Size: px
Start display at page:

Download ""

Transcription

1

2

3 i (1 ) (2 ) Cantor Russel

4 ii Hilbert Turing Boole Turing Lorenz Hausdorff Julia Mandelbrot Mandelbrot cypher RSA RSA

5 iii z n = α

6

7 (i) ( ) (ii) (iii) (iv) (1) ( 624? 546?) ( ) (2) ( 572? 492?) mathema ( ) (3) ( 490? 429?) A B B

8 2 1 (4) ( ) mathema(ta) (5) ( 3 ) 13 (6) ( ) Eureka , 2, 3... ( ) ( ) al jabr algebra ( 2 6 ) ( ) > π > /7, 355/113 (10 14 )

9 1.1 3 (1295) 17 geometry ( ) ( 759?) ( ) ( ) (1627 ) (1642? 1708) ( ) (1637) ( ) ( ) ( ) ( ) 17 19

10 ( ) ( ) ( ) 1, 2, 3, A 5 A a, b c a = b c a b b a a c c a 1 1 (1) p 2 p (2) 2 1 (3) 2 p 1. 2 p ( p ) 2. ( ) 2 p 2( )

11 ( 3) ( p ) p 1 p 1, p 2,..., p n p n q = p 1 p 2... p n + 1 q p n. p 1, p 2,..., p n 2 n π(n) n π(n) n log n π(100) = 25, π(1000) = 168, π(10 6 ) = 78498, π(10 12 ) = , π(10 15 ) 1015 = log 1015 q q = rs (r > 1, s > 1) r s q = p α 1 1 pα pαm m (p 1, p 2,..., p m ) 3 1 p 1 < r 1, r 2,..., r n < r 1 r 2 r n p 1 < r < p p r 1 r 2 r n p i r i r i p r i < r i < p 2 p (1) a, b a b p a, b 1 p (2) m n p n m p n n : 4 : 5 4 a : b : c (a 2 + b 2 = c 2, abc 0) a = m 2 n 2, b = 2mn, c = m 2 + n 2 (n, m m, n )

12 6 1 (m 2 + n 2 ) 2 = (m 2 n 2 ) 2 + (2mn) 2 a, b, c a, b, c a 2 + b 2 = c 2 c > 1 c = m + n (m, n > 0) c 2 = (m + n ) 2 = m 2 + 2m n + n 2 = (m n ) 2 + 4m n. a = m n, c = m + n b 2 = 4m n ( ) 4 = 2 2 m n 1 p p m n m, n p c = m + n, a = m n p p m, n m, n m = m 2, n = n 2 b = 2mn m, n m 2, n 2 b 2 m 2 ± n 2 b = 10 3 = 7 7 (10 3)+3 = 7+3 = 10 = 10 7 = = 8, = 9, = = 10 $ $ c $ , 25 $ 5 30 $ 10 40, Thank you = = 5 2 n + = 0, (n = 1, 2, 3,...) 1, 2, 3, ( 4) = ( 4) 7 = + ( 4) = = = (180 12) 12 = = =

13 = a, b a = b q + r (0 r < b) (q, r) 1 q r r = 0 a b = 10 3 = = 3 4 = = ( ) 0, , 3,... n = 0 n 1 2 2,... 2 b a, d c 2 ( b a + d c )/2 1 (1) ( 0 ) (2) 2 ( ) 4 4, , (1 ) ( ) 8cm 7cm cm 2 (cm 2 ) 1cm 1cm 1cm

14 = = = = = = 0 15 / 12 = / 0 = m 5 100m/ 5 = 500m 2 100m/ ( 2) = 200m 200m 100m 2 ( 100)m/ 2 = 200m 200 m 3 ( 100)m/ ( 3) = 300m 300 m = = = p q 1 p, q ( ) ( ) 2 p = p2 q q 2 = 2 p2 = 2q 2 p 2 p p = 2p p p 2 = 4(p ) 2 = 2q 2 q 2 q p, q

15 (1) (2) x 7 = 1 π e π e (1) ( ) (2) ( ) (2) 1 3 = = 0. 1, 2 9 = 0. 2,..., 8 9 = = 1 1 =

16 = = 1 3, 0. 9 = = = = = 1 x 2 = 2 x 1, 1.4, 1.41,... x 0. 9 = (x + y) n = n k=0 ( ) n x k y n k k ( ) n n! (n k + 1)... (n 1)n = = k k!(n k)! k! 6 ( lim n n n) ( a n = 1 + n) 1 n a n < a n+1 a n = = < n ( ) ( ) k n 1 = k n n ( k! n k=0 k=0 n k=0 n+1 k=0 1 k! a n a n n k=0 ) ( 1 2 n n n(n 1)(n 2)... (n k + 1) 1 k! n k k=0 ) (... 1 k 1 ) n ( 1 1 ) ( 1 2 )... n + 1 n + 1 ( 1 k 1 n + 1 ( ) ( 1 2 ) (... 1 k 1 ) k! n + 1 n + 1 n n k! 1 + ( ) k 1 1 = /2n 2 1 1/2 3 k=1 ) = a n+1 a n e e (2 ) a n a n a n

