Banach m- (Shigeru Iemoto), (Watalu Takahashi) (Department of Mathematical and Computing Sciences, Tokyo Institute of Technology) 1

Size: px
Start display at page:

Download "Banach m- (Shigeru Iemoto), (Watalu Takahashi) (Department of Mathematical and Computing Sciences, Tokyo Institute of Technology) 1"

Transcription

1 Banach m- (Shigeru Iemoto) (Watalu Takahashi) (Department of Mathematical and Computing Sciences Tokyo Institute of Technology) 1 $H$ Hilbert $gg_{1}g_{2}$ $g_{m}$ : $Harrow R$ $C=\{x\in H : \mathit{9}:(x)\leq 0(i=12 \ldots m)\}$ $g(u)=1\mathrm{n}\mathrm{i}\mathrm{n}g(x)x\in C$ $u\in C$ $C$ $f(x)=\{$ $\mathit{9}(x)$ $\infty$ $(x\in C)$ $(x\not\in C)$ : $f$ $Harrow(-\infty \infty]$ $x\in H$ $\partial f(x)=\{z\in H : f(x)+\langle y-x z\rangle\leq f(y)(^{\forall}y\in H)\}$ $H$ $H$ $f$ $u\in H$ $\partial f$ $f(u)= \min_{x\epsilon H}f(x)$ $(xy)$ $(sb)\in\partial f$ $\partial f$ $(x-s y-t)\geq 0$ Rockafellar [25] $\partial f$ $\partial f$ $f(u)=1\mathrm{n}\mathrm{i}\mathrm{n}_{x\in H}f(x)$ $\mathrm{o}\in\partial f(u)$ $A\subset H\mathrm{x}H$ $0\in Au$

2 32 $u\in H$ $A\subset H\mathrm{x}H$ $\lambda>0$ $x\in H$ $J_{\lambda}(x)=\{z\in H : x\in z+\lambda A_{\tilde{\wedge}}\}$ $J_{\lambda}$ $H$ $H$ (cf [29 30]) $A$ \mbox{\boldmath $\lambda$} $x$ $y\in H$ $ J_{\lambda^{X-}}J_{\lambda y} \leq x-y $ $0\in Au$ Hilbert $u=j_{\lambda u}$ $A\subset H\mathrm{x}H$ $\mathrm{o}\in Au$ $u\in H$ Rockafellar [26] (Proximal Point Algorithm) $x_{0}=x\in H$ $\{x_{n}\}$ $\{\lambda_{n}\}\subset(0 \infty)$ $\lambda_{n}a)^{-1}$ 1976 $x_{n+1}=j_{\lambda}x_{n}$ $n=012$ $\ldots$ (1) $\lambda_{n}>0$ \mbox{\boldmath $\lambda$} $=(I+$ Rpckafellar [26] liln $\inf_{narrow\infty}\lambda_{n}>0$ $A^{-1}0\neq\emptyset$ (1) $\{x_{n}\}$ $A^{-1}0$ Br\ ezis-lions [1] Lions [13] Passty [16] G\"uler [4] Solodov-Svaiter [28] Hilbert [8] $x0=x\in H$ $\{x_{n}\}$ $x_{\iota+1}=\alpha_{n}x+(1-\alpha_{n})j_{\lambda_{\iota}}x_{n)}$ $n=012$ $\cdots$ (2) $x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})j_{\lambda_{\iota}}x_{n}$ $n=012$ (3) $\cdots$ $x_{0}=x\in H$ $\{\alpha_{n}\}$ $[01]$ $\{\lambda_{n}\}$ $(0 \infty)$ (2) $\{x_{n}\}$ $A^{-1}0$ (3) $\{x_{n}\}$ $A^{-1}0$ - [9] Hilbert Banach Hilbert $A\subset H\mathrm{x}H$

3 33 Banach Banach $E$ $A\subset E\mathrm{x}E$ $(x y)$ $(s b)\in A$ $j\in J(x-s)$ $\langle y-tj\rangle\geq 0$ $B\subset ExE^{*}$ $(x x^{*}))(y y^{*})\in B$ $\langle x-y x^{*}-y^{*}\rangle\geq 0$ $J$ $E$ $E^{*}\text{}$ - $[8 9]$ $x_{0}=x\in E$ $\{x_{n}\}$ $x_{n+1}=a_{n}x+\beta_{n}x_{n}+\gamma_{n^{j_{\lambda}}}$ $x_{n}+e_{n}$ $n=012$ $\cdots$ (4) $\{\lambda_{n}\}\subset(0 \infty)$ $\{\alpha_{n}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}$ $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ $A^{-1}0$ {en} $E$ $[01]$ Hilbert Banach Hilbert 4 Barxach $\mathrm{m}$- 5 2 $R$ $H$ Hilbert Banach $E$ $J$ $x\in E$ $E$ $N$ $J(x)$ $=\{x^{*}\in E^{*} : \langle xx^{*}\rangle= x ^{2}= x^{*} ^{2}\}$ $E$ $E^{*}$ $J(\mathrm{O})=\{0\}$ Hahn-Banach $x\in E$ $J(x)\neq\emptyset$ $E=H$ $J$ $I$ $A\subset ExE$ $(xy)$ $(st)\in A$ $j\in J(x-s)$ $(y-tj)\geq 0$ m- A\subset ExE $R(I+\lambda A)=E$ $\mathrm{v}_{\lambda>0}$ $D(A)=\{x\in E : Ax\neq\emptyset\}$ $A$ $R(A)=\cup\{Ax:x\in D(A)\}$ $A$ $A\subset E\mathrm{x}E$ m- $\lambda>0$ $x\in E$ $J_{\lambda}(x)=\{\approx\in E:x\in z+\lambda Az\}$

