修士論文.dvi

Size: px
Start display at page:

Download "修士論文.dvi"

Transcription

1

2 ( ) qubit qubit A 43 B 45 2

3 [],[2],[3] [4] 994 [3] ( ) [5] ( ) [6] [7] [2] [3] [8] 2.4 [9] [0] 3 3. EPR [] 3.2 [2] 3

4 3.3 [3][4] [6] ( 2-qubit ) 2-qubit ( ) 5 2 4

5 2. n n n [6] ρ ρ i p i ψ i >< ψ i () ψ i > p i 0 i p i = (2)(3) Trρ = (2) ρ = ρ 0 (3) A A = i p i ψ i A ψ i (4) A =Tr(ρA) (5) Trace u > u ρ u 0 (6) Trρ 2 (7) ρ jj ( ρ jj ) 2 = (8) j j (measurement) 5

6 : {M m } measurement operator m ψ > m p(m) = ψ M mm m ψ (9) M m ψ ψ M mm m ψ (0) measurement operator M mm m = I () m = m p(m) = m ψ M mm m ψ (2) POVM(Positive Operator Valued Measure)[] POVM operator E m = M mm m (3) operator ψ i > m p(m i) =tr( ψ i M m M m ψ i )=tr(m m M m ψ i ψ i ) (4) p(m) = i = i p(m i)p i p i tr(m mm m ψ i ψ i ) = tr(e m ρ) (5) : ρ (2) (3) : ρ t = ī [H,ρ] (6) h 6

7 : E m POVM(3) m p(m) =tr(e m ρ) (7) (quantum operation) ρ = E(ρ) (8) = k E k ρe k (9) E k POVM POVM CP ρ E(ρ) = k e k U[ρ e 0 e 0 ]U e k (20) E k = e k U e 0 (2) e l e 0 e 0 tre(ρ) = E k = tr(e(ρ)) (22) = tr( k = tr( k E k ρe k ) (23) E k E kρ) (24) E k E k = I (25) k 2 (Hadamard) (Controlled-not) 2 ( ) 7

8 ρ UρU U : ρ E(ρ) U ρ env 2: 3: 8

9 3 Hadamard ( ) H = 2 ( ) (26) Pauli X 0 X = 0 ( ) (27) Pauli Y 0 i Y = i 0 ( ) (28) 0 Pauli Z Z = (29) 0 ( ) 0 Phase S = (30) 0 i , 0 00, 0, 0 (3) C = (32) Pauli-X Polar decomposition A V U J, K A = UJ = KU (33) J, K J = A A, K = AA Singular value decomposition 9

10 A U, V D A = UDV (34) D singular value [7] φ AB A i A B i B φ = i λ i i A i B (35) λ i i λ2 i = [8] S(ρ) = tr(ρ log ρ) (36) ρ [9] S(ρ σ) = tr(ρ log ρ) tr(ρ log σ) (37) ρ σ S(ρ σ) 0 (38) 2.2 [4] EPR [] EPR Bell 0

11 Alice Bob J =0 SG magnet 4: EPR Experiment EPR ± 2 ( 39) EPR Φ = ( 0 0 ) (39) 2 up down Bell Bell [20] Bell (39) Φ ± = 2 ( 0 ± 0 ) Ψ ± = ( 00 ± ) 2 (40) Alice Bob ψ = a 0 + b (4) Alice Alice a b Ψ + (share ) Ψ AB =(a 0 + b )( 00 + )/ 2 (42) Bell Ψ AB = (a a 0 + b 00 + b )/ 2 = 2 [ Ψ + (a 0 + b )+ Ψ (a 0 b ) + Φ + (a + b 0 )+ Φ (a b 0 )] (43)

12 Alice Projective measurement Bell 40 Alice Φ + Φ + (a + b 0 ) (44) Bob Alice Φ + NOT 0, 0 Bob a 0 + b Alice Ψ + Bell Alice Bob 2.3 ( ) [8] N O x q x q f(x) (45) mod2 x q qubit qubit 0 x = x 0 f(x) = x 0 N M 2

13 qubit ( 0 )/ 2 O x ( 0 ) ( ) f(x) x ( 0 ) (46) 2 2 O x ( ) f(x) x (47) 0 n x 0 φ = N x (48) N /2 () O (2) H n (3) x=0 x ( ) δx0 x (49) (4) H n (3) I (2) (4) H n (2 0 0 I)H n =2 φ φ I (50) G =(2 φ φ I)O (5) M α φ = N M β M x/ solution x solution x (52) x (53) N M M N α + β N (54) 3