17 (10 10 ) = = A B x y y/2 x x : y = y/2 : x x 2 = y 2 /2 x : y = 1 : 2 A (ISO ) A0 1m 2 A0 l 2l 1 2 l 2 = 1 l = 1/ m 2l = m 2 1/ 2 A /( 2) 4 = /4 = , /4 = m B (B4 ) A1 B1 A0 B0 ( ) = ( 1000) 0.1 (2 5 ) 0.1 = 2 = ( ) 3 1 = / / / = ( ) ( 12 2)% ( 5/4, 4/3, 3/2) E

18 12 1 a n a m = a n+m, (a n ) m = a m n a 0 = 1, a 1 = 1/a, a 1/n = n a 2 = 10 x x log 10 2 a + b ab 2 log ab = log ab 1/2 log a + log b = x 2 = x 3 = 3px + 2q x = 3 q + q 2 p q q 2 p 3 ( ) x 3 7x + 6 = (x 1)(x 2)(x + 3) = 0 1, 2, 3 p = 7 ( 1/2 3, q = ) ( 400/ /2 6 ) 400/27 1, 2, i 1 a + ib (a, b ) i 2 = 1 x, y i i j a + ib (a + ib)(c id) (a + ib)(c id) = = c + id (c + id)(c id) c 2 + d 2 i ( ) α = a + ib (a, b) ( ) α = r(cos θ + i sin θ) α = a + ib a = r cos θ, b = r sin θ (a + ib) + (c + id) = (a + c) + i(b + d)

19 (a, b) (c, d) (a + c, b + d) 4 α β = r(cos ϕ + i sin ϕ) s(cos θ + i sin θ) = rs(cos(ϕ + θ) + i sin(ϕ + θ)) 1 α β αβ O E A B C OEA OBC α 90 iα 3 α = a + ib α α = a 2 + b α n = r n (cos nθ + i sin nθ) 7 n f(z) = a 0 + a 1 z + + a n 1 z n 1 + a n z n = 0 (a n 0) a 0 = 0 z = 0 f(z) = 0 a 0 0 ( ) f(z) = z n 1 a n + a n 1 z + + a 1 0 z n max{a n 1,..., a 0 } = A, z = M > 1 a 1 n 1 z + + a 1 0 z n a n 1 1 z + + a 1 0 z n n A M z 0 z n a 0 0 z = 0 z 0 f(z) f(z) = DVD

20 14 1 4

21 ( ) : 4 : Fermat Galois 5 4 f F = f F f 8 f F b a f dx = F (b) F (a) ( ) 2 1

22 a, b ( a > b) a b r 1 r 1 b r 1 < b r 1 b 1 b r 1 r 2 r 2 < r 1 r 2 b 2 r 1 r 2 r q 1 a = b q 1 + r 1 q 2 b = r 1 q 2 + r 2 r n r n 1 q n r n 1 = r n q n 1 q n 1 r n 2 = r n 1 q n 1 + r n r n 1 r n r n 2 r n r n 3 r n r 1 r n b r n a r n r n a, b a, b d r 1 = a b q 1 a, b d r 1 d r 2 = b r 1 q 2 r 2 d r n 1 d r n d r n = d q r n d r n a, b (meta language) a, b a b d 1:{ r = a mod b a b 2: if r <> 0 then {a = b; b = r 3: goto 1 ;} 4: else d = b; return d ; 5:} 10 2 a, b d m, n am + bn d d = ah + bk h, k a b q 1 r 1 r 1 = a b q 1 r 1 = a h 1 + b k 1 b r 1 q 2 r 2 r 2 = b r 1 q 2 = b (a h 1 +b k 1 ) = a ( h 1 )+b (1 k 1 ) r 2 = a h 2 +b k 2 r m = a h m +b k m d = r n = a h n + b k n h n h k n k

23 a b b (a b) a b b 25a (26b 25a) a 79b a 79b b 101a b 101a a 184b a 184b b 278a b 278a a 473b = = 91 1 x 3 2x 2 5x + 6 a x 3 + 0x 2 7x + 6 b x + 1 x 3 + 0x 2 7x + 6 b x 3 + 0x 2 x + 0 x + 1 (a b) 2 2x 2 + 2x + 0 a b 6x + 6 f(x) x x 2 x (a b) x f(x) x 2 x f(x) = 1 6 (b (a b)(x + 1)) = 1 ((x + 1)a (x 1)b) 12 = 1 ( (x 4 x 3 7x 2 + x + 6) (x 4 x 3 7x x 6) ) = x A B (x Ω ) P(x) Q(x) P(x) Q(x) (deduction) (induction)