4 $E$ 34 $\text{_{}\lambda}$ $E$ $A$ $J_{\lambda}=(I+\lambda A)^{-1}$ $\mathrm{o}\in Au$ $u=j_{\lambda}u$ $A$ $A_{\lambda}= \frac{1}{\lambda}(i-j_{\lambda})$ $x\in E$ $(J_{\lambda^{X}} A_{\lambda^{X}})\in A$ $f$ : $Earrow(-\infty \infty]$ $f(a)\in R$ $a\in E$ $f$ $r\in R$ $\{x\in E:f(x)\leq r\}$ $E$ $f$ $x$ $y\in E$ $\alpha\in(01)$ $f(\alpha x+(1-\alpha)y)\leq\alpha f(x)+(1-a)f(y)$ $f$ : $Earrow(-\infty \infty]$ $x\in E$ $\partial f(x)=\{x^{*}\in E^{*} : f(x)+\langle y-xx^{\alpha})\leq f(y) \forall_{y}\in E\}$ $E$ $E^{*}$ $\partial f$ $f$ $E$ Banach $\epsilon\in[02]$ $\delta(\epsilon)=\inf\{1-\frac{ x+y }{2}$ : $ x \leq 1$ $ y \leq 1$ $ x-y \geq\epsilon\}$ modulus $\mathrm{a}\mathrm{l}$ $\delta$ $[02]$ $[01]$ $E$ $E$ $E$ $\{x_{n}\}$ {y $ x_{n} = y_{n} =1$ $narrow\infty 1\mathrm{i}\ln x_{n}+y_{n} =2$ $1\mathrm{i}_{\mathrm{l}}\mathrm{n}_{narrow\infty} x_{n}-y_{n} =0$ $\epsilon>0$ $\epsilon>0$ $E$ $\delta(\epsilon)>0$ $E$ $ x \leq r$ $ y \leq r$ $ x-y \geq\epsilon>0$ $ \frac{ x+y }{2}\leq^{J}r\{1-\delta(\frac{\epsilon}{r})\}$ $\delta(\frac{\epsilon}{r})>0$ Banach [29] Banadh $S(E)=\{x\in E: x =$ $1\}$ $x$ $y\in S(E)$ $\lim_{tarrow 0}\frac{ x+ty - x }{t}$ $(*)$ Banach $E$ G\^ateaux $S(E)$ $x$ $y$ $(*)$ $E$

5 35 $E$ G\^ateaux $y\in S(E)$ $(*)$ Banach $E$ Rr\ echet $x\in S(E)$ $x\in S(E)$ $(*)$ $y\in S(E)$ Banach $E$ $\mathrm{r}\cdot\text{\ {e}} \mathrm{c}\mathrm{h}\mathrm{e}\mathrm{t}$ $(*)$ $S(E)$ $x$ $y$ $E$ $E$ G\^ateaux $E$ $E$ $E^{*}$ $T$ * $C$ Banach $E$ } $T:Carrow C$ $F(T)$ $C$ $D$ $\approx\in D$ $C$ 2 $\sup_{y\in D} z-y <\sup_{xy\in D} x-y =\delta(d)$ Banach Banach $C$ $C$ Hilbert $C$ $C$ Banach C Banach E D C $D$ $P$ S sunny $x\in C$ $t\geq 0$ $C$ $Px+t(x-Px)\in C$ $P(Px+t(x-Px))=Px$ $C$ $D$ $P$ $x\in C$ $P^{2}x=Px$ $D$ $C$ sunny retract $C$ $D$ sunny sunny [29] 21 $C$ Banach $E$ $P$ $E$ $C$ $x\in E$ $P\mathrm{B}\sim unny$ $y\in C$ $\langle$x Px $J(y-Px))\leq 0$ $E$ $E^{*}$

6 36 3 Hilbert Hilbert Rockafellar [26] 31 (Rockafellar [26]) $H$ bert $A\subset H\mathrm{x}H$ $x_{0}=x\in H$ $\{x_{n}\}$ $x_{n+1}=j_{\lambdax_{n}}$ $n\in N$ $\{\lambda_{n}\}\subset(0 \infty)$ $\lim\inf_{narrow\infty}\lambda_{n}>0$ $A^{-1}0\neq_{-}\emptyset$ $\{x_{n}\}$ $A^{-1}0$ $u$ Br\ ezis-lions [1] Lions [13] Passty [16] Guler [4] Solodov-Svaiter [28] Hilbert - [8] 32 ( - [8]) $H$ Hilbe $A\subset H\mathrm{x}H$ $x_{0}=x\in H$ $\{x_{n}\}$ $y_{n}\approx J_{\lambda_{\iota}}x_{n}$ $x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})y_{n}$ $n\in N$ $ y_{n}-j_{\lambda_{n}x_{n}} \leq\delta_{n}$ $ l\in N$ $\{a_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset$ $(0 \infty)$ $\{\delta_{n}\}\subset[0 \infty)$ $\lim_{narrow}\inf_{\infty}\alpha_{n}<1$ $\lim_{narrow}\inf_{\infty}\lambda_{n}>0\sum_{n=0}^{\infty}\delta_{n}<\infty$ $A^{-1}0\neq\emptyset$ $v= \lim_{narrow\infty}px_{n}$ $P$ $\{x_{n}\}$ $H$ $A^{-1}0$ $u$ $A^{-1}0$ $\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{k}\mathrm{a}\mathrm{f}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{a}\iota\cdot[26]$ Theorem 31 $\alpha_{n}\equiv 0$ 33 ( - [8]) $H$ Hilbert $A\subset H\mathrm{x}H$ $x_{0}=x\in H$ $\{x_{n}\}$ $y_{n}\approx J_{\lambda_{n}}x_{n}$ $x_{n+1}=0_{n} X+(1-a_{n})y_{n}$ $n\in N$

