å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°, ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊

Size: px
Start display at page:

Download "å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°, ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊"

Transcription

1 , 2 August 28 (Fri), 2016 August 28 (Fri), / 64

2 Outline August 28 (Fri), / 64

3 fibonacci Lucas 2 August 28 (Fri), / 64

4 Dynamic Programming R.Bellman Bellman Continuum ( ) Eye of the Hurricane, an autobiography (WikipediA ) August 28 (Fri), / 64

5 August 28 (Fri), / 64

6 ,,,,,,,, (The Da Vinci Code by Dan Brown 2003 )!! (Wikipedia) 1,1,2,3, 5, 8, 13, 21 34, 55, 89, n F n August 28 (Fri), / 64

7 4 3 August 28 (Fri), / 64

8 4 3 4 ( ± 1 ) 2 ( 1 = 2 r 1 r 2 r 3 r 4 r r r ) r4 2 3 (r 3 ) 4 r = r 4 1 r = 1 r r 2 1 = F n 1 + F n 2 r n r 2 r 1 August 28 (Fri), / 64

9 August 28 (Fri), / 64

10 Fibonacci The Man August 28 (Fri), / 64

11 Fibonacci Statue in Pisa August 28 (Fri), / 64

12 Who is the Man? August 28 (Fri), / 64

13 Fibonacci( ): Leonard of Pisa Èdouard Lucas( ):Fibonacci sequence and the test for Mersenne primes The Fibonacci Association Official Website 1963 The Fibonacci Quarterly, Internationa Conferences from 1984 biyearly : OEIS(On-line Encyclopedia of Integer Sequences), founded by in 1964 by N.J.A.Sloane August 28 (Fri), / 64

14 L.E.Sigler translation by Google Scholar Leonardo Pisano (Fibonacci): The Book of Squares(2013) Fibonacci s Liber abaci: a translation into modern English of Leonardo Pisano s Book of calculation(2002): August 28 (Fri), / 64

15 August 28 (Fri), / 64

16 Édouard Lucas August 28 (Fri), / 64

17 Édouard Lucas August 28 (Fri), / 64

18 R.Knott Homepage: August 28 (Fri), / 64

19 2 (Kiefer) P.Whittle Optimization over Times: Dynamic Programming and Stochastic Control, Wiley ,, Integer Partitions by G.E.Andrews. Pattern Identities, A.D.Healy, math192.pdf 2001, (k, l)-sequence August 28 (Fri), / 64

20 3 Kalman Filter; ( ) Riccati J.Donoghue; The Kalman Filter for Complex Fibonacci Systems, ISRN Signal Processing vol.2012, Article ID , 5 page. Ladder( ) network : Morgan-Voyce; Lader network analysis using Fibonacci numbers, Proc.IRE, IRE Trans, on Circuit Theory, Sep,1959, pp August 28 (Fri), / 64

21 Fibonaci n ; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 F n ; 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 Lucas n ; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 L n ; 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123 (n = 0, 1) n ; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, x n ; 100, 1, 101, 102, 203, 305, 508, 813, 1321, 2134, 813 = F F 7, 1321 = F F 8, 3455 = F F 10, August 28 (Fri), / 64

22 x 2 x 2 x 1 = 1 + x + 2x 2 + 3x 3 + 5x 4 + 8x = = = August 28 (Fri), / 64

23 Lucas sequence: x n = p x n 1 q x n 2 (i) Fibonacci number p = 1, q = 1 x n = x n 1 + x n 2 x 0 = 0, x 1 = 1, (ii) Lucas number p = 1, q = 1 x n = x n 1 + x n 2 x 0 = 2, x 1 = 1, (iii) Pell number p = 2, q = 1 x n = 2x n 1 + x n 2 x 0 = 0, x 1 = 1, x 2 = 2, x 3 = 5, x 4 = 12, (vi) Mersenne number p = 3, q = 2 x n = 3x n 1 2x n 2 x 0 = 0, x 1 = 1, x 2 = 3, x 3 = 7, x 4 = 15, M 2 n 1 August 28 (Fri), / 64