24 18 2 A A = 3, = 7, = 31 p 2 p 1 ( ) UFO ( ) ( )

25 ( ) 2 (1) (2) a a 11 3 n n n 1 2 n 1 3 A,B,C n A C 1. n 1 B 2. n C 3. B n 1 C n = n 1 n = = 2 1 = 1 n = 1 n > 1 n 1 2 n 1 1 n n 1 B n C B n 1 C (2 n 1 1) (2 n 1 1) = 2 2 n 1 1 = 2 n 1 n n

26 ( ) (1) (2) (1) (2) (1) (1) (2) (2) (1) (2) (Stoicheia) Hilbert (1) 2 (2) (3) (4) (5) ( ( )

27 ( ) (5) ( ) (paradox) (i) (ii) 2 (antinomy)...

28 22 2 W.Shakespeare Hamlet To be or not to be, that is a question.

29 Cantor Cantor(1895 ) Cantor 5 Cantor (1) (2) ( ) (3) 1 (1) A a a A a A (2) 2 a = b a b (3) A B A = B A B A B A B Russel (B.Russell) {n n } {x x } {f f } {x x } { } N N N = {x x x} A = {x x x} N A N N N N N A N N N A A N N N N A

30 ( ) ( ) ( ) Hilbert 17 ( ) 6 ( ) (1) (2) (3) 3 (1931)

31 Turing 1 M = (Q, Σ, δ) Q: Σ: δ: Q Σ Q Σ {left, right} δ(p, X) = (q, Y, D) (D = left or right) p X q Y δ δ (1936) (universal Turing machine) ( ) ( ) ( ) (abacus) abacus calculator calcul (i) ( ) (ii) TV

32 ( ) ( ) ( ) (1674) Boole = 1 10 = = = , = 10, = 11, = 10 + (1 + 1) = = 100, = 101, = (1 + 1) = = 110, = 111, = (1 + 1) = = ( ) = = 1000,... 1, 10, 11, 100, 101, 110, 111, 1000, , 1, 2,..., 8, 9, a, b, c, d, e, f (16 ) N d n d n 1... d 1 d 0 (d i = 0, 1, ) t m t m 1... t 1 t 0 (t i = 0, 1, 2) b l b l 1... b 1 b 0 (b i = 0, 1) h r h r 1... h 1 h 0 (h i = 0, 1, 2..., f) N = d n 10 n + d n 1 10 n d d 0 = t m 3 m + t m 1 3 m t t 0 = b l 2 l + b l 1 2 l b b 0 = h r 16 r + h r 1 16 r h h 0 ( ) 10 2

33 b 0 2 b , 4, 8, 16, M d 1 d 2 d 3... (d j = 0, 1, 2,..., 9), 0.t 1 t 2 t 3... (t j = 0, 1, 2), 0.b 1 b 2 b 3... (b j = 0, 1), 0.h 1 h 2 h 3... (h j = 0, 1, 2..., f) M = d d d = t t t = b b b = h h h b 1 2 b = 0.2 b 1 = = 0.4 b 2 = = 0.8 b 3 = = 1.6 b 4 = = 1.2 b 5 = = 0.4 d 6 = (10) = (2) = (2) (2) = 1 2, 0.01 (2) = 1 4, (2) = 1, (1854), {0, 1} ( ) 1 not ( ) and, or, eor(exclusive or) not and 0 1 or 0 1 eor

34 x + y = c(x, y) 2 + s(x, y) c(x, y) = x and y s(x, y) = x eor y on 1 off 0 and or not eor on/off Stibitz(1936) Zuse Turing (EDVAC 1947 )

35 p 1, p 2, p 3,... p n p n 1 7 x 1.x 2,..., x n,... φ(x) x n+1 = φ(x n ) φ(x) x 0 x 1, x 2,..., x n,... ( ) [0, 1] φ(x) φ(x) = { 2x (0 x 1/2) 2 2x (1/2 x 1) 0 x 1 0 φ(x) 1 1 [0, 1] 2

36 30 3 φ(x) φ(x) x 0, x 1, x 2,... x n 0 x n 1/2 A 1/2 < x n 1 B A B x 0 12 φ(x) (0, 1) A B (1) φ(x) (2) (3) (1) ABABABAB... x 0 A 0 < x 0 < 1/2 x 1 = 2x 0 B 1/2 < x 1 < 1 x 2 = 2 2x 1 = 2 2(2x 0 ) = 2 4x 0 x 0 x 0 x 1 ABABAB x 0 = x 0 x 0 = 2/5 (2) ABAABAABA... x 1 = 2x 0, x 2 = 2 2x 1 = 2 4x 0, x 3 = 2x 2 = 4 8x 0 = x 0 x 0 = 4/9 (3) BBABBABBA... x 1 = 2 2x 0, x 2 = 2 2x 1 = 2 2(2 2x 0 ) = 2 + 4x 0, x 3 = 2x 2 = 4 + 8x 0 = x 0 x 0 = 4/7 φ(x) Malthus 17 18