7 37 $ y_{n}-\text{_{}\lambda_{l}}x_{n} \leq\delta_{n}$ $(0\cdot\infty)$ $\{\delta_{n}\}\subset[0 \infty)$ $n\in N$ $\{\alpha_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset$ $n arrow\infty 1\mathrm{i}\iota \mathrm{n}a_{n}=0\sum_{n=0}^{\infty}\alpha_{n}=\infty$ $n arrow\infty 1\mathrm{i}\ln\lambda_{n}=\infty\sum_{n=0}^{\infty}\delta_{n}<\infty$ $A^{-1}0\neq\emptyset$ $\{x_{n}\}$ $A^{-1}0$ $u$ $Px=u$ $P$ $H$ $A^{-1}0$ - 34 ( - [6]) $H$ $H$ ilbe $x0=x\in H$ $A\subset HxH$ $A^{-1}0\neq\emptyset$ $\{x_{n}\}$ $y_{n}\approx J_{\lambda_{n}X_{n}}$ $x_{n+1}=\alpha_{n}x+\beta_{n}x_{n}+\gamma_{n}y_{n}$ $fx\in N$ $ y_{n}-j_{\lambda}x_{n} \leq\delta_{n}$ $\dagger 1\in N$ $\{\alpha_{n}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}\subset$ $[01]$ $\{\lambda_{n}\}\subset(0 \infty)$ $\{\delta_{n}\}\subset[0 \infty)$ $a_{n}+\beta_{n}+\gamma_{n}=1$ $\Sigma_{n=0}^{\infty}\lambda_{n}<\infty$ (1) (2) (1) $\{\alpha_{n}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}\subset[01]$ $n arrow\infty 1\mathrm{i}\ln\alpha_{n}^{l}=0\sum_{n=0}^{\infty}\alpha_{n}=\infty$ $narrow\infty 1\mathrm{i}\mathrm{m}\beta_{n}=0$ $narrow\infty 1\mathrm{i}\mathrm{m}\lambda n=$ $\{X_{\hslash}\}$ $A^{-1}0$ $u$ $Px=u$ $P$ $H$ $A^{-1}0$ (2) $\{\alpha_{\hslash}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}\subset[01]$ $\sum_{n=0}^{\infty}\alpha_{n}<\infty$ $\lim_{narrow}\sup_{\infty}\beta_{n}<1$ $\lim_{narrow}\inf_{\infty}\lambda_{n}>0$ $\mathrm{t}_{x_{n\}}}$ $v=1\mathrm{i}m_{narrow\infty}px_{n}$ $P$ $A^{-1}0$ $v$ $H$ $A^{-1}0$ n} $\alpha_{n}$ \Sigma - [8]

8 38 4 Banach m- Banach $\mathrm{m}$- - [9] $\mathrm{m}$ Ballach 41 ( - [9]) $E$ Banach $E$ \ echet $E$ Opial $A\subset E\mathrm{x}E$ m- $x_{0}=x\in E$ $\{x_{n}\}$ $x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})\text{_{}\lambda_{\iota}x_{\overline{n}}+e_{n}}$ $n\in N$ $\{\alpha_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset(0 \infty)$ $\{e_{n}\}\subset E$ $\lim_{narrow}\sup_{\infty}\alpha_{n}<1$ $\lim_{narrow}\inf_{\infty}\lambda_{n}>0\sum_{n=0}^{\infty} e_{n} <\infty$ $A^{-1}0\neq\emptyset$ $\{x_{n}\}$ $A^{-1}0$ $u$ 42 ( - [9]) $E$ G\ atea-- Banach $E$ $A\subset ExE$ $m$- $x_{0}=x\in E$ $\{x_{n}\}$ $x_{n+1}=\alpha_{n}x+(1-\alpha_{n})i_{\lambda_{\mathfrak{n}}}x_{n}$ $e_{n}$ $71\in N$ $\{\alpha_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset(0 \infty)$ $\{e_{n}\}\subset E$ $\lim_{narrow\infty}\alpha_{n}=0\sum_{n\approx 0}^{\infty}\alpha_{n}=\infty$ $n arrow\infty 1\mathrm{i}\ln\lambda_{n}=\infty\sum_{narrow 0}^{\infty} e_{n} <\infty$ $A^{-1}0\neq\emptyset$ $P$ $E$ $Px=v$ $\{x_{n}\}$ $A^{-1}0$ $v$ $A^{-1}0$ sunny 43 $E$ Banach $E$ Fr\ echet $E$ Opial $A\subset E\mathrm{x}E$ $n$- $\{x_{n}\}$ $x_{0}=x\in E$ $x_{n+1}=\alpha_{n}x+\beta_{n}x_{n}+\gamma_{n^{\text{}}\lambda}x_{n}+e_{n}$ $n\in N$