24 F 6 = 2 3, F 8 = 3 7, F 9 = 2 17, F 10 = 5 11, F 12 = , F 14 = 13 29, F 15 = , F 18 = , F 20 = , F 21 = , F 24 = , F 28 = , F 30 = , F 35 = , F 36 = , F 42 = , F 70 = , (J.H.Halton; FQ 1966) August 28 (Fri), / 64

25 1 Fn 2 F n 1 F n+1 = ( 1) n 1 2 GCM(F m, F n ) = F GCM(m,n) 3 August 28 (Fri), / 64

26 August 28 (Fri), / 64

27 Fibonacci Polynomial Hoggatt,V.Jr.,Long,C.T.(FQ, 1974) Definition 1 f n+2 (x) = x f n+1 (x) + f n (x); f 0 (x) = 0, f 1 (x) = 1. u n+2 (x, y) = x u n+1 (x, y) + y u n (x, y); u 0 (x, y) = 0, u 1 (x, y) = 1. August 28 (Fri), / 64

28 Fibonacci Polynomial 2 n u n (x, y) F n = u n (1, 1) x 1 3 x 2 + y 2 4 x 3 + 2xy 3 5 x 4 + 3x 2 y + y x 5 + 4x 3 y + 3xy x 6 + 5x 4 y + 6x 2 y 2 + y 3 13 August 28 (Fri), / 64

29 Hoggatt and Long (FQ 1974) Corollay 10 (page 118) For n 2, n even, and for n 2, n odd, u n (x, y) = x Π (n 2)/2 k=1 u n (x, y) = x Π (n 1)/2 k=1 ( x 2 + 4y cos 2 kπ n ( x 2 + 4y cos 2 kπ n ) ) August 28 (Fri), / 64

30 Real number sequences; F n = 1 {ϕ n ( 1/ϕ) n } 5 ( = Π [(n 1)/2] k= cos 2 kπ ) n L n = ϕ n + ( 1/ϕ) n n = 1, 2, n = 1, 2, where Goledn Raio: ϕ = August 28 (Fri), / 64

31 Continuous Fibonacci sequence August 28 (Fri), / 64

32 Extended Fibonacci numbers cos(nπ) = ( 1) n (n = 0, ±1, ±2, ), x F x = 1 { ϕ x 1 } 5 ϕ x cos(πx) L x = F x 1 + F x+1 J.Donoghue ISRN Signal Processing 2012 ( 1) x = e iπx = cos(πx) + i sin(πx), i = 1 August 28 (Fri), / 64

33 Complex Fibonacci numbers and Lucas REFERENCE: Horadam,A.F.,Shannon,A.G.:Finbonacci and Lucas Curves, FQ, vol , Good,I.J.:Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio(Condensed Version), J. Opr. Res Soc. 1992(43) , Garnier,N. and O.Pamarè(FQ 2008): Fibonacci numbers and trigonometric identities, intrigue(!) How could we connect cos 2kπ n cos 2kπ n+1? and August 28 (Fri), / 64

34 Complex Fibonacci numbers and Lucas REFERENCE2: DISMAY( ): Fibonacci numbers are linked with the arithmetic of Q( 5) and not with that of Q(exp(2iπ/n)). Horadam,A.F.: A Generalized Fibonacci Sequence, Amer Math Month 1961 (vol. 68(5) ), Complex Fibonacci Numbers and Finobacci Quaternions, Amer Math Month 1963 (vol.70(3) ). August 28 (Fri), / 64

35 Dymanic Programming by R.Bellman WikipediA : (1) optimal substructure (2) principle of optimality August 28 (Fri), / 64

36 2 2 c x n 1 x n 3 c x n 1 x n 3 x n 5 x 2 = x n x n 2 x n 4 2 (xn 2 + xn 1 2 ) (x n x n 3 2 ) c x n c = x n + x n 1 c x n = x n 1 [ min (x 2 x n,x n 1,x n 2, n + xn 1) 2 + (xn xn 3) 2 + ] August 28 (Fri), / 64