37 N 0 n N n r N 1 = N 0 + N 0 r = N 0 (1 + r), N 2 = N 0 (1 + r) 2,..., N n = N 0 (1 + r) n t N(t) N(t + t) N(t) t t 0 dn dt = rn N = N 0 e rt = rn(t) N 0 N n N(t) N(t) 1 N n Berharst 1840 ( dn dt = r 1 N ) N = rn r K K N 2 2 (dn/dt) (N) rn 2 r K 0 3 N 2 N 0 KN 0 e rt N(t) = N 0 e rt + K N 0 N 0 0 K N 0 K 1941

38 32 3 τ N(τ), N(2τ), N(3τ),... N n = N(nτ) N n+1 = N((n + 1)τ) ( ) 1 N n+1 = N n b + cn n τ N 0 N 0, N 1, N 2,... τ ( ) 1 N n+1 = σ N n b + cn n σ b, c, σ N(t + t) N(t) t = rn(t) r K N(t)2 = r N(n t) = N n N n+1 = x n = ( (1 + r t) r t ) K N n N n r tn n, a = (1 + r t) K(1 + r t) (K N(t)) N(t) K ( ) x n+1 = a(1 x n )x n ( ) f a (x) = a(1 x)x 0 < a < 4 a/4 0 < x < 1 x 0 < f a (x) < 1 ( ) x n+1 = f a (x n ) (0 < x 0 < 1) 0 < x < 1 a 0 < a < 1 0 < x 0 < 1 lim n x n = 0

39 a 2 0 < x 0 < 1 lim n x n = 1 1/a 1 1/a y = x y = a(1 x)x 2 < a < 3 0 < x 0 < 1 1 1/a < x N 1 1/a < x N x N+1 < 1 1/a < x N+2 1 1/a lim n x n = 1 1/a 3 a < < x 0 < 1 1 1/a < x N 1 1/a a < a c a c a c < x 0 < 1 a 4 a 8... ( 2 n ) a c < a 4 0 < x 0 < 1 φ(x) f a (X) Lorenz 1963 X Y Z 0 dx dt = σx + σy, dy dt = XZ + rx Y, dz dt = XY bz σ r, b 2 r Z P 1, P 2, P 3,... (P 1, P 2 ), (P 2, P 3 ), (P 3, P 4 ),..., (P n, P n+1 ), n 8 x n+1 = f(x n ) x 0, x 1, x 2,... (1) n x n = x n+1 = x n+2 =... x n (2) n x n x n+1 x n+2 = x n = x n+4 =..., x n+3 = x n+1 =... x n x n, x n+1 x n 2

40 34 3 (3) x n, x n+1,..., x n+p 1 x n+p = x n x n x n, x n+1,..., x n+p 1 p 13 f(x) [0, 1] [0, 1] 4 p, q, r, s s p < q < r f(p) = q, f(q) = r, f(r) = s x n+1 = f(x n ) (1) n n x 0 [0, 1] (2) ( ) [0, 1] [0, 1] 1 1 (space filling curve)

41 Hausdorff r N D 1 = Nr D D = log N log r (1) n n N = n, r = 1/n D = log n/ log n = 1 (2) 1 n n 2 N = n 2, r = 1/n D = log n 2 / log n = 2 (3) 1/2 4 D = log 4/ log 2 = 2 (4) r = 1/3 N = 4 D = log 4/ log 3 = (5) [0, 1] 1/3 [0, 1/3], [2/3, 1] 1/3 1 2/3 ( ) lim n (2/3) n = 0

42 36 3 [0, 1] 3 0, 2 a = 0.a 1 a 2... a n... b = 0.b 1 b 2... b n... a i = 0 b i = 0, a i = 2 b i = 1 b [0, 1] 2 D = log 2/ log 3 = (6) Julia Mandelbrot f(x) = a n x n + a n 1 x n a 0 = 0 14 f(x) [a, b] 2 (i) f(a) < 0, f(b) > 0 (ii) f (x) > 0, f (x) > 0 (a x b) ( ) f(x) = 0 [a, b] 1 ξ {c n } c 1 = b, c n+1 = c n f(c n) f (c n ) (n > 1) lim n c n = ξ c n+2 c n1 < c n+1 c n 4 11 f(z) = a n z n + a n 1 z n a 0 {ζ n } J f = C {ζ C ζ 0 = ζ, f( lim n ζ n) = 0} z 0 f(z) = 0 (1) (i) (ii) ε (iii) (iv) ( ) (2) f(z 0 ) < ε 0 ( ) (3) z 1 f(z 1 ) < ε 1 (4) z 2 f(z 2 ) < ε 2