9 39 $\{\alpha_{n}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset(0 \infty)$ $\{e_{n}\}\subset E$ $1 \mathrm{i}\mathrm{n}1\sup_{narrow\infty}\alpha_{n}<11\mathrm{i}\mathrm{n})\sup_{narrow\infty}\beta_{n}<1$ $\lim_{narrow}\inf_{\infty}\lambda_{n}>0\sum_{n=0}^{\infty} e_{n} <\infty$ $A^{-1}0\neq\emptyset$ $\{x_{n}\}$ $A^{-1}0$ $u$ 44 $E$ G\ ateaux \urcorner p $\prime \mathit{2}$ Banach $k$ $E$ $A\subset ExE$ $m$- $x_{0}=x\in E$ $\{x_{n}\}$ $x_{n+1}=\alpha_{n}x+\beta_{n}x_{n}+\gamma_{n}\text{_{}\lambda_{l}x_{n}+6_{n}}$ $n\in N$ $\{\alpha_{n}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset(0 \infty)$ $\{e_{n}\}\subset E$ $n arrow\infty 1\mathrm{i}\mathrm{l}11\alpha_{n}=0\sum_{n\approx 0}^{\infty}\alpha_{n}=\infty\lim_{narrow\infty}\beta_{n}=0$ $n arrow\infty 1\mathrm{i}\iota \mathrm{n}\lambda_{n}=\infty\sum_{n=0}^{\infty} e_{n} <$ $A^{-1}0\neq\emptyset$ $Px=v$ $P$ $E$ $\{x_{n}\}$ $A^{-1}0$ $A^{-1}0$ $v$ sunny 45 $E$ Banach $E$ G\ ateanx $E$ $A\subset E\mathrm{x}E$ $m$- $x$ $u\in E$ $\{x_{n}\}$ $\{$ $x_{0}=x\in E$ $x_{n+1}=\alpha_{n}u+\beta_{n}x_{n}+\gamma_{n^{\text{}}\lambda_{1}}x_{n}+e_{n}$ $n\in N$ $\{\alpha_{n}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset(0 \infty)$ $\{e_{n}\}\subset E$ $n arrow\infty 1\mathrm{i}\ln\alpha_{n}=0\sum_{n=1}^{\infty} \alpha_{n}-\alpha_{n-1} <\infty\sum_{n=0}^{\infty}\alpha_{n}=$ $\lim_{narrow}\sup_{\infty}\beta_{n}<1\sum_{n\approx 1}^{\infty} \beta_{n}-\beta_{n-1} <\infty$ $\lim \mathrm{i}11\mathrm{f}\lambda_{n}>0narrow\infty \sum_{n=1}^{\infty} \lambda_{n}-\lambda_{n-1} <\infty\sum_{n=0}^{\infty} e_{n} <\infty$ $A^{-1}0\neq\emptyset$ $\{x_{n}\}$ $A^{-1}0$ $v$ Banach Baxtadh $\ovalbox{\tt\small REJECT}$

10 40 5 Theorem 43 Theorem 44 Hilbert 51 $H$ Hilbert : $f$ $Harrow(-\infty \infty]$ $x_{0}=x\in H$ $\{x_{n}\}$ $y_{n} \approx\arg\iota \mathrm{n}\mathrm{i}\mathrm{n}z\in H\{f(z)+\frac{1}{2\lambda_{n}} z-x_{n} ^{2}\}=\text{_{}\lambda_{l}x_{n}}$ $x_{n+1}=a_{n}x_{n}+\beta_{n}x_{n}+\gamma_{n}j_{\lambda_{1}}x_{n}+e_{n}$ $n\in N$ $ y_{n^{-j_{\lambda_{\iota}}}}x_{n} \leq\delta_{n}$ $(0 \infty)$ $\{e_{n}\}\subset E$ $\{a_{n}\}$ $\{\beta_{n}\}$ $\{\lambda_{n}\}\subset$ $\{\gamma_{n}\}\subset[01]$ $1 \mathrm{i}_{\mathrm{l}}\mathrm{n}\sup_{narrow\infty}\alpha_{n}<11\mathrm{i}_{\mathrm{l}}\mathrm{n}\sup_{narrow\infty}\beta_{n}<1$ $\mathrm{l}\mathrm{i}\ln \mathrm{i}1\mathrm{l}\mathrm{f}\lambda_{n}>0narrow\infty \sum_{n=0}^{\infty} * <\infty$ $(\partial f)^{-1}0\neq\emptyset$ $u=1\mathrm{i}\iota \mathrm{n}_{narrow\infty}px_{n}$ $P$ $\{x_{n}\}$ $(\partial f)^{-1}0$ $u$ $H$ $(\partial f)^{-1}0$ 52 $H$ Hilbert ; $f$ $Harrow(-\infty \infty]$ $x_{0}=x\in H$ $\{x_{n}\}$ $y_{n} \approx \mathrm{a}1^{\cdot}z\in H\mathrm{g}m\mathrm{i}\mathrm{n}\{f(_{\wedge}^{\sim})+\frac{1}{2\lambda_{n}} z-x_{n} ^{2}\}=\text{_{}\lambda_{n}x_{n}}$ $x_{n+1}=\alpha_{n}x+\beta_{n}x_{n}+\gamma_{n}\text{_{}\lambda_{\iota}x_{n}+\epsilon_{n}}$ $n\in N$ $ y_{n^{-j_{\lambda}}}x_{n} \leq\delta_{n}$ $(0 \infty)$ $\{e_{n}\}\subset E$ $\{a_{n}\}$ $\{\beta_{n}\}$ $\{\gamma_{n}\}\subset[01]$ $\{\lambda_{n}\}\subset$ $n arrow\infty 1\mathrm{i}_{\mathrm{l}}\mathrm{n}\alpha_{n}=0\sum_{n=0}^{\infty}\alpha_{n}=\infty\lim_{narrow\infty}\beta_{n}=0$ $n arrow\infty 1\mathrm{i}111\lambda_{n}=\infty\sum_{n=0}^{\infty} e_{n} <\infty$ $(\partial f)^{-1}0\neq\emptyset$ $Px=v$ $P$ $H$ $(\partial f)^{-1}0$ $\{x_{n}(\}$ $(\partial f)^{-1}0$ $v$ [1] H Br\ ezis and P L Lions Produits infinis de resolvants Israel J Math 29 (1978)