14 β G φ θ θ/2 θ/2 φ O φ α 5: Grover cos θ/2 = (N M)/N φ =cosθ/2 α +sinθ/2 β (55) G φ =cos 3θ 2 α +sin3θ β (56) 2 5 G k 2k + 2k + φ =cos( θ) α +sin( θ) β (57) 2 2 β k β G O( N/M) : O x q = x q f(x) f(x) =0,forall0 x<2 n x 0 f(x 0 )= x 0 O( 2 n ) O(). 0 n n x [ 0 ] 2 n 2 x=0 3. [(2 φ φ I)O] R 2 n x [ 0 ] 2 n 2 x 0 [ 0 2 ] 4. x 0 x=0 4

15 R π 2 n /4 O(N) O( N) 2.4 ( ) [2] ( ) (CPU) 0,,2 B δ(q 0, 0) = (q 0, 0,R) δ(q 0, ) = (q 0,,R) δ(q 0,B)=(q, 0,L) 5

16 δ(p, a) =(q, b, d) p a q b d R, L, N q (Q, Σ, Γ,δ,q 0,B,F) Q Γ ( ) B Γ Σ Γ {B} ( ) q 0 Q F Q ( ) δ : Q Γ Q Γ {R, L, N} δ : Q Γ P(Q Γ {R, L, N}) P(S) S ( ) k k-tm 93 M x x M (p, a a 2 a m,i) p Q a a 2 a m Γ, 0 i m Γ Γ i i M x α 0 =(q 0,x,0) M α n =(q f,y,i) M 6

17 M L(M) k-tm M T (n) n ω ω M T (n) k-tm M S(n) n ω ω M S(n) DTIME(T (n)) ={L: k-tm L O(T (n)) } NTIME(T (n)) ={L: k-tm L O(T (n)) } DSPACE(S(n)) ={L: k-tm L O(S(n)) } NSPACE(S(n)) ={L: k-tm L O(S(n)) } DL=DSPACE(log n): n k-tm log n NL=NSPACE(log n): n k-tm log n P= k DTIME(nk ): k-tm n NP= k NTIME(nk ): k-tm n PSPACE= k DSPACE(nk )= k NSPACE(nk ): k-tm k-tm n EXPTIME= k DTIME(2nk ): k-tm n DL NL P NP PSPACE EXPTIME (58) P = NP 7

18 QTM PTM QTM ( ) QTM QTM ( QTM) M =(Σ,Q,δ) Σ B Q q 0 q f q 0 δ δ : Q Σ C Σ Q {L,R} (59) C n 2 n DTM α C BPP x L QTM M L BQP:QTM EQP: QTM EQTime(T (n)): n T (n) QTM BQP( ): QTM 2 3 BQTime(T (n)): n T (n) QTM 2 3 EQP BQP P EQP, BPP BQP BQP PSPACE 3 8

19 φ b j = ± 2 j = ± 2 φ a φ a2 φ b2 6: Bell 3. EPR[] [20] 6 φ ai,φ bi,i=, 2 ± 2 ± ± a,a 2,b,b 2 ± a + b a b + a b 2 + a 2 b a 2 b 2 = ±2 (60) <a b > + <a b 2 > + <a 2 b > <a 2 b 2 > ±2 (6) a b E(a,b )=P ++ (a,b )+P (a,b ) P + (a,b ) P + (a,b ) (62) P ++ (a,b ) a,b ++ E(a,b ) = a b = ψ ( a σ)( b σ) ψ (63) 9

20 σ E(a,b )+E(a,b 2 )+E(a 2,b ) E(a 2,b 2 ) (64) 2 a = 2 a 2 2 = b = b 2 = 0 (65) 0 0 (65) 2 2 ± Ψ = ( 0 0 ) (66) 2 ρ AB ρ AB = p i σ Ai σ Bi (67) i p i i p i = ρ AB A B 3.2 [2] 20

21 Gisin [22] E(σ) = 0 (68) E(σ) =0 σ σ (U A U B ) E(σ) =E(U A U B σu A U B ) (69) σ p i σ i E(σ) p i E(σ i ) (70) σ i = A i B i σa i B i /p i p i =Tr(A i B i σa i B i ) A i B i A i B i LOCC Local Operations and Classical Comunication reduced von Neumann entropy E(σ) =S(tr A ρ)=s(tr B ρ) (7) additivity additivity additivity E(σ ρ) =E(σ)+E(ρ) (72) weakly additive E(σ σ) =2E(σ) (73) 2