43 (5) ( ) ( ) Mandelbrot g(z) z n+1 = g(z n ) z ( ) 12 µ f µ (z) = z 2 + µ z n+1 = f µ (z n ) = zn 2 + µ {µ C z 0 = 0, z n+1 = f µ (z n ) n z n } z 0 = 0 µ (1970 ) µ ( )

44

45 (1) ( ) (2) ( ) (3) ( 2 ) (4) ( ) (5) (6) ( ) A, C, G, T 4 13 ( ) (encode) (decode) (code breaking) steganography

46 40 4 code BBC, ( ) (skytale) cypher cypher cypher

47 ( ) 3 e n g u n w o, h a k e n s i t a h q j x q z r c k d n h q v l w d 1 a b, a c,..., a z 26 1 angounosuuri a b c d e f g h i j k l m n o p q r s t u v w x y z a n g o s u r i b c d e f h j k l m p q t v w x y z e n g u n w o h a k e n s i t a s h r t h w j i a d s h p b q a ( ) 9 (1) (2) (3) (4) 1 ( ) e q the a e 3 the... al (angonosuuri) a= 0, b= 1,..., z= u+o = = 8 i 26

48 42 4 e n g u n w o h a k e n s i t a a n g o n o s u u r i a n g o n e a m j a k g b u b m n b o h n 1 26 b r 1 17 = = 10 k 0, 1, 2,..., 9 a, b,..., z 26 ( ) ( ) ASCII(American Standard for Communication and Information Industory) JIS-X2022(Japan Industory Standard) ISO-8808 (International Standardization Organization) K= K K (one time pad) one time pad

49 U (colossus ) ( ) ( eavesdrop ) (1) secured route ( ) K (2) K (3) (i) (ii) K (iii) AES 3DES MD5 SSL SSL Secured Socket Layer secured route

50 44 4 (public key cryptography) 1974 (Martin E. Hellman) (Whitefield Diffie) (Rolph Merkle) (Eo, Do) 1 Eo ( PKI(public key initiative) ) 1 Do (1) Eb (2) Eb (3) Db Eb Do (1) Da (2) Ea Ea (1) (Ea, Da) (Eb, Db) (2) Da (3) Eb (4) Db (5) Ea

51 Da Eb Db Ea Eb Da Ea Db 2 Ea, Eb (1) (2) (3) 3 5 ( ) (1) (i) (ii) (iii) (algorithm) (2) ( ) n ( ) n O(n)

52 46 4 n m m n 3 n (1) 1 1 (2) (3) 2 n 1 (TSP) ( ) (SAT) n TSP NP N P a, b d = gcd(a, b) begin p := max(a, b); q := min(a, b); while q 0 do begin r := p mod q; p := q; q := r { } end; d := p { } end. p = q s 1 + r 1 0 r 1 < q, q = r 1 s 2 + r 2 0 r 2 < r 1, r 1 = r 2 s 3 + r 3 0 r 3 < r 2,.

53 q > r 1 > r 2 > r 3 n r n+1 = 0 r n 2 = r n 1 s n + r n, r n 1 = r n s n+1 r n 1 r n r n 2 r n p, q r n r n p, q p q s 1 = r 1, q r 1 s 2 = r 2, r 1 r 2 s 3 = r 3,. r n 2 r n 1 s n = r n p, q e r 1 e r 2 e r n e r n e. r n p, q 5 (a, b) d = gcd(a, b) e, f a e + b f d d = a h + b k h, k 1 d = gcd(a, b) a h + b k = a b b (a b) a b b 25a (26b 25a) a 79b a 79b b 101a b 101a a 184b a 184b b 278a b 278a a 473b 0 gcd(112385, ) = 91, = = a b (mod p) p a b (a b p ) a = b + p q q a b (mod p) a b p

54 48 4 mod 2 n n 0 (mod 2) n 1 (mod 2) mod (mod 2), (mod 2), (mod 2) mod (mod 6), 2 4 (mod 4), 3 3 (mod 6), 4 2 (mod 6), 5 1 (mod 6) mod (mod 7), 2 5 (mod 7), (mod 7), 1 5 (mod 7) 3 6 (1) a b (mod q) c a ± c b ± c (mod q), a c b c (mod q). (2) a b (mod q), c d (mod q) a ± c b ± d (mod q), a c b d (mod q). (3) a, b, k b a + k (mod q) a b k (mod q). mod (mod 6), mod p, a (0 < a < p) ab 1 (mod p) 0 < b < p 0 p 2. p ab 0 (mod p) a 0 (mod p) b 0 (mod p)