11 Y 41 $ {}^{t}a$ [2] R E Bruck strongly convergent iterative solution of for a maximal mmonotone operator in Hilbert space J Math Anal Appl $U$ 48 (1974) $\mathrm{o}\in U(x)$ [3] R E Bruck and G B Passty $ttalmost$ convergence of the infinite product of resolvents in Banach spaces Nonlinear Anal 3 (1979) [4] O G\"uler On the convergence of the proximal point algorithm for convex $\min-$ $imization^{n}$ SIAM J Control Optim 29 (1991) [5] B Halpern $ \prime pixed$ points of nonexpansive maps Bull Amer Math Soc 73 (1967) $\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{i}$ [6] S Iemoto and W $\mathrm{t}\mathrm{a}\mathrm{m}$) Strong and Weak Convergence Theorems for Resolvents of Maximal Monotone Operators in Hilbert Spaces Proceedings $\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\iota\cdot$ of the International Conference on Analysis and Convex Analysis Yokohalna Publishers 2004 [7] J S Jung and W Takallashi Dual convergence theorems for the infinite products of resolvents in Banach spaces Kodai Math J 14 (1991) [8] S Kamimura and W Takaliashi $uapproximating$ solutions of masimal monotone operators in Hilbert spaces J Approx Theory 106 (2000) [9] S Kamimura and W Takahashi $u_{weak}$ and Strong Convergence of Solutions to Accretive Opefator Inclusions and Applications Set-Valued Anal 8 (2000) $\mathrm{k}\mathrm{i}m$ [10] T H and H K Xu $ {}^{t}strong$ convergence of Mann modifi$\mathrm{e}d$ Nonlinear Anal 61 (2005) iterations [ $11_{\mathrm{J}}^{]}$ Kimura W Takaliashi and M Toyoda Convergence to common fixed points of a finite family of nonexpansive mappings Arch Math 84 (2005) [12] F Kohsaka and W Takallashi Strong Convergence of an Iterative Sequence for Maximal Monotone Operators in a Banach Space Abstr Appl Anal 3 (2004) in\ equation variation- [13] P L Lions $u_{une}$ m\ ethode iterative de r\ esolutio $\mathrm{t}7$ d une nelle Israel J Math 31 (1978) [14] W R Mann $u_{\lambda fean}$ value meth $ods$ in iteration Proc Amer Math Soc 4 (1953)

12 42 [15] O Nevanlinna and S Reich $ttstrong$ convergence of contraction semigroups an$d$ of iterative methods for accretive operators in Banach spaces Israel J Math 32 (1979) [16] G B Passty $ {}^{t}ergodic$ convergence to a zero of the sum of monotone operators in Hilbert space ) J Math Anal Appl 72 (1979) [17] A Pazy $ttremarks$ on nonlinear ergodic theory in Hilbert space Nonlinear Anal 6 (1979) [18] S Reich On infinite products of resolvents Atti Acad Naz Lincei 63 (1977) [19] S Reich An iterative producedure for constructiong zeros of accretive sets in Banach spaces Nonlinear Anal 2 (1978) [20] S Reich $ constrw$ ction zeros of accretive operators Appl Anal 8 (1979) [21] S Reich $ {}^{t}constmction$ zeros of accretive operators II Appl Anal 9 (1979) [22] S Reich Weak convergence theorems for $none\varphi ansive$ mappings in Banach spaces J Math Alal Appl 67 (1979) [23] S Reich $ {}^{t}strong$ convergence theorems for resolvents of accretive operators in Banach spaces J Math Anal Appl 75 (1980) [24] R T Rockafellar Characterizationn of the subdifferentials of convex functions Pacific J Math 17 (1966) [25] R T Rockafellar $ {}^{t}on$ th $e$ maximal monotonicity of subdefferential mappings Pacific J Math 33 (1970) [26] R T Rockafellar Monotone operators and the proximal point algoritllm SIAM J Control Optim 14 (1976) [27] N Shioji and W Takahashi Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces Proc Amer Math Soc 125 (1997) [28] M V Solodov and B F Svaiter Forcing strong convergence of proxfmal point iterations in a Hilbert space Math Prograni 87 (2000)

13 43 [29] W Takahashi Nonlinear Functional Analysis Yokohama Publishers 2000 [30] W Takahashi $ttintroduction$ to Nonlinear & Convex Analysis (Japanese) Yokohama Publishers 2005 [31] W Takahashi and G E Kim Approximating fixed points of nonexpansive mappings in Banach spaces Math Japon 48 (1998) 1-9 [32] W Takahashi and Y Ueda On Reich s strong convergence theorems for resolvents of accretive operators J Math Anal Appl 104 (1984) [33] K K Tall and H K Xu Approximating fixed points of $nonexpansive$ mappings by the iteration process J Math Anal Appl 178 $is1\iota ikau a$ (1993) [34] R Wittmann $ {}^{t}approximation$ of fixed points of $non\epsilon xpansive$ mappings Arch Math 58 ( $1992\rangle$ [35] H K Xu $ {}^{t}an$ iterative algorithms for nonlinear operators J Optimiz Theory Appl 116 (2003)

Title 凸計画問題と関連する反復法 ( 最適化数理の手法と実際 ) Author(s) 高阪, 史明 ; 高橋, 渉 Citation 数理解析研究所講究録 (2005), 1461: Issue Date URL