22 ρ σ E(ρ) E(σ) weakly additive Popescu Rohrlich(997)[23] Vidal(2000)[24] Entanglement of formation[6] Entanglement of formation E(ρ) = min p i, Φ i pi S( Φ i ) (74) Φ i min S( Φ i ) S( Φ i )= Tr Φ i Φ i log( Φ i Φ i ) (75) Entanglement of formation qubit [25] concurrece C(ρ) R(ρ) = ρ ρ ρ (76) ρ = σ y σ y ρ σ y σ y λ,,λ 4 concurrence C(ρ) =max{0,λ λ 2 λ 3 λ 4 } (77) Entanglement of formation h E(ρ) =h( + C 2 ) (78) 2 h(x) = x log 2 x ( x)log 2 ( x) (79) 2-qubit [25] Entanglement of distillation[26] V A V B () S A S B (80) 22

23 S A V A ( ) S B V B (2) ( ) S A S A (8) A B (3)2 S A (82) S B (83) A B (4)Separable S S i S i (ρ) = j (A j B j )ρ(a j B j ) (84) A j,b j V A,V B (5)Positive-partial-transpose(PPT) Γ μ i ν j ρ Γ ω k χ l = μ i χ l ρ ω k ν i (85) Si Γ : ρ S i (ρ Γ ) Γ (86) Ψ + (V )= ii (87) dimv F (ρ) =Ψ + (V )ρψ + (V ) (88) i 23

24 ( ) Entanglement of distillation ρ C-distillable entanglement D C (ρ) (V A V B ) ni C T V ij V ij i n i p ij log n 2 dimv ij D C (ρ) (89) i j p ij ( F ij )log n 2 dimv ij 0 (90) i j Relative entropy of entanglement[27] E(ρ) =mins(ρ σ) (9) σ D S(ρ σ) = trρ log ρ trρ log σ (92) D E D E R E F (93) 3.3 ( [3]) [4] ρ A A 2 Ã Tr(Ã ρ) < 0, Tr(Ãσ) 0 (94) σ A A 2 Harn-Banach[28] 24

25 W,W 2 f α R w W, w 2 W 2 f(w ) <α f(w 2 ) (95) Ã g σ g( ρ) <β g(σ) (96) Ã g A g(ρ) =Tr(ρA) (97) I ρ, σ Tr(βIρ) =Tr(βIσ) = β Ã = A βi (98) ρ A A 2 Tr(Aρ) 0 (99) A Tr(AP Q) 0 P Q H H 2 ρ (99) ρ (99) A Tr(Aρ) < 0 σ Tr(Aσ) 0 P Q Tr(Aρ) < 0 (L) L(A, A 2 ) Λ S(Λ) = i E i Λ(E i) A A 2 (00) E i A Λ L(A, A 2 ) S(Λ) P A,Q A 2 Tr(S(Λ)P Q) 0 A H 25

26 {e l } P ij e l = δ jl e i {P ij } dimh i,j= (99) Tr[((I Λ) ij P ji P ij )ρ] 0 (0) Tr[((I ΛT ) ij P ji TP ij )ρ] 0 (02) T : A A TP ij = P ji T T 2 = I Λ :A A T Λ P 0 =(/d) ij P ji P ji (d =dimh ) (02) A A 2 ρ, (I ΛP 0 ) 0 (03) I Λ ρ, I ΛP 0 0 (04) I Λρ, P 0 =Tr[P 0 (I Λρ)] (05) Λ:A 2 A I Λρ Λ I Λρ Λ P 0 (05) ρ H H 2 ρ Λ:A 2 A I Λρ C 2 C 2 C 2 C 3 ρ ρ T2 ρ T2 = I Tρ (06) ρ ρ T2 Stromer Woronowicz[29][30] H = H 2 = C 2 H = C 3, H 2 = C 2 Λ:A A 2 Λ=Λ CP +Λ CP 2 T (07) 26

27 Λ CP i Λ i = I Λ CP i ρ T2 Λ ρ +Λ 2 ρ T2 ρ [3] ρ ρ =ΦΛΦ (08) λ i U =(U U 2 ) / 2 0 / 2 0 / 2 0 / 2 0 D φφ (09) U,U 2 D φ ρ = UρU E F (ρ )=f(max(0,λ λ 3 2 λ 2 λ 4 )) (0) f(c(ρ)) = H( + C 2 ) 2 () H(x) = x log x ( x)log( x) (2) C C max = max U U(4) (0,σ σ 2 σ 3 σ 4 ) (3) 27

