b 1 H p,β Uimin-Lai-Sutherland(ULS) (p = 0 β = 3 ) ULS ( ) c = (CFT) BKT massless BKT c p = 0 β = 1 ( 9.1 ) Haldane ( ) BKT massless Unknown I L (L: ) [50]

88 Unknown I 1 H p,β p > 0 1 β < 0 Haldane ( ) ( 9. ) Haldane ( )

89

90 Haldane

91 79 S=1 Bilinear-Biquadratic KOBPACK/1 Version1.0 KOBPACK

92

93 81 [1] 1 ( ) [] F.D.M.Haldane:Phys.Lett. 93A (1983),p464 [3] K.Katsumata,H.Hori,T.Takeuchi,M.Date,A.Yamagishi and J.P.Remard:Phys.Rev.Lett. 65 (1990),p86-88 [4] J.P.Renard,M.Verdaguer,L.P.Renault,W.A.C.rkelens,J.Rossat-Mignod and W.G.Stirling:urophys.Lett. 3 (1987),p945 [5] V.Gadet,M,Verdauguer,V.Briois,A.Gleizes,J.P.Renard,P,Beaucillain,C.Chappert,T.Goto,K.Le Dang and P.Veillet:Phys.Rev.B 44 (1991),p705 [6] J.Darriet and L.P.Renault:Solid State Comm. 86 (1993),p409 [7] T.Yokoo,T.Sakaguchi,K.Kakurai and J.Akimitsu:J.Phys.Soc.Jpn 64 (1996),p3651 [8] I.Affleck,T.Keneedy,.H.Liev and H.Tasaki:Phys.Rev.Lett. 59 (1987),p799 [9] I.Affleck,T.Keneedy,.H.Liev and H.Tasaki:Commun,Math.Phys. 115 (1988),p477 [10] ( ) [11] S.Sachdev:Quantum Phase Transition(Cambridge Univ.Press,1999) [1] 1 ( ) [13] N.D.Mermin and H.Wargner:Phys.Rev.Lett. 17 (1966) p1133 [14] P.C.Hohengerg:Phys.Rev. 158 (1967) p383 [15] N.D.Mermin:J.Math.Phys. 8 (1967) p1061 [16] T.Momoi:J.Stat.Phys. 85 (1996) p193 [17] V.L.Berezinskii:Sov.Phys.JTP 3 (1970) p11;ibid 34 (1971) p493 [18] J.M.Kosterlitz and D.J.Thouless:J.Phys.C 6 (1973) p1181 [19].H.Lieb, T.D.Schultz and D.Mattis : Ann. Phys. 16 (1961) p407 [0] B.M.McCoy:Phys.Rev. 173 (1968) p531 [1] L.Hulthen:Arkiv.Mat.Astron.Fyzik 6A (1938) No.11 [] C.N.Yang and C.P.Yang:Phys.Rev. 150 (1966) 31;ibid 37 [3] M.Takahashi:Thermodynamics of One-Dimensional Solvable Models(Cambridge Univ. Press, 1999) [4] I.Affleck,D.Gepner,H.J.Schultz and T.Ziman:J.Phys.A:Math.Gen. (1989) p511 [5] R.R.Singh,M..Fisher and R.Shankar:Phys.Rev.B 39 (1989) p56 [6] A.Lunther and I.Peschel:Phys. Rev.B 1 (1975) p3908 [7] N.M.Bogoliubov,A.G.Izergin and V..Korepin:Nucl.Phys.B 75[FS17] (1986) p687 [8] T.Murashima and K.Nomura:Phys.Rev.B 73 (006),p [9] S.K.Yip:Phys.Rev.Lett. 90 (003) p 5040 [30] J.J.Garcia-Ripoll,M.A.Martin-Delgado and J.I.Cirac:Phys.Rev.Lett.93 (004) p [31] P.Millet,F.Mila,F.C.Zhang,M.Mambrini,A.B.VanOosten,V.A.Pashchenko,A.Sulpice and A.Stepanov :Phys.Rev.Lett. 83 (1999) p4176

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

( ) I( ) TA: ( M2)

( ) I( ) TA: ( M2) ( ) I( ) TA: ( M) 015 7 17 , 7 ( ) I( ).., M. (hatomura@spin.phys.s.u-tokyo.ac.jp).,,.. Keywords: 1. (gas-liquid phase transition). (critical point) 3. (lattice gas model) (Ising model) H = ϕ 0 i,j n i

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

19 /

19 / 19 / 1 1.1............................... 1. Andreev............................... 3 1.3..................................... 3 1.4..................................... 4 / 5.1......................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information