22 GG set GG 2 ( ) $N=\{12 \cdots\}$ ( ) ( ) Peano $1arrow^{o}Narrow^{s}N$ $1arrow Xarrow X$ $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ Dedekind $N$

Size: px
Start display at page:

Download "22 GG set GG 2 ( ) $N=\{12 \cdots\}$ ( ) ( ) Peano $1arrow^{o}Narrow^{s}N$ $1arrow Xarrow X$ $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ Dedekind $N$"

Transcription

1 $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ Polynomial Rings with coefficients in Tambara Functors ( ) Tomoyuki YOSHIDA (Hokkaido Univ) 1 G- $G$ G $X$ $G$ $\mathrm{m}\mathrm{a}\mathrm{p}_{g}(x Y)$ GY GY $\mathrm{m}\mathrm{a}\mathrm{p}_{g}(g/h X)\cong X^{H}$ ; $\lambda-\lambda(h)$ $X^{H}=\{x\in X hx=x(\forall h\in H)\}$ $H$ - GH $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ GG GG $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $X+Y$ GG $X$ $Y$ $X$ $Y^{X}$ $g\lambda$ GG ( $g\lambda(x)=g\lambda( g^{-1}x)$ ) $X\mathrm{x}(-)$ $(-)^{X}$ set $-\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ (-) $\mathrm{x}x\dashv(-)^{x}$ ie $\mathrm{m}\mathrm{a}\mathrm{p}_{g}$ (A ) $\mathrm{x}x$ $Y$ $\cong \mathrm{m}\mathrm{a}\mathrm{p}_{g}(a Y^{X})$ ( ) ( ) $(A+B)><X\cong A\cross X+B\mathrm{x}X$ $(A \mathrm{x}b)^{x}\cong A^{X}\mathrm{x}A^{Y}$ GG $f$ $Xarrow Z$ $gy-z$ ( pullback) GG $X\mathrm{x}_{Z}Y--\{(x y) f(x)=g(y)\}$

2 22 GG set GG 2 ( ) $N=\{12 \cdots\}$ ( ) ( ) Peano $1arrow^{o}Narrow^{s}N$ $1arrow Xarrow X$ $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ Dedekind $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}/\cong$ $\mathrm{s}\mathrm{e}\mathrm{t}/\cong$ $N$ Grothendieck $B(G)=\mathrm{G}\mathrm{r}\mathrm{o}(\mathrm{s}\mathrm{e}\mathrm{t}^{G}/\cong)$ Burnside Dedekind $X\mathrm{x}Y$ NY $(a_{xy})$ ( $Y$ $X$ ) $[XA-^{T}\underline{l}Y]$ $a_{xy}= l^{-1}(x)\cap r^{-1}(y) $ $A= \prod A_{xy}$ $ A_{xy} =a_{xy}$ $x\in X$ $y\in Y$ $xy$ $[X-Aarrow Y]\circ[Y-Barrow Z]=[X-A\mathrm{x}_{Y}B-Y]$ NN Sp(set) $[X\underline{l}$ $X\mathrm{x}Y$-=\pi f ij GG $A-^{r}Y]$ GG biproduct $(\mathrm{s}\mathrm{e}\mathrm{t}^{g})$ $(\mathrm{s}\mathrm{e}\mathrm{t}^{g})arrow$ Sp Sp Set