28 σ i Singular value Q =Λ /2 Φ T U T SUΦΛ /2 (4) Φ,U,S C max max (0,σ σ 2 σ 3 σ 4 ) (5) V U(4) σ i Λ /2 V Λ /2 V Φ T U T SUΦ V (V = V T ) S S = S T S [32] S 0 0 S = i i 0 (6) i 0 0 i V V V T V U U = S OV Φ (7) V = V T V [33] Lemma A M n,r (C),B M r,m (C) k σ i (AB) i= k =, q =min{n, r, m} k σ i (A)σ i (B) (8) i= Wang Xi [34] Lemma 2A M n (C),B M n,m (C), i i k n k σ it (AB) t= k σ it (A)σ n t+ (B) (9) t= n =4 k = k =3,i =2,i 2 =3,i 3 =4 σ (AB) (σ 2 (AB)+σ 3 (AB)+σ 4 (AB)) σ (A)σ (B) σ 2 (A)σ 4 (B) σ 3 (A)σ 3 (B) σ 4 (A)σ 2 (B) (20) 28

29 A = Λ /2,B = V Λ /2 σ i (A) = σ i (B) = λ i (σ (σ 2 + σ 3 + σ 4 ))(Λ /2 V Λ /2 ) λ (2 λ 2 λ 4 + λ 3 ) (2) V V = (22) max (σ (σ 2 + σ 3 + σ 4 ))(Λ /2 V Λ /2 )=λ (2 λ 2 λ 4 + λ 3 ) (23) V U(4) V V = V T V V = 0 / 2 0 / (24) 0 i/ 2 0 i/ 2 U U = S OV D /2 φ Φ O SU(2) SU(2) = SO(4) (25) S (U U 2 )S SO(4) SO(4) Q Q = S (U U 2 )S O O(4) D φ U,U 2 SU(2) U = S OV D φ Φ =(U U 2 )S V D φ Φ (U U 2 ) / 2 0 / 2 0 / 2 0 / 2 0 D φφ (26) [35][36] 29

30 T S Alice Bob T S 7: BXOR 3.2 Entanglement of distillation 2-qubit [4][5] ρ U U ρ(u U ) du (27) W F = F Ψ Ψ + F 3 ( Ψ + Ψ + + Φ + Φ + + Φ Φ ) (28) F F Tr(ρ Ψ Ψ ) Ψ ±, Φ ρ n 7 BXOR[4] NOT [4] T F F ( F )2 F F ( F )+ 5 9 ( F (29) )2 F = bound bound PPT(Positive partial transposition) 30

31 distillable? bound PPT NPT 8:? bound undistillable bound bound NPT(Negative partial transposition) [36] 4 -qubit 2-qubit(2 2) 2-qubit 4. -qubit -qubit (??) 3

32 a a a : 32

33 a a a : ρ = ( + a σ) (30) 2 Trρ = Trρ 2 0 p p 0 ( ) E 0 = 0 p (3) 0 E = ( ) 0 p (32)

34 a a a : p =0.5 p p 0 p ( ) E 0 = 0 p (33) 0 E = ( ) 0 p (34) 0 34

35 4.2 2-qubit 4.2. ρ = 4 ( + i a i σ i + j b j σ j + ij c ij σ i σ j ) (35) Trρ = a i,b j c ij σ μ σ ν, (μ, ν =0, 4) σ 0 = σ i,i=, 2, 3 [38] N ( ) j α j x N j =det(x ρ) (36) j=0 α j!α = 2!α 2 = Trρ 2 3!α 3 = 3Trρ 2 +2Trρ 3 4!α 4 = 6Trρ 2 +8Trρ 3 +3(Trρ 2 ) 2 6Trρ 4 (37) ρ = 4 ( + pσ σ + qσ 2 σ 2 + rσ 3 σ 3 ) (38) [39] a i± σ i ± σ i (39) c ij± σ i σ j ± σ j σ i a, c (35) c ij i, j i j i, j =, 2, 3 35