37 ( ) + ( ) = 27 August 28 (Fri), / 64

38 ( ) + ( ) = 15 27( ) August 28 (Fri), / 64

39 ( ) + ( ) + ( ) = 171 August 28 (Fri), / 64

40 ( ) + ( ) + ( ) = 108 August 28 (Fri), / 64

41 2 c 13 x (c x 1 ) x (x 1 x 2 ) x (x 2 x 3 ) ( ) + ( ) + ( ) = 104 August 28 (Fri), / 64

42 2 f 2 n + f 2 n 1 + f 2 n 2 + f 2 n f 2 1 = f n f n = 104 = 8 13 c = f n a = f n 1 f n 2 Backward f n f n 1 = f n 2 : f n [n ] [(n 1) a = f n 1 ] = f n 2 [(n 2) ], August 28 (Fri), / 64

43 2 Cassini ( 1) n = f n+1 f n 1 f 2 n ( ) n ( ) 1 1 fn+1 f = n 1 0 f n f n 1 ( ) a b t = a t + b c d c t + d ( ) August 28 (Fri), / 64

44 2 z n = f n /g n z n+1 = 2z n + 1 z n + 1 f n+1 = f n + (f n + g n ) g n+1 f n + g n Lucas L 2 n + L 2 n 1 + L 2 n 2 + L 2 n L 2 1 = L n L n+1 L 0 August 28 (Fri), / 64

45 2 c = F 5 = 5 F 5 F 4 F 5 F 4 = F F F F = 5 3 = c = F 8 = 13 F 5 F 4 F 8 F 7 = F F F F = 13 8 = August 28 (Fri), / 64

46 2 1 = x + (1 x) min {Ax 2 + B(1 x) 2 } = C 0 x 1 x = B A + B, 1 x = A A + B C = A B A + B A = 1/F n, B = 1/F n 1 { } x 2 (1 x)2 min + = 1 0 x 1 F n F n 1 F n+1 3 August 28 (Fri), / 64

47 2 min 0 x,y,x+y=1 { x 2 + y 2 } = 1 F n F n 1 F n+1 {T n : T n = T n 1 + T n 2 + T n 3 } { x 2 min + y x,y,z,x+y+z=1 T n T n 1 z2 T n 2 } = 1 T n+1 { min Ax 2 + By 2 + Cz 2} = 0 x,y,z,x+y+z=1 = ABC AB + BC + CA 1 1/A + 1/B + 1/C August 28 (Fri), / 64

48 2 2 ( ), 2013 ( ), ( ), 25 RIMS ( ), ( ), (), 25 RIMS August 28 (Fri), / 64

49 (run): (avoiding sequence) Havil( Gamma,Princeton Univ) p.119 (Doctrine) ( (1717) 74) n k P(10, 3) = = T (13) = P(21, 4) = = 1 T (25) 2 21 P(n, k) = {n k } T (n) August 28 (Fri), / 64

50 2 2 2 n {0, 1} n F (n + 2) F (n) n August 28 (Fri), / 64

51 1 n = 3 {0, 1} 2 3 = 8 11 F (3 + 2)/2 3 = F (5)/8 = 5/8 x 1 x 2 x 3 xi x i August 28 (Fri), / 64

52 2 n = 4 F (4 + 2)/2 4 = F (6)/16 = 8/16 x 1 x 2 x 3 x 4 xi x i August 28 (Fri), / 64

53 , 11 2 n X i Binom ( 1, 1 2), i = 1, 2,, n P ( n 1 ) X i X i+1 = 0 = i=1 F (n) n-th F (n + 2) 2 n n 1 i=1 (X i X i+1 ) = 0 August 28 (Fri), / 64

54 {a n, b n } n=1,2, { an+1 = a n + b n b n+1 = a n a n + b n = F (n + 2) ( ) n 1 1 = 1 0 ( F (n + 1) F (n) F (n) F (n 1) ) n = 1, 2, August 28 (Fri), / 64