55 p a b, q ab + pq = 1 0 < b < p ab 1 (mod p) b < 0 b > p a(b ± p) + p(q a) = 1 ( ) 0 < b < p b p 2. a, b p p a, b p ah+pq = 1 h, q ah = 1 pq ah 1 (mod p) b bk 1 (mod p) k 2 (ab)(hk) 1 (mod p) (1) a b (mod p) a, b p (2) Z p = {0, 1, 2,..., p 1} p (3) p Z p p char(z p ) = p Q R Z 0 char(q) = 0 (4) Z p 0 Z p p, g Z p {g, g 2,..., g p 1 } = Z p g p (5) Z p g 1 a Z p gt a (mod p) t (6) Z p a a + b 0 (mod p) b p a p = 29, g = 18 g, g 2, g 3,..., g , 5, 3, 25, 15, 9, 17, 16, 27, 22, 19, 23, 8, 28, 11, 24, 26, 4, 14, 20, 12, 13, 2, 7, 10, 6, 21, p g Z p g, g 2,..., g p 1 32 p = g = 16807, , , g, g 2, g 3,... g s, g s+1, g s+2,... s seed 64 p = ( ) p h, h 2, h 3,... mod p 1 h p 1 1 (mod p) 15 p 0 < a < p a a p 1 1 (mod p)

56 50 4 a 0 < a < p 7 a, 2a, 3a,..., (p 1)a ia ja (mod p)(0 < i < j < p) (i j)a 0 (mod p) a p i j p 0 i j < p i = j a, 2a, 3a,..., (p 1)a p 1, 2, 3,..., (p 1) a p 1 (p 1)! (p 1)! (mod p) (p 1)! p a p 1 1 (mod p) 1 r 1 (mod p 1) a r a (mod p) r 1 (mod p 1) m r = 1 + m(p 1) a r = a 1+m(p 1) = a (a p 1 ) m a (mod p) onetime pad Purdy p = f(x) = x a 1 x a 2 x 3 + a 3 x 2 + a 4 x + a 5 a i 19 50!/( ) ( ! y = f(x) x y y x ( ) 2. (1)Deffie Hellman (2)RSA

57 NP Diffie Hellman p Z p g 1. a h g a (mod p) (p, g, h) 2. b k g b (mod p) (p, g, k) 3. k R = k a = (g b ) a g ab (mod p) 4. h R = h b = (g a ) b g ab (mod p) ElGamal 1. p Z p g b k g b (mod p) (p, g, k) 2. a M (M < p) h g a (mod p), L Mk a (mod p) (h, L) 3. h b (mod p) L/h b M (mod p) h b = (g a ) b = (g b ) a k a (mod p) L/h b = Mk a /k a M (mod p) Z p 7 3 h b = k a = g ab = R R MR g, h = g a, k = g b a, b RSA Diffie Hellman MIT( ) (Rivest) (Shamir) (Adleman) 1977 RSA RSA 2 p, q ( ) n n = p q r (p 1), (q 1) ( ) (n, r) (n, r) n a b a r (mod n) 8 e a, b e ab

58 52 4 e a, b ah + ek = 1, bs + et = 1 h, k, s, t bs 1 + et = 1 1 bs(ah + ek) + et = 1. ab(sh) + e(bsk + t) = 1. q ab ab = qr q(rsh) + e(bsk + t) = 1 e ab e d (d1) l = lcm(p 1, q 1) a l 1 (mod pq) 1 (mod n) m = gcd(p 1, q 1) l = (p 1)((q 1)/m) = (q 1)((p 1)/m) 2 a p 1 1 (mod p) a l = (a p 1 ) (q 1)/m 1 (mod p) a q 1 1 (mod q) a l = (a (q 1) ) (p 1)/m 1 (mod q). a l p, q 8 pq a l 1 (mod pq) 1 (mod n) lcm(p 1, q 1) (d2) ed + hl = 1 d, h d e (p 1), (q 1) 8 l d, h (d3) b b d (d1,2) ed = 1 hl b d = (a e ) d = a ed = a 1 hl = a a lh a (mod n) (d2) d < 0 l + d > 0 b l+d = (a e ) l+d = a ed a el = a 1 hl a el a a ( h+e)l a (mod n) RSA n RSA RSA 1024 ( ) 4096 secured route

59 RSA RSA x, n x n (1) n 2 (2 ) n = d k 2 k + d k 1 2 k d d 0. d k = 1, d i = 1 0 (0 i < k). (2) x 0 = x, x 1 = x 2 0 = x 2, x 2 = x 2 1 = x 22,..., x i+1 = x 2 i = x2i+1,..., x k = (x k 1 ) 2 = x 2k (3) x n = x d k2 k +d k 1 2 k 1 + +d 1 2+d 0 = x d k k xd k 1 k 1 x d 1 1 xd 0 0. d i = 0 1 d i = 1 x n = x k x i x j... RSA p = 11, q = 13 n = = 143 p 1 = 10, q 1 = 12 10, 12 r = 7 (143, 7) a = 5 b = a 7 = (mod 143) 47 (d1) p 1 = 10, q 1 = 12 l = lcm(10, 12) = 60. (d2) e = 7 ed + hl = 1 7d + 60h = 1 d, h d = 17, h = 2 (d3) d = 17 < 0 l + d = = 43 b l+d = = b 2 = (mod 143), b 8 = (b 2 ) (mod 143) 92 2 (mod 143) 27 (mod 143), b 32 = ((b 8 ) 2 ) 2 (27 2 ) 2 (mod 143) 14 2 (mod 143) 53 (mod 143) a = (mod 143) (mod 143) (mod 143) 5 (mod 143) Y 2 = X 3 + ax + b 18 E