36 2: 36

37 3: a 3+ 2 Ψ ± = 2 ( 0 ± 0 ) Φ ± = 2 ( 00 ± ) ( A) a 3+ 3 p q +p + q + a (p q)2 (40) a 3+ =0.5 a a 3+ =0.5 +p q 37

38 4: a 3+ 38

39 5: a 3 p + q + a (p + q)2 (4) + B a 3 5 +p q p + q a 2 3 +(p + q)2 (42) a 3 = p + q p q a 2 3 +(p q)2 (43) 39

40 6: a 3 40

41 a 3 a ± ± (p, q, r) (q, r, p) a 2± ± (p, q, r) (r, p, q) a 3± ± (p, q, r) not change c 2± ± (p, q, r) not change c 3± ± (p, q, r) (r, p, q) c 23± ± (p, q, r) (q, r, p) Hadamard Hadamard+ NOT NOT Hadamard Hσ H = σ 3,Hσ 2 H = σ 2 Hσ 3 H = σ (p, q, r) (r, q, p) σ 2 σ2 Γ = σ 2 σ 2 (p, q, r) (p, q, r) Hadamard+ NOT 00 NOT C p q r CH ρh C = p r q 4 q r p r q p (44) ρ = 4 ( + pσ 3 σ + qσ σ 3 rσ 2 σ 2 ) (45) 4

42 NOT +r 0 p q 0 CρC = 0 r 0 p + q 4 p q 0 +r 0 (46) 0 p + q 0 r ρ = 4 ( + pσ qσ σ 3 + r σ 3 ) (47) a i,b j a 3 = b 3 a = a 2 = b = b 2 =0 c ij

43 : a = b a b S 5 A ρ = 4 ( + pσ σ + qσ 2 σ 2 + rσ 3 σ 3 ) (48) 43

44 +r 0 0 p q ρ = 0 r p+ q p + q r 0 p q 0 0 +r (49) ( p q r) 4 ( + p + q r) 4 ( + p q + r) 4 ( p + q + r) (50) 4 r r = p q, +p+q, p+q, +p q (r p q, r +p + q, r p + q, r +p q) (p, q, r) =(,, ), (,, ), (,, ), (,, ) +r 0 0 p + q ρ = 0 r p q p q r 0 (5) p + q 0 0 +r ( + p q r) 4 ( p + q r) 4 ( p q + r) 4 ( + p + q + r) (52) 4 r p + q, r +p q, r +p + q, r p q 2 44

45 B a 3+ ρ = 4 ( + a 3+( σ 3 + σ 3 ) + pσ σ + qσ 2 σ 2 + rσ 3 σ 3 ) (53) +a + r 0 0 p q ρ = 0 r p+ q p + q r 0 p q 0 0 a + r (54) ( p q r) 4 ( + p + q r) 4 4 ( a (p q)2 + r) 4 ( + a (p q)2 + r) (55) r p q, r +p + q, r + a (p q)2,r a (p q)2?? +a + r 0 0 p + q ρ = 0 r p q p q r 0 (56) p + q 0 0 a + r ( + p q r) 4 ( p + q r) 4 4 ( a (p + q)2 + r) 4 ( + a (p + q)2 + r) (57) r +p q, r p + q, r + a (p + q)2,r + a (p + q)2 45

46 4 [] Nielsen and Chuang, Quantum Computation and Quantum Information Cambridge University Press, (2000). [2] D.Deutsch,Proc. R. Soc. Lond.,A (985) [3] P.W.Shor, Algorithms for Quantum Computation: Discrete Log and Factoring Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science,(994) [4] C.H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and K.Wotters Phys. Rev. Lett (993) [5] A.Peres, Quantum Theory: Concepts and Methods,Kluwer Acadedmic Publishers (995) [6] C.H.Bennett and G.Brassard, Quantum cryptography public key distribution and coin tossing Int. conf Computers, System & signal Processing Bangalore, India 75 (984) [7] A.Ekert and R.Josza,Reviews of Modern Physics,68, 733 (996) [8] L.Grover; e-print quant-ph/ [9] C.H.Papadimitriou, Computational Complexity Addison Wesley Longman (994) [0] (2002) [] A.Einstein, B.Podolsky and N.Rosen Phys. Rev (935) [2] V.Vedral e-print quant-ph/ [3] A.Peres Phys. Rev. Lett (996) [4] M.Horodecki, P.Horodecki, R.Horodecki Phys. Lett. A 223 (996) [5] C.H.Bennett, D.P.DiVincenzo, J.A.Smolin and W.K.Wotters Phys. Rev. A (996) [6] (999) 46