3 $\cdot$ 23 $Z$ - ( $X\cross Y$ $\mathrm{g}\mathrm{r}\mathrm{o}(\mathrm{s}\mathrm{e}\mathrm{t}^{g}/x\mathrm{x}y)$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}/x\mathrm{x}y$ ( GG ) Grothendieck ) $\mathrm{s}\mathrm{p}^{+}(\mathrm{s}\mathrm{e}\mathrm{t}^{g})$ 3 ffl Mackery $M$ $M$ $-M\mathrm{S}\mathrm{p}(\mathrm{s}\mathrm{e}\mathrm{t})^{\mathrm{o}\mathrm{p}}arrow \mathrm{s}\mathrm{e}\mathrm{t}$ $M$ $M(X)=M^{X}=\mathrm{M}\mathrm{a}\mathrm{p}(X M)$ $[XAarrow Y]r-\underline{l}(M^{X} arrow M^{Y})$ $(m_{x})$ $\mapsto$ $(n_{y})$ $n_{y}= \sum_{a\in r^{-1}(y)}m_{l(a)}$ $M=M(1)l\mathrm{h}$ $M$ 0 $M(\emptyset)=1arrow M(1)=M$ $M\mathrm{x}M=M(1)\mathrm{x}M(1)\cong M(2)arrow M(1)=M$ $\mathrm{s}\mathrm{p}^{+}(\mathrm{s}\mathrm{e}\mathrm{t}^{g})^{\mathrm{o}\mathrm{p}}arrow \mathrm{s}\mathrm{e}\mathrm{t}$ $\mathrm{s}\mathrm{p}(\mathrm{s}\mathrm{e}\mathrm{t}^{g})arrow \mathrm{a}\mathrm{b}$ Mackey $\emptyset$ $\mathcal{e}$ ( $X+Y$) pull-back $\mathrm{m}\mathrm{o}\mathrm{d}_{k}$ $k$ Mackey $\mathcal{e}-\mathrm{m}\mathrm{o}\mathrm{d}_{k}$ $(M^{*} M_{*})$ $M^{*}(X)=M_{*}(X)$ $M(X)$ $f$ $X-Y$ $f^{*}--m^{*}(f)$ $M^{*}(Y)-M^{*}(X)$ $f_{*}=^{l}m_{*}(f)$ $M(X)arrow M^{*}(Y)$ $\mathcal{e}arrow \mathrm{s}\mathrm{e}\mathrm{t}$ $M=(M^{*} M_{*})$ Mackey (M1) $M^{*}$ $M(\emptyset)=1$ $M(X+Y)\cong M(X)\mathrm{x}M(Y)$

4 REJECT} Y$ $\mathrm{r}\mathrm{e}\mathrm{s}$ $\mathrm{c}\mathrm{o}\mathrm{r}$ $\mathrm{p}\mathrm{b}g$ REJECT} f$ 24 $W$ 2 $X$ $M(W)arrow M(X)p_{*}$ (M2) $q\ovalbox{\tt\small $Z\ovalbox{\tt\small $\Rightarrow$ $M(Y)M(Z)q^{*\ovalbox{\tt\small REJECT} \mathrm{c};f^{*}}\underline{g_{*}}$ $\mathrm{c}$ $\mathrm{p}\mathrm{b}$ ( pullback ) ( ) Mackey $M(X)$ $+M(X)\mathrm{x}M(X)\cong M(X+X)M(X)\underline{\nabla_{*}}$ $1=M(\emptyset)-M(X)$ $f^{*}$ $f_{*}$ $XX\underline{}+YY\underline{j}$ $M(X)M(Xi_{*}\underline{\underline{i^{l}}}+Y)\overline{\overline{j_{*}}}j^{*}M(Y)$ ( $\mathrm{s}$ ) biproduct $S$ biporduct $\mathcal{e}=\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ ( GG ) (M1) Mackey $M$ $H\leq G$ $M(G/H)$ $M(G/H)$ $M(H)$ $H\leq K\leq G$ $g\in G$ GK ( $H^{\mathit{9}}=g^{-1}Hg$) $xh-xk$ $xh-xgh^{\mathit{9}}$ $M(K)arrow M(H);\beta-\beta\downarrow H$ cor $M(H)arrow M(K);\alpha\mapsto\alpha\uparrow^{K}$ $M(H)arrow M$ (H $\mathrm{i}^{\alpha-\alpha^{g}}$ $\beta\downarrow_{h}\uparrow K=$ $(K H)\beta$ $(\forall H\leq K\leq G \beta\in M(K))$ $\mathrm{s}3\mathrm{a}]$ ) ([Yo ) (1) kgg $V$ $X-\mathrm{E}\mathrm{x}\mathrm{t}_{kG}^{n}(kX M)$ $H(\leq G)-H^{n}(G V)$ Hecke GG $X-Y$ ; $kx-ky$ $f$ $f $ $ky-$ $kx$ $f^{*}$ $H\leq K$ $f_{*}$ $f$