60 P E (x, y) E (x, y) (x ) P 2. P, Q E, (Q P, P ) 2 P, Q E y ( x ) R P + Q = R 3. P + P = 2P P E E y 4. P, P y E O P P = O E Q Q y E Q Q + O = Q O E Q aq = h h a 4.5.2

61 Cardano 3 z 3 = 3pz + 2q α = 3 q + q 2 p 3, β = 3 q q 2 p 3 α + β, ωα + ω 2 β, ω 2 α + ωβ ω z 3 = 1 1 ω = 1 + i 3 2 z = x + y (x + y) 3 = 3xy(x + y) + (x 3 + y 3 ) = 3p(x + y) + 2q 2q = x 3 + y 3, p = xy X = x 3, Y = y 3 X + Y = 2q, XY = p 3 X = q ± q 2 p 3 x 3 = X = q + q 2 p 3 α = q 3 + q 2 p 3 x = α, ωα, ω 2 α y = p x 3 ax 3 + bx 2 + cx + d = 0 (a 0) z = x + b/(3a) Ferrari 4 z 4 + pz 2 + qz + r = 0 2

62 56 5 ξ 3 pξ 2 4rξ + (4pr q 2 ) = 0 1 ξ z 2 ± ξ 0 p ( ) q z + ξ 0 2(ξ 0 p) 2 = 0 2 z 4 + pz 2 + qz + r = (z 2 + αz + β)(z 2 αz + γ) β + γ α 2 = p α(γ β) = q βγ = r α 2 p + α 2 = ξ 2 (β γ) 2 = (β + γ) 2 4βγ = ξ 2 4r = q2 α 2 = q2 ξ p ξ 3 pξ 2 4rξ + (4pr q 2 ) = 0 1 ξ 0 α = ± ξ 0 p, β + γ = ξ 0, γ β = q α β, γ α 4 ax 4 + bx 3 + cx 2 + dx + e = 0 (a 0) z = x + b/(4a) z n = α 18 z n = 1 ω = cos 2π n + i sin 2π n ω, ω 2,..., ω n = 1 19 z n = α α = r(cos θ + i sin θ) ( χ = n r cos θ n + i sin θ ) n χ, χω, χω 2,..., χω n Abel, Galois n 5 n group

63 ( ) H 4 (1) 90, 180, 270, 360 (2) 2 2 (3) f, g g f f = 90 g = g f = (1) (1, 2, 3, 4) , (1, 3)(2, 4) 270 (1, 4, 3, 2) E (2) (1, 2)(3, 4), (1, 4)(2, 3) 2 (3) (1)(3)(2, 4), (1, 3)(2)(4) 2 1, 3 2 (2, 4), (1, 3) 90 (1, 2)(3, 4) (1, 2, 3, 4) = (1)(2, 4)(3) = (2, 4) E (1, 2)(3, 4) (1, 2)(3, 4) = E 2 n n (1) (2)

64 58 5 (3) (1) GL(n, R) ( ) GL(n, C) ( ) (2) AB = A B 1 SL(n, R) SL(n, C). (3) 1 SL(n, Z) (4) O(n) U(n). Ω = {1, 2,..., n} Ω (1) (2) (3) n ( ) S n G 2 a, b a b G (1) 3 a, b, c (a b) c = a (b c) ( ) (2) G a a e = e a = a ( ) (3) G a a g = g a = e G g g a a a G, H ϕ : G H G 2 a, b ϕ(a b) = ϕ(a) ϕ(b) ϕ G H H 4 H 4 {1, 2, 3, 4} S 4 (1, 1), ( 1, 1), ( 1, 1), (1, 1) 90 (1, 1) ( 1, 1) ( 1, 1) (1, 1) (1, 1) ( )

65 ( ) ( ) (1, 3)(2, 4), (1, 4, 3, 2), (1, 2)(3, 4) ( ) ( ) ( (1, 4)(2, 3), (2, 4), (1, 3) (1, 2)(3, 4) (1, 2, 3, 4) = (2, 4) ( ) ( ) = ( ) ( ) ), E (1) (2) (3) (4) (1) Q, R, C Q Q (2) Q( 2) = {a + b 2 a, b Q} (3) Q(i) = {a + bi a, b Q} 22 K K K ϕ K K A(K)