47 [7] E.Schmidt Math. annalen (907) [8] von Neumann Mathematische Grundlagen der Quantenmechanic Springer, Berlin (932) [9] H.Umegaki Kodai Math. Sem. Rep (962) [20] J.S.Bell, Speakable and Unspeakable in Quantum Mechanics Cambridge Univ. Press (987) [2] (997) [22] N.Gisin Phys. Lett A 20 5 (996) [23] S.Popescu and D.Rohrlich Phys. Rev. A 56 R339 (997) [24] G.Vidal J. Mod. Opt (2000) [25] W.K.Wotters Phys. Rev. Lett (998) [26] E.M.Rains Phys. Rev. A (999) [27] V.Vedral, M.B.Plenio K.Jacobs and P.L.Knight Phys. Rev. A (997) [28] F.Riesz and B.Sz.-Nagy Functional Analysis Dover (952) [29] E.Stromer Acta. Math (963) [30] S.L.Woronowicz Rep. Math. Phys (976) [3] F.Verstraete, K.Audenaert, T.D.Bie, B.D.Moor e-print quantph/000 [32] R.Horn and C.Johnson Matrix Analysis Cambridge University Press (985) [33] R.Horn and C.Johnson Topics in Matrix Analysis Cambridge University Press (99) [34] B.-Y.Wang and B.-Y.Xi Lin. Alg. Appl (997) [35] M.Horodecki, P.Horocecki, R.Horodecki Phys. Rev. Lett (998) [36] D.DiVincenzo, P.W.Shor, J.A.Smolin B.M.Terhal and A.V.Thapliyal Phys. Rev A (2000) [37] C.H.Bennett, G.Brassard, S.Popescu, B.Schumacher, J.A.Smolin, and W.K.Wootters Phys. Rev. Lett (996) 47

48 [38] G.Kimura Phys. Lett. A 339 (2003) [39] Kobayashi and Nomizu Foundations of Differential Geometry Volume John Wiley (963) 48

特集_03-07.Q3C

特集_03-07.Q3C 3-7 Error Detection and Authentication in Quantum Key Distribution YAMAMURA Akihiro and ISHIZUKA Hirokazu Detecting errors in a raw key and authenticating a private key are crucial for quantum key distribution

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Banach-Tarski Hausdorff May 17, 2014 3 Contents 1 Hausdorff 5 1.1 ( Unlösbarkeit des Inhaltproblems) 5 5 1 Hausdorff Banach-Tarski Hausdorff [H1, H2] Hausdorff Grundzüge der Mangenlehre [H1] Inhalte

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4 ... A F F l F l F(p, 0) = p p > 0 l p 0 P(, ) H P(, ) P l PH F PF = PH PF = PH p O p ( p) + = { ( p)} = 4p l = 4p (p 0) F(p, 0) = p O 3 5 5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 =

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

30 3..........................................................................................3.................................... 4.4..................................... 6 A Q, P s- 7 B α- 9 Q P ()

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

量子情報科学−情報科学の物理限界への挑戦- 2018

量子情報科学−情報科学の物理限界への挑戦- 2018 1 http://qi.mp.es.osaka-u.ac.jp/main 2 0 5000 10000 15000 20000 25000 30000 35000 40000 1945 1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

セアラの暗号

セアラの暗号 1 Cayley-Purser 1 Sarah Flannery 16 1 [1] [1] [1]314 www.cayley-purser.ie http://cryptome.org/flannery-cp.htm [2] Cryptography: An Investigation of a New Algorithm vs. the RSA(1999 RSA 1999 9 11 2 (17

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

MAIN.dvi

MAIN.dvi 01UM1301 1 3 1.1 : : : : : : : : : : : : : : : : : : : : : : 3 1.2 : : : : : : : : : : : : : : : : : : : : 4 1.3 : : : : : : : : : : : : : : : : : 6 1.4 : : : : : : : : : : : : : : : 10 1.5 : : : : : :

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

ohpr.dvi

ohpr.dvi 2003-08-04 1984 VP-1001 CPU, 250 MFLOPS, 128 MB 2004ASCI Purple (LLNL)64 CPU 197, 100 TFLOPS, 50 TB, 4.5 MW PC 2 CPU 16, 4 GFLOPS, 32 GB, 3.2 kw 20028 CPU 640, 40 TFLOPS, 10 TB, 10 MW (ASCI: Accelerated

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information