5 25 $H^{n}(H V)-H^{n}(K V)$ transfer $H^{n}(K V)-H^{n}(H V)$ Grothendieck (2) GG $X$ $X$ $CG$ $R(X)$ $X$ $CG$ $X$ ( $X$ $x-y$ $x=gy$ $G$ $g$ $G$ ) $X^{\mathrm{o}\mathrm{p}}-\mathrm{M}\mathrm{o}\mathrm{d}_{k}$ $M(G/H)$ $R(H)$ $X\mapsto R(X)$ Mackey $A-X$ ) $\mathrm{s}\mathrm{e}\mathrm{t}^{g}/x$ (3) $X$ GG ( GG $B$ $X\vdash-\Rightarrow \mathrm{g}\mathrm{r}\mathrm{o}(\mathrm{s}\mathrm{e}\mathrm{t}^{g}/x)$ (Cro Grothendieck ) Mackey Bumnside $B(G/H)$ Burnside $B(H)$ ( HH Grothendieck ) $M\cross$ $L$ $M$ $N$ set $arrow \mathrm{m}\mathrm{o}\mathrm{d}_{k}$ Mackey $\rho$ $Narrow L$ paring $\rho$ $\rho_{xy}$ $M(X)\mathrm{x}N(Y)arrow L(X\mathrm{x}Y)$ $(X Y\in \mathrm{s}\mathrm{e}\mathrm{t}^{g})$ $p_{x}$ $M(X)\mathrm{x}N(X)arrow L(X);(\alpha \beta)-\alpha\cdot\beta$ (P1) $f^{*}(\alpha \cdot\beta )=f^{*}(\alpha )\cdot f^{*}(\beta )$ ; (P2) $f_{*}(\alpha\cdot f^{*}(\beta ))=f_{*}(\alpha)\cdot\beta $ ; (P3) $f_{*}(f^{*}(\alpha )\cdot\beta)=\alpha \cdot f_{*}(\beta)$ (P2) (P3) Frobenius paring $A\mathrm{x}A-A$ ) $A$ $f^{*}$ ( $A(X)$ kk paring $A\mathrm{x}M-M$ $\mathcal{o}$ (1) $(K O F)$ r $K$ 0 $F$ $p>0$ $K$ $F$ $R_{K}$ $R_{F}$ Mackey $R_{F}$ $P_{F}$ $R$

6 $2\epsilon$ $f\ovalbox{\tt\small REJECT}$ $\mathrm{f}_{\overline{\mathrm{r}}}^{\mathrm{r}}$ Cartan $cr-r_{f}$ $dr-r_{f}$ R $\text{ }R-$ (2) kgg pairing $M\mathrm{x}Narrow L$ $\mathrm{e}\mathrm{x}\mathrm{t}_{kg}^{m}(kx M)\mathrm{x}\mathrm{E}\mathrm{x}\mathrm{t}_{kG}^{n}(kY N)-\mathrm{E}\mathrm{x}\mathrm{t}^{m+n}kG(x[X\mathrm{x}Y] L)$ $\mathrm{e}\mathrm{x}\mathrm{t}^{**}(kx k)$ Mackey pairing Mackey (3) Burnside $B$ Mackey paring $B(X)\rangle \mathrm{e}b(y)-arrow B(X\cross Y)$ $X\mathrm{x}Y)$ $((Aarrow X) (Barrow Y))\mapsto(A\cross Barrow$ $B(X)$ $[Aarrow X]\cdot[Barrow$ Mackey $M$ $X]=[A\mathrm{x}_{X}Barrow X]$ BB $B\mathrm{x}Marrow M$ $B(X)\mathrm{x}M(X)arrow M(X);[Aarrow^{\alpha}X]m=\alpha_{*}\circ\alpha^{*}(m)$ 4 $\mathrm{e}^{\backslash }$ GG exponential diagram $X$ $p$ $AX\mathrm{x}_{Y}\Pi_{f}(A)\underline{e}$ if $Y$ $\Pi_{\mathrm{f}}(A)$ $q$ $\Pi_{f}(A)$ $fa=\{(y \sigma) y\in Y \sigma q^{-1}(y)arrow Ap\sigma=\mathrm{i}\mathrm{d}\}$ $q(y \sigma)\}arrow y$ $f $ $(x y \sigma)\}-(y \sigma)$ $e(x y \sigma)\mapsto\sigma(x)$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}arrow \mathrm{s}\mathrm{e}\mathrm{t}$ $T=(T_{!} T^{*} T)$ (Set ) $\mathrm{m}\mathrm{o}\mathrm{d}_{k}$