55 n (1) n 0 a n (2) n 1 b n a n + b n n + 1 a n 0 1 b n 0 { an+1 = a n + b n b n+1 = a n August 28 (Fri), / 64

56 ( ) ( ) ( ) an an = b n+1 ( 1 0 ) b n n ( ) 1 1 a1 = ( 1 0 b 1 F (n + 1) F (n) = ( F (n) ) F (n 1) F (n + 2) = F (n + 1) ) ( 1 1 ) n a n + b n = F (n + 1) + F (n) = F (n + 2) (QED) 4 August 28 (Fri), / 64

57 (1) n 0 a n = F (n + 1). (2) n 1 b n = F (n). August 28 (Fri), / 64

58 C = min{ax 2 + B(1 x) 2 ; 0 x 1} = i.e. x = B A + B, 1 x = 1 A + 1 B = 1 C A A + B 1 1/A + 1/B, A, B C x 1, , 3/ , 5/ , 8/ August 28 (Fri), / 64

59 Havil ( ) P(n, k) = P(n 1, k) + {1 P(n k 1, k)}/2 k+1 P(0, k) = P(1, k) = = P(k 1, k) = 0 P(n, k) = 1 F k (n + k)/2 n F k k k = 2, 3, August 28 (Fri), / 64

60 T 0 = T 1 = 0, T 2 = 1, T n+3 = T n + T n+1 + T n+2, (n 0) n T n August 28 (Fri), / 64

61 (1) (2) (1) (2) (3) T n = + + August 28 (Fri), / 64

62 StringReplace StringCount MatrixPower[mat, n] n a n (1, 1) a n (1, 2) a n (1, 3) = a (2, 1) a n (2, 2) a n (2, 3) a n (3, 1) a n (3, 2) a n (3, 3) August 28 (Fri), / 64

63 n T n+2 T n+1 + T n T n+1 = T n+1 T n + T n 1 T n T n T n 1 + T n 2 T n 1 T n+3 = T n+2 + T n+1 + T n T n T n+2 = T n+2 T n+2 = T n+1 = T n+1 T n T n+2 T n+1 T n August 28 (Fri), / 64

64 Theorem n X i Binom ( 1, 1 2), i = 1, 2,, n P ( n 2 ) X i X i+1 X i+2 = 0 = i=1 T (n) n-th T (n + 3) 2 n n August 28 (Fri), / 64

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n )

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n ) Talk/7Akita-cont.tex Dated: 7/Feb/ wikipedia Pafnuty Lvovich Chebyshev 8 6-89 8 6 Chebychev Chebyshov Tchebycheff Tschebyscheff https://ja.wikipedia.org/wiki/ wikipediaa) 96 cos π 7 cos π 7 cos π 7 = x

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

TOSM kanie/tosm/ HP kanie/agora/ kanie/ h

TOSM   kanie/tosm/ HP   kanie/agora/   kanie/ h 1 1.1.......................................................... 3 3 : 4 4 4 4.1.............................. 4 4............................... 8 4.3....................... 10 5 13 5.1.....................................

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2

2 2 3 Page 4 5 6 A-1B-1 C0 D0 E0 F0 G0 A0 B0 C1 D1 E1 F1 G1 A1 B1 C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 7 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4 C5 D5 E5 F5 G5 A5 B5 C6 D6 E6 F6 G6 A6 B6 C7 8 Page 9 1 2 3 1 2 10 1 11

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

ver 0.3 Chapter 0 0.1 () 0( ) 0.2 3 4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006 0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology)

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II

II II 2016 7 21 computer-assisted proof 1 / 64 1. 2. 3. Siegfried M. Rump : [1] I,, 14:3 (2004), pp. 214 223. [2] II,, 14:4 (2004), pp. 346 359. 2 / 64 Risch 18 3 / 64 M n = 2 n 1 (n = 1, 2,... ) 2 2 1 1