Title 凸計画問題と関連する反復法 ( 最適化数理の手法と実際 ) Author(s) 高阪, 史明 ; 高橋, 渉 Citation 数理解析研究所講究録 (2005), 1461: Issue Date URL Title 凸計画問題と関連する反復法 ( 最適化数理の手法と実際 ) Author(s) 高阪, 史明 ; 高橋, 渉 Citation 数理解析研究所講究録 (2005), 1461: 47-61 Issue Date 2005-12 URL http://hdl.handle.net/2433/47969 Right Type Departmental Bulletin Paper Textversion

More information

* 1 H Hilbert C H C H T (nonexpansive) T x T y x y, x, y C ([46]). C H T C C F (T ) T F (T ) ϕ x 1 = x C {x n } x n+1 = α n x + (1 α n )T x n, n

* 1 H Hilbert C H C H T (nonexpansive) T x T y x y, x, y C ([46]). C H T C C F (T ) T F (T ) ϕ x 1 = x C {x n } x n+1 = α n x + (1 α n )T x n, n No.65/ 2009. 9 2009 2010 12 * 1 H Hilbert C H C H T (nonexpansive) T x T y x y, x, y C 2 1.1 ([46]). C H T C C F (T ) T F (T ) ϕ x 1 = x C {x n } x n+1 = α n x + (1 α n )T x n, n = 1, 2, 3,... (1.1) {α

More information

On convergence of the methods for the best approximation problem (Nonlinear Analysis and Convex Analysis)

On convergence of the methods for the best approximation problem (Nonlinear Analysis and Convex Analysis) 数理解析研究所講究録第 2011 巻 2016 年 78-82 78 On convergence of the methods for the best approximation problem 秋田県立大学システム科学技術学部 * 松下慎也 $\dagger$ (Shin ya Matsushita) 徐粒 (Li Xu) Department of Electronics and Information

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De Title 可測ノルムに関する条件 ( 情報科学と函数解析の接点 : れまでとこれから ) こ Author(s) 原井 敬子 ; 前田 ミチヱ Citation 数理解析研究所講究録 (2004) 1396: 31-41 Issue Date 2004-10 URL http://hdlhandlenet/2433/25964 Right Type Departmental Bulletin Paper

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension 微分方程式の精度保証付き数値計算 : 逐次反復に基づく Title計算機援用証明 (Progress in Mathematics of Systems) Author(s) 渡部, 善隆 Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (22), B3: 45-55 Issue Date 22-4 URL http://hdl.handle.net/2433/9624

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL Title Compactification theorems in dimens Topology and Related Problems Authors 木村 孝 Citation 数理解析研究所講究録 1996 953 73-92 Issue Date 1996-06 URL http//hdlhandlenet/2433/60394 Right Type Departmental Bulletin

More information

Title$C^1$- 空間上のコロフキン定理 ( コロフキン型近似定理 ) Author(s) 渡邉, 誠治 Citation 数理解析研究所講究録 (2002), 1243: Issue Date URL

Title$C^1$- 空間上のコロフキン定理 ( コロフキン型近似定理 ) Author(s) 渡邉, 誠治 Citation 数理解析研究所講究録 (2002), 1243: Issue Date URL Title$C^1$- 空間上のコロフキン定理 ( コロフキン型近似定理 ) Author(s) 渡邉, 誠治 Citation 数理解析研究所講究録 (2002), 1243: 85-95 Issue Date 2002-01 URL http://hdlhandlenet/2433/41663 Right Type Departmental Bulletin Paper Textversion

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

2018 : msjmeeting-2018sep-07i003 ( ) Banach Banach Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B

2018 : msjmeeting-2018sep-07i003 ( ) Banach Banach Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B 2018 : msjmeeting-2018sep-07i003 () Banach Banach 1. 1.1. Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B 1 } a B e B Example 1. 1. Hausdorff K C(K) f = sup{

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Fac

Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Fac 1405 2004 14-30 14 Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Faculty of Engineering Tokushima University (Masayuki

More information

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri 1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$

More information

The Empirical Study on New Product Concept of the Dish Washer Abstract

The Empirical Study on New Product Concept of the Dish Washer Abstract The Empirical Study on New Product Concept of the Dish Washer Abstract t t Cluster Analysis For Applications International Conference on Quality 96 in Yokohama Clustering Algorithms

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA) Title 集合値写像の凸性の遺伝性について ( 不確実なモデルによる動的計画理論の課題とその展望 ) Author(s) 西澤, 正悟 ; 田中, 環 Citation 数理解析研究所講究録 (2001), 1207: 67-78 Issue Date 2001-05 URL http://hdlhandlenet/2433/41044 Right Type Departmental Bulletin

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te Title ニューロ DP による多品目在庫管理の最適化 ( 不確実で動的なシステムへの最適化理論とその展開 ) Author(s) 大野 勝久 ; 伊藤 崇博 ; 石垣 智徳 ; 渡辺 誠 Citation 数理解析研究所講究録 (24) 383: 64-7 Issue Date 24-7 URL http://hdlhandlenet/2433/2575 Right Type Departmental

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原 A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue

More information

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n

More information

189 2 $\mathrm{p}\mathrm{a}$ (perturbation analysis ) PA (Ho&Cao [5] ) 1 FD 1 ( ) / PA $\mathrm{p}\mathrm{a}$ $\mathrm{p}\mathrm{a}$ (infinite

189 2 $\mathrm{p}\mathrm{a}$ (perturbation analysis ) PA (Ho&Cao [5] ) 1 FD 1 ( ) / PA $\mathrm{p}\mathrm{a}$ $\mathrm{p}\mathrm{a}$ (infinite 947 1996 188-199 188 (Hideaki Takada) (Naoto Miyoshi) (Toshiharu Hasegawa) Abstract (perturbation analysis) 1 1 1 ( ) $R$ (stochastic discrete event system) (finite difference $\mathrm{f}\mathrm{d}$ estimate