7 27 (T1) $(T_{!} T^{*})$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}arrow \mathrm{s}\mathrm{e}\mathrm{t}$ (T ) set $T^{*}$ $arrow \mathrm{s}\mathrm{e}\mathrm{t}$ Mackery $T (X)=T^{*}(X)=T(X)$ $T(X)$ (T2) exponential diagram $\circ p_{!}=q_{!}\circ f \circ e^{*}$ $f$ $f_{!}$ $f$ transfer $f$ transfer (T1) $T(X)$ (T2) $T(X)$ $f_{!}$ $f^{*}$ $f$ $f$ $T(1)$ $f$ $Xarrow Y$ $K\otimes_{k}T$ ( boldt(x) $f^{*}(t(y))$ $K\supset k\supset T(1)$ (1) $R$ kk $X-E_{R}(X)=\mathrm{E}\mathrm{x}\mathrm{t}_{kG}^{**}(kX R)$ $E_{R}(XG/H)\cong H^{**}(H R)$ ( ) $f_{!}$ Eckman transger $f$ Evens transfer (2) kk $R$ $G$ $E_{R}^{0}$ $X\sim \mathrm{m}\mathrm{a}\mathrm{p}_{g}(x R)$ $f$ $Xarrow Y$ $f_{!}(\alpha)$ $yrightarrow$ $\sum$ $\alpha(x)$ $\alpha\in \mathrm{m}\mathrm{a}\mathrm{p}_{g}(x R)$ $x\in f^{-1}(y)$ $f^{*}(\beta)$ $x-\beta(f(x))$ $\alpha\in \mathrm{m}\mathrm{a}\mathrm{p}_{g}(x R)$ $f(\alpha)$ $y \mapsto\prod_{x\in f^{-1}(y)}\alpha(x)$ $\alpha\in \mathrm{m}\mathrm{a}\mathrm{p}_{g}(x R)$ (3) $R$ $X-R(X)=\mathrm{G}\mathrm{r}\mathrm{o}(\mathrm{M}\mathrm{o}\mathrm{d}_{CG}/X)(X$ CGG Grothendieck ) $R(X)=\{(\alpha_{x})_{x\in X} \alpha_{x}\in R(G_{x}) \alpha_{gx}=\alpha_{x}\}g$ $G$- $f$ $Xarrow Y$ $-\Sigma f\dashv f^{*}\dashv$ $f$ $\Sigma_{f}$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}/x-\mathrm{s}\mathrm{e}\mathrm{t}^{g}/y;(ax)\}-\underline{\alpha}(f\mathrm{o}\alphaa-y)$ $f^{*}$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}/y-\mathrm{s}\mathrm{e}\mathrm{t}^{g}/x;(barrow Y)\beta--arrow(X\mathrm{x}_{Y}BX)\underline{\mathrm{p}\mathrm{r}}$ $f$ $\bm{\mathrm{s}}\mathrm{e}\mathrm{t}^{g}/xarrow \mathrm{s}\mathrm{e}\mathrm{t}^{g}/y;(ax)\underline{\alpha}-\mathrm{h}(\pi f(a)\underline{q}y)$

8 28 Burnside $f_{!7}f^{*}$ $f$ $f $ $f^{*}$ 5 (KG ) * $G$ KG ( ) $f(t)= \sum_{x}a_{x}t^{x}$ $X$ G $t^{x}$ GX $X$ $t^{\emptyset}=1$ $t^{x+y}=t^{x}\cdot t^{y}$ $t^{g/h}$ ( ) ( $H$ $G$ ) ( ) G\beta set (t) $= \sum_{x}\frac{t^{x}}{ \mathrm{a}\mathrm{u}\mathrm{t}(x) }=\exp(\sum_{h\leq G}\frac{t^{G/H}}{(G\cdot H)})$ $t^{x}$ { $t^{ X }$ Wohlfahrt $\sum_{n=0}^{\infty}\frac{ \mathrm{h}\mathrm{o}\mathrm{m}(gs_{n}) }{n!}t^{n}=\exp(\sum_{h\leq G}\frac{t^{(GH)}}{(GH)}\cdot)$ $(1+t^{M})^{N}$ GG set Epi plethysm RForest set $[\delta Aarrow 2^{M}](2=\{01\})$ $A(t)$ $A(t)= \sum_{a\in A}t^{ \delta(a) }$