66 60 5 (1) C A(C) (2) Q( 2) ϕ(a + b 2) = a b 2 23 (1) 2 E F F E (F E ) E F (2) E F G(E/F ) = {σ σ A(E) σ F = id F } E/F (3) F f(x) F F f(x) = 0 (C ) F E f(x) (1) R Q (2) C R G(C/R) (3) f(x) = x 3 1 Q(ω) = {a + bω a, b, c Q} ( ω 3 = 1) A(Q(ω)) ϕ(a + bω) = a + bω 2 = a + b ω (4) g(x) = x 3 2 α, αω, αω 2 (ω 3 = 1, ω 1, α = 3 2) g(x) E = Q(α, αω, αω 2 ) E = Q(α, ω) g(x) Q Q(α) = {a + bα + cα 2 a, b, c Q} 21 f(x) F C f(x) E G(E/F ) ( ) E F G(E/F ) = E : F G(C/R), G(Q(i)/Q), G(Q(ω)/Q) 2 22 f(x) F f(x) = 0 E n G(E/F ) n S n n! E = Q(α, ω) G(E/Q) = E : Q = E : Q(α) Q(α) : Q = 3 E : Q(α) > 3 G(E/Q) 3 S F f(x) F E f(x) F = B 0 B 1 B r = E B i = B i 1 (χ i ) (χ n i = a i B i 1 ) f(x) = 0 F

67 F Q χ 1 m E = F (χ) G(E/F ) S 2, S 3, S 4 ( ) 24 f(x) Q Q G(E/F ) 25 5 Q f(x) geometry geometry (1637 ), (1) L = {(x, y) ax + by + c = 0} (2), 90,, 2 (x 1, y ), (x 2, y 2 ) (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (3),, 1 (4) y = Ax A A A t A = t AA = E (4) O(n)

68 ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = 0 (x, y) 2 x 2 + y 2 = a 2 a 2 + y2 = 1 (a b) b2 x 2 a 2 y2 b 2 = 1 y = px 2 x 2,, 26,, x 2 + y 2 = z 2 (1), z = a (a 0),, x 2 + y 2 = a 2 (2), x = a (a 0),, a 2 + y 2 = z 2, z 2 y 2 = a 2 (3), x + z = 1,, x 2 + y 2 = (1 x) 2 y 2 = 1 2x (4) x = 2z+1,, (2z+1) 2 +y 2 = z 2 3(z + 2/3) 2 + y 2 = 1/3, 1 ( ) 1 ( ),,, 2, 2, 27 2, x 2 + y 2 = a 2 a 2 + y2 = 1 (a b) b2 x 2 a 2 y2 b 2 = 1 y = px 2 x 2,

69 ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = (x, y, 1) a b d b c e x y d e f 1 A 2 1 x = X + u, y = Y + v X, Y { au + bv + d = 0 bu + cv + e = 0 I. ac b ax 2 + 2bxy + cy 2 + f = 0 28 ac b α, β P ( ) ( ) t a b α 0 P P = = D (αβ 0) b c 0 β (ξ, η) = (x, y)p ( ( ax 2 + 2bxy + cy 2 x = (x, y)a = (x, y)p D y) t x P y) ( ( ) α 0 ξ = (ξ, η) = αξ 0 β) 2 + βη 2 η 0 α, β (α = β ) (α β αβ > 0) (αβ < 0 ) II. ac b 2 = 0 A 1 0 x, y ( ) (1) (2) (3) (1) (2) 3 2 1

70 64 5 (3) 2 x 2 +y 2 = 1( ) x 2 y 2 = 1( ) y = x 2 ( ) (1) (2) 2 2 l P 2 (1 ) ( ) 3 28 P = (x, y, z) P = (x, y, z ) k 0 x = kx, y = ky, z = kz P, P P P (1) (x, y) {(x, y, 1) } (2) l = {(x, y, 0) } (3) P GL(2, R) = GL(3, R)/{RE} 30 2 ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = 0 ax 2 + cy 2 + fz 2 + 2bxy + 2eyz + 2dzx = 0 2 x 2 + y 2 z 2 = 0

71 x 2 +y 2 = 1, x 2 y 2 = 1, y = x 2 x 2 + y 2 = z 2, x 2 y 2 = z 2, yz = x 2 yz 45 y 2 z 2 = x M 2 ρ M (1) ρ(x, y) 0 ρ(x, y) = 0 x = y ( ) (2) ρ(x, y) = ρ(y, x) ( ) (3) ρ(x, z) ρ(x, y) + ρ(y, z) ( ) 30 M ρ M l l 3 x, y, z ρ(x, z) = ρ(x, y) + ρ(y, z) l ( ) ρ 2 ( ) ( )

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information