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu

Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu 870 1994 153-167 153 Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu$ Galton-Watson branching process $\mu$ Galton-Watson

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac $\vee$ 1017 1997 92-103 92 $\cdot\mathrm{r}\backslash$ $GL_{n}(\mathbb{C}$ \S1 1995 Milnor Introduction to algebraic $\mathrm{k}$-theory $narrow \infty$ $GL_{n}(\mathbb{C}$ $\mathit{1}\mathrm{t}i_{n}(\mathbb{c}$

More information

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA 1120 1999 68-77 68 $\bullet$ A Distributed Sorting Algorithm on a Line Network Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASAKI NTT $=$ 619-0237 2-4 $\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{c}\mathrm{o}$

More information

日本数学会・2011年度年会(早稲田大学)・企画特別講演

日本数学会・2011年度年会(早稲田大学)・企画特別講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 企画特別講演 MSJMEETING-2011-0 1. 2., (1) ρ t + (ρw) x = 0, (ρw) t + (ρw 2 + p) x = (µw x ) x, (ρ(e + w2 2 )) t + ((ρ(e + w2 2 ) + p)w) x = (κθ x + µww x ) x., ρ, w, θ, µ κ, p e, p,

More information

* Akiko Yoshise Graduate School of Systems and Information Engineering University of Tsukuba Andersen Ye [3] (a) (b) (

* Akiko Yoshise Graduate School of Systems and Information Engineering University of Tsukuba Andersen Ye [3] (a) (b) ( Title 対称錐上の単調な相補性問題に対する同次アルゴリズム ( 数値最適化の理論と実際 ) Author(s) 吉瀬 章子 Citation 数理解析研究所講究録 (2008) 1584: 245-255 Issue Date 2008-02 URL http://hdlhandlenet/2433/81483 Right Type Departmental Bulletin Paper Textversion

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似)

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似) 数理解析研究所講究録第 2013 巻 2016 年 1-6 1 共役類の積とウィッテン \mathrm{l} 関数の特殊値との関係に ついて 東京工業大学大学院理工学研究科数学専攻関正媛 Jeongwon {\rm Min} Department of Mathematics, Tokyo Institute of Technology * 1 ウィツテンゼータ関数とウィツテン \mathrm{l}

More information

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun 1786 2012 128-142 128 Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Masakazu Onitsuka) Department of General Education Miyakonojo National

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

A 21 A.1 L p A A.3 H k,p () A

A 21 A.1 L p A A.3 H k,p () A Analysis III Functional Analysis III 25 10 3 2 (10:40-12:10) 1 1 1.1 n R n or C n.......................... 1 1.2 ( ) (Linear sp. (Vector sp.))................. 1 2 (Normed Spaces) 2 2.1 (Norm).....................................

More information

Mathematica を活用する数学教材とその検証 (数式処理と教育)

Mathematica を活用する数学教材とその検証 (数式処理と教育) $\bullet$ $\bullet$ 1735 2011 115-126 115 Mathematica (Shuichi Yamamoto) College of Science and Technology, Nihon University 1 21 ( ) 1 3 (1) ( ) (2 ) ( ) 10 Mathematica ( ) 21 22 2 Mathematica $?$ 10

More information

: 1g99p038-8

: 1g99p038-8 16 17 : 1g99p038-8 1 3 1.1....................................... 4 1................................... 5 1.3.................................. 5 6.1..................................... 7....................................

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

IPSJ SIG Technical Report Vol.2011-HPC-131 No /10/6 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus T

IPSJ SIG Technical Report Vol.2011-HPC-131 No /10/6 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus T 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus Toshiya Taami 1 and Aira Nishida 1 The time-domain parallelism, nown as Parareal-in-Time algorithm, has been applied

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

: 2 3 2 3 20-0-25 @ RAMP 20 ( ) RAMP20 20-0-25 / 37 - CVX (Grant & Boyd) (80 ) 60-70 ( ) RAMP20 20-0-25 2 / 37 - CVX (Grant & Boyd) (80 ) 60-70 (Accelerated) Proximal gradient methods ( ) RAMP20 20-0-25

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

22 GG set GG 2 ( ) $N=\{12 \cdots\}$ ( ) ( ) Peano $1arrow^{o}Narrow^{s}N$ $1arrow Xarrow X$ $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ Dedekind $N$

22 GG set GG 2 ( ) $N=\{12 \cdots\}$ ( ) ( ) Peano $1arrow^{o}Narrow^{s}N$ $1arrow Xarrow X$ $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ Dedekind $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ 1466 2006 21-34 21 Polynomial Rings with coefficients in Tambara Functors ( ) Tomoyuki YOSHIDA (Hokkaido Univ) 1 G- $G$ G $X$ $G$ $\mathrm{m}\mathrm{a}\mathrm{p}_{g}(x

More information

A Visually Better Recovered Image Selection for Imaging Inverse Problems

A Visually Better Recovered Image Selection for Imaging Inverse Problems 信号処理 画像処理における凸最適化 小野峻佑東京工業大学像情報工学研究所 2015/11/28 日本オペレーションズ リサーチ学会 最適化の基盤とフロンティア 第 4 回研究部会 @ 理科大神楽坂キャンパス 広がる凸最適化応用 画像復元 生体信号処理 医用画像処理 衛星 / 天体画像処理リモートセンシング 凸最適化 ( 非可微分 制約付き ) 無線通信 圧縮センシング 機械学習 コンピュータビジョン

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $ 863 1994 132-142 132 Horocycle Rigidity (Ryuji Abe) 1 Introductjon Horosphere horocycle v horocycle horocycle flow $\circ$ M. Ratner [Rl horocycle flow N 2 Riemann $M_{c}$ $N_{c},$ $M_{c} $ Ratner $M$