9 2\S $[\delta Aarrow 2^{M}]$ ( $R\subseteq A\mathrm{x}M$ ) GG $[\delta Aarrow 2^{M}]$ ( $M$ ) $M-M $ $[Aarrow 2^{M}]=[Aarrow 2^{M}arrow 2^{M }]$ $[Aarrow 2^{M}]$ $A$ $[Aarrow 2^{M}]+[Barrow 2^{N}]$ $=$ $[Aarrow 2^{M}arrow 2^{M+N}]+[Barrow 2^{N}arrow 2^{M+N}]$ $=$ $[A+Barrow 2^{M+N}]$ $[Aarrow 2^{M}]\cdot[Barrow 2^{N}]$ $=$ [A $\mathrm{x}b-2^{m}\mathrm{x}2^{n}=2^{m+n}$ ] $\partial A(t)=tdA(t)/dt$ $\partial[a2^{m}]\underline{\delta}=[\partial Aarrow 2^{M}]\delta$ $\partial A=$ { $(\mathrm{i}$ $a)\in N\mathrm{x}$ A } $ \mathrm{i}\in\delta(a)$ $\delta(\mathrm{i} a)=\delta(a)$ $[Barrow 2^{N}]\circ[Aarrow 2^{M}]=[B\circ Aarrow 2^{M\mathrm{x}N}]$ $B\circ A=\{(b \sigma) b\in B \sigma \delta_{b}(b)arrow A\}$ $\delta_{b\mathrm{o}a}(b \sigma)=\{(ij) j\in\delta_{b}(b) i\in\delta_{a}(\sigma(j))\}$ set $\partial(a\cdot B)=\partial(A)\cdot B+A\cdot\partial(B)$ $\partial(b\circ A)=\partial(A)\cdot(\partial B)\circ A$ $[A2^{M}]\underline{\delta}$ $X-2$ GG $X$ $A(X)$ $\delta$ $\eta^{n}$ $(1+X)^{M}arrow 2^{M}$ $1=\{0\}$ $2=\{01\}$ $\eta$ $0\mapsto 1$ $x(\in X)-1$ $1+$ $\lambda\vdash-arrow$ $\eta^{n}$ $\lambda^{-1}(1)$ MM Jim $B(2^{M})$ l $B(2^{M})$ $\mathrm{i}\mathrm{m}$ \leftarrow

10 $\chi_{\eta}$ $\mathrm{e}\mathrm{v}$ 30 6 \neq $arrow $T$ set $i2^{n}arrow 2^{N }$ ; $R(\subseteq N)\mapsto i(r)$ $T(2^{N })$ $\mathrm{i}^{*}$ $N-N $ $T(2^{N})arrow$ T- \mathrm{m}\mathrm{o}\mathrm{d}_{k}$ $T(2^{N })arrow T(2^{N})$ * $T[]$ $= \lim_{arrow}t(2^{n})$ $T[[ \cdot]]=\lim_{arrow}t(2^{n})$ $T[\cdot]\cross T[\cdot]-T[\cdot]$ $T[[\cdot]]\mathrm{x}T[[\cdot]]-T[[\cdot]]$ $T(2^{M})\mathrm{x}T(2^{N})-T(2^{M}\mathrm{x}2^{N})\cong T(2^{M+N})$ ($td/dt$ ) $\partial$ $T[\cdot]arrow T[\cdot]$ $T[[\cdot]]arrow T[[\cdot]]$ $\in_{m}=\{(\mathrm{i} R)\in M\mathrm{x}2^{M} \mathrm{i}\in R\}$ $p(\mathrm{i} R)-R$ $\partialt(2^{m})arrow T(p^{*}\in_{M})\underline{p!}\succ T(2^{M})$ Leibniz $\partial(a\cdot B)$ $=$ $\partial(a)\cdot B+A\cdot\partial(B)$ $\partial^{n}(a\cdot B)$ $=$ $\sum_{k=0}^{n}(\begin{array}{l}nk\end{array})\partial^{n-k}(a)\cdot\partial^{k}(b)$ (-) (X) $T[\cdot]arrow T(1)$ $T(2^{N})arrow T((1(\eta^{N})^{*}+X)^{N})\underline{\tau_{!}}T(1)$ $2^{N\underline{\eta^{N}}}(1+X)^{N}-^{\tau}1$ $T[\cdot]\mathrm{x}T[\cdot]arrow T[\cdot];(B A)-B\circ A$ GA $X$ $Y$ $XY=X\mathrm{x}Y$ $p$ $1+2^{M}arrow 2^{M};\mathrm{o}-\emptyset$ $R\mapsto R$ $\langle p \chi_{\eta}\rangle$ $1+2^{M}arrow 2;0\mapsto 0$ $R\mapsto 1$ $1+2^{M}arrow 2^{M}\mathrm{x}2(=Z)$ $Z^{N}Narrow Z;(\lambda b)-\lambda(b)$

11 $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $\mathrm{o}$ 31 GG $2^{M}arrow 1\mathrm{i}\mathrm{n}\mathrm{c}+2^{M}\langle pa\chi\rangle 2^{M}\cross 2(=Z)\underline{\epsilon \mathrm{v}}z^{n}narrow^{\mathrm{p}\mathrm{r}}z^{n}=2^{mn}\mathrm{x}2^{n}$ $T$ $T(Z^{N})=T(2^{MN}2^{N})$ $T(2^{M})\underline{\mathrm{i}}\mathrm{n}\mathrm{c}4T(1+2^{M})-arrow T(Z)arrow T(Z^{N}N)\langle p\chi_{\eta})_{!}\mathrm{e}\mathrm{v}^{*}arrow^{\mathrm{p}\mathrm{r}}$ $2^{MN}2^{N}arrow^{\mathrm{P}^{\mathrm{I}}}$ $2^{N}$ $T(2^{N})arrow^{\mathrm{p}\mathrm{r}^{*}}T(2^{MN}2^{N})$ $T$ $T(2^{N})\mathrm{x}T(2^{M})$ $arrow T(2^{MN}2^{N})\mathrm{x}T(2^{MN}2^{N})$ $T(2^{MN}2^{N})arrow^{\mathrm{p}\mathrm{r}_{!}}T(2^{MN})$ $\partial(b\circ A)=\partial(A)\cdot(\partial(B)\circ A)$ 7 Hom-set GG Mackey $\mathcal{e}$ $\mathcal{e}$ (T1) 1 $X\mathrm{x}_{Z}Y$ $\emptyset$ $(\mathrm{t}1^{7})\mathcal{e}$ $\langle$ $X+Y$ $\mathrm{x}y\mathcal{e}-\mathcal{e};x\mapsto X\cross Y$ (T2) (-) $Z-Z^{Y}$ $X$ $Z$ $X\mathrm{x}Y$ $\mathrm{h}\mathrm{o}\mathrm{m}(x\mathrm{x}y Z)\cong \mathrm{h}\mathrm{o}\mathrm{m}(x Z^{Y})$

12 32 $t$ $1arrow\Omega$ (T3) $\mathrm{h}\mathrm{o}\mathrm{m}(x \Omega)\cong \mathrm{s}\mathrm{u}\mathrm{b}(x)$ ; $frightarrow(x\mathrm{x}_{\omega}1\llcorner\rightarrow X)$ Sub(X) $X$ Set $\Omega$ $Z^{Y}=\mathrm{M}\mathrm{a}\mathrm{p}(Y Z)$ 2 $2=\{01\}$ (T3) $A\subseteq X$ $\chi_{a}$ $X-2$ set ( (Tl ) ) $l$ $\mathcal{e}$ $S$ $\mathrm{s}\mathrm{e}\mathrm{t}^{s}$ SS RForest $\mathrm{c}^{\mathrm{o}\mathrm{p}}$ [ set] $\mathcal{e}$ set (T2) $X\mathrm{x}(Y+Y )\cong X\mathrm{x}Y+X^{\cdot}\cross Y $ $\mathcal{e}/$ $N$ Burnside Mackey Grothendieck $B(\mathcal{E})=\mathrm{G}\mathrm{r}\mathrm{o}(\mathcal{E}/\cong)$ $\mathcal{e}/x$ $Aarrow X$ $f$ $Xarrow Y$ $\Sigma_{f}$ $\mathcal{e}/x$ $-f^{*}-$ $\mathcal{e}/y$ $\Sigma_{f}\dashv f^{*}\dashv\pi_{f}*$ $\Pi_{f}$ $\mathrm{b}\mathrm{u}\mathrm{r}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}$ $X\mapsto(\mathcal{E}/X)/\cong$ ( ) Burnside $B(X)=$ Gro(E/X) $\Pi_{f}$ induction Grothendieck $B(X)$ Sub(X) $X$ $f$