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828 教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 Author(s 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013, 1828: 61-85 Issue Date 2013-03 URL http://hdl.handle.net/2433/194795

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

数理解析研究所講究録 第1986巻

数理解析研究所講究録 第1986巻 1986 2016 55-70 55 Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu Un\ iversity 1 Erd\"os-R\ enyi Erdos-R\ enyi 1959 Erd\"os-R\ enyi [4] 2006 Linial-Meshulam [14] 2000 (cf. [3, 7, 10, 18

More information

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み 非凸性の魅惑 ) Author(s) 中林 健 ; 刀根 薫 Citation 数理解析研究所講究録 (2004) 1349: 204-220 Issue Date 2004-01 URL http://hdl.handle.net/2433/24871 Right Type Departmental Bulletin Paper

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

$\prime i$ (Tetsuya Sakurai) (Tatsuo Torii) (Hiroshi Sugiura) 1 n f(z)=0, n, Durand-Kerner $1)_{(2}$ ), Aberth $2)_{(3}$ ) f(z)=o l, New

$\prime i$ (Tetsuya Sakurai) (Tatsuo Torii) (Hiroshi Sugiura) 1 n f(z)=0, n, Durand-Kerner $1)_{(2}$ ), Aberth $2)_{(3}$ ) f(z)=o l, New Title 高次収束する代数方程式の全根同時反復解法 ( 数値解析と科学計算 ) Author(s) 櫻井, 鉄也 ; 鳥居, 達生 ; 杉浦, 洋 Citation 数理解析研究所講究録 (1990), 717: 1-14 Issue Date 1990-03 URL http://hdlhandlenet/2433/101779 Right Type Departmental Bulletin

More information

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_ $\ovalbox{\tt\small REJECT}$ 1032 1998 46-61 46 SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $dx_{t}=a(t, X_{t}, u)dt+b(t, x_{t}, u)dwt$, $X_{0}=\xi(\omega)$

More information

BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medic

BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medic 1575 2008 73-87 73 BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medicine 1 BORSUK-ULAM, Borsuk-Ulam Borsuk-Ulam 11 (Borsuk-Ulam

More information

(a) (b) (c) 4. (a) (b) (c) p.2/27

(a) (b) (c) 4. (a) (b) (c) p.2/27 338 8570 255 Tel : 048 858 3577 Fax : 048 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru Copyright (C) 2002, Tohru Ikeguchi, Saitama University. All rights reserved.

More information

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec $\mathrm{n}$ 1381 2004 168-181 190 Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Technology Kobe University 1 Introduction 2 (i) (ii) (i)

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

4 Schwarz Schwarz 3 Schwarz reject JR Schwarz ( ) Lagrange Bochner-Schoenberg-Eberlein Banach A A Banach module X BSE (cf. [3, 4, 5,

4 Schwarz Schwarz 3 Schwarz reject JR Schwarz ( ) Lagrange Bochner-Schoenberg-Eberlein Banach A A Banach module X BSE (cf. [3, 4, 5, No.105/2018.1 * (Inequalities and I) ( ) Since I encountered the Kantorovich inequality 22 years ago, I have been somehow fascinated by inequalities. I shall discuss the inequalities I have been involved

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

無制約最適化問題に対する新しい3 項共役勾配法について Title( 計算科学の基盤技術としての高速アルゴリズムとその周辺 ) Author(s) 成島, 康史 ; 矢部, 博 Citation 数理解析研究所講究録 (2008), 1614: Issue Date

無制約最適化問題に対する新しい3 項共役勾配法について Title( 計算科学の基盤技術としての高速アルゴリズムとその周辺 ) Author(s) 成島, 康史 ; 矢部, 博 Citation 数理解析研究所講究録 (2008), 1614: Issue Date 無制約最適化問題に対する新しい3 項共役勾配法について Title( 計算科学の基盤技術としての高速アルゴリズムとその周辺 ) Author(s) 成島 康史 ; 矢部 博 Citation 数理解析研究所講究録 (2008) 1614: 144-155 Issue Date 2008-10 URL http://hdlhandlenet/2433/140106 Right Type Departmental

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理) 1768 2011 150-162 150 : Recurrence plots: Beyond visualization of time series Yoshito Hirata Institute of Industrial Science, The University of Tokyo voshito@sat. t.u\cdot tokvo.ac.ip 1 1. 1987 (Eckmann

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

$\Sigma$ REJECT}$ 152 Stephan [13] Case et al [5] Noisy (Noisy text) $\text{ }$ { $L\cup S S$ } $M$ $M$ $\Lambda_{L}^{r}$ $\mathcal{l}=l_{1}$ $L_{2}$

$\Sigma$ REJECT}$ 152 Stephan [13] Case et al [5] Noisy (Noisy text) $\text{ }$ { $L\cup S S$ } $M$ $M$ $\Lambda_{L}^{r}$ $\mathcal{l}=l_{1}$ $L_{2}$ 1041 1998 151-158 151 * \dagger Masayuki Takeuchi Masako $\mathrm{s}a\mathrm{t}\mathrm{o}$ * \dagger 599-8531 1-1 ( ) $L $ $L $ 1 ( ) Gold [6] 1 ( ) $\{L\}$ { $L\cup S S$ } $\{w_{n} n\geq 1\}\in\Lambda_{L}^{(}$

More information

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木 貴 ; 久保 明達 Citation 数理解析研究所講究録 (2001) 1216: 1-12 Issue Date 2001-06 URL http://hdlhandlenet/2433/41198 Right Type Departmental Bulletin Paper

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information