13 $\exists_{f}$ $\forall_{f}$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ 33 $Xarrow Y$ Sub(X) $-f^{-1}$ Sub(Y) $X-\mathrm{S}\mathrm{u}\mathrm{b}(X)$ $\mathcal{e}$ $T$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ $T(\Omega^{N})$ $T(\Omega^{N}/ aut(n))$ * $T[ \cdot]=\lim_{arrow}t(\omega^{n})$ $T[[ \cdot]]=\lim_{arrow}t(\omega^{n})$ $N$ $X$ $\eta$ $1+X$ $X$ - ( $\tilde{x}$ $\overline{x}arrow Y$ $A(\subseteq X)arrow Y$ ) KY ( $K$ $\mathcal{e}$ ) 8 (A) GG Burnside P- (B) ( MacWilliams ) (Kumamoto JMath 1993) Burnside

14 34 (C) Plethysm Epi Burnside $k[x_{1} x_{2} \cdots]$ plethysm Epi 1 $h$ $X-\mathrm{S}\mathrm{u}\mathrm{b}(X)$ (D) Sub(X) 2- $X-\mathcal{E}/X$ (?) $\lim_{arrow}\mathcal{e}/\omega^{n}$ [1] DTambara On multiplicative transfer Comm Algebra 21 (1993) [2] PTJohnstone Toops Theory Academic Press [3] Yoshida Tomoyuki MacWilliams identities for linear codes with group action Kumamoto J Math 6 (1993) [4] Yoshida Tomoyuki Categorical aspects of generating functions I Exponential formulas and Krull-Schmidt categories J Algebra 240 (2001) no

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin) 教科専門科目の内容を活用する教材研究の指導方法 : TitleTeam2プロジェクト ( 数学教師に必要な数学能力形成に関する研究 ) Author(s) 青山 陽一 ; 中馬 悟朗 ; 神 直人 Citation 数理解析研究所講究録 (2009) 1657: 105-127 Issue Date 2009-07 URL http://hdlhandlenet/2433/140885 Right

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

超幾何的黒写像

超幾何的黒写像 1880 2014 117-132 117 * 9 : 1 2 1.1 2 1.2 2 1.3 2 2 3 5 $-\cdot$ 3 5 3.1 3.2 $F_{1}$ Appell, Lauricella $F_{D}$ 5 3.3 6 3.4 6 3.5 $(3, 6)$- 8 3.6 $E(3,6;1/2)$ 9 4 10 5 10 6 11 6.1 11 6.2 12 6.3 13 6.4

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

March 4, R R R- R R

March 4, R R R- R R March 4, 2016 1. R- 2 1.1. R- 2 1.2. R- R- 4 1.3. R- 5 2. 6 2.1. 6 2.2. 6 2.3. 6 2.4. 7 3. 8 3.1. 8 3.2. 8 4. 10 4.1. 10 4.2. 10 4.3. 10 5. 12 5.1. 12 5.2. 14 6. Hom 14 6.1. Hom 14 6.2. Hom 15 6.3. Hom

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp 200 Miller-Rabin 2002 3 Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor 996 2 RSA RSA Solovay-Strassen Miller-Rabin [3, pp. 8 84] Rabin-Solovay-Strassen 2 Miller-Rabin 3 4 Miller-Rabin 5 Miller-Rabin

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{ 1454 2005 111-124 111 Rayleigh-Benard (Kaoru Fujimura) Department of Appiied Mathematics and Physics Tottori University 1 Euclid Rayleigh-B\ enard Marangoni 6 4 6 4 ( ) 3 Boussinesq 1 Rayleigh-Benard Boussinesq

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information