More information

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o dif engine 2017/12/08 Math Advent Calendar 2017(https://adventar.org/calendars/2380) 12/8 IST(Internal Set Theory; ) 1 1.1 (nonstandard analysis, NSA) ε ε (a) ε 0. (b) r > 0 ε < r. (a)(b) ε sin(x) d sin(x)

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a Page 1 of 6 B (The World of Mathematics) November 0, 006 Final Exam 006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (a) (Decide whether the following holds by completing the truth

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

,,,,., C Java,,.,,.,., ,,.,, i

,,,,., C Java,,.,,.,., ,,.,, i 24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children

More information

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B 10 004 Journal of the Institute of Science and Engineering. Chuo University Euler n > 1 p n p ord p n n n 1= s m (m B psp = {a (Z/nZ ; a n 1 =1}, B epsp = { ( a (Z/nZ ; a n 1 a }, = n B spsp = { a (Z/nZ

More information

素数ものさしの考察

素数ものさしの考察 ( ) 2015 7 12 (2016.3.22 ) 1 / 18 18cm 2 3 5 7 11 13 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18cm 18 cm 1cm 18cm 1cm 2 / 18 1? 3 / 18 1? Yes 20 : (0),2,3,5,7,11,13,17,19,(20) (5 13 ) 42 : (0),2,3,5,7,11,13,17,19,23,29,31,37,41,(42)

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

21(2009) I ( ) 21(2009) / 42

21(2009) I ( ) 21(2009) / 42 21(2009) 10 24 21(2009) 10 24 1 / 21(2009) 10 24 1. 2. 3.... 4. 5. 6. 7.... 8.... 2009 8 1 1 (1.1) z = x + iy x, y i R C i 2 = 1, i 2 + 1 = 0. 21(2009) 10 24 3 / 1 B.C. (N) 1, 2, 3,...; +,, (Z) 0, ±1,

More information

1 1 tf-idf tf-idf i

1 1 tf-idf tf-idf i 14 A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles 1055104 2003 1 31 1 1 tf-idf tf-idf i Abstract A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

1 1983 5 1985 10 1991 5 1994 4 1995 8 10 40 12 1996 3 1997 3 1998 3 10 1999 9 2000 11 12 2001 1 6 6 7 2002 12 12 2003 1 12 2004 1 5 8 3 12 2005 2 3 5

1 1983 5 1985 10 1991 5 1994 4 1995 8 10 40 12 1996 3 1997 3 1998 3 10 1999 9 2000 11 12 2001 1 6 6 7 2002 12 12 2003 1 12 2004 1 5 8 3 12 2005 2 3 5 14 12 eye 1 1983 5 1985 10 1991 5 1994 4 1995 8 10 40 12 1996 3 1997 3 1998 3 10 1999 9 2000 11 12 2001 1 6 6 7 2002 12 12 2003 1 12 2004 1 5 8 3 12 2005 2 3 5 9 2006 12 2007 8 8 2008 2 2009 6 8 8 11 5

More information

( ( 3 ( ( 6 (

( ( 3 ( ( 6 ( ( ( ( 43037 3 0 (Nicolas Bourbaki (Éléments d'histoire des athématiques : 984 b b b n ( b n/b n b ( 0 ( p.3 3500 ( 3500 300 4 500 600 300 (Euclid (Eukleides : EÎkleÐdhc : 300 (StoiqeÐwsic 7 ( 3 p.49 (

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

フカシギおねえさん問題の高速計算アルゴリズム

フカシギおねえさん問題の高速計算アルゴリズム JST ERATO 2013/7/26 Joint work with 1 / 37 1 2 3 4 5 6 2 / 37 1 2 3 4 5 6 3 / 37 : 4 / 37 9 9 6 10 10 25 5 / 37 9 9 6 10 10 25 Bousquet-Mélou (2005) 19 19 3 1GHz Alpha 8 Iwashita (Sep 2012) 21 21 3 2.67GHz

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 1105402 2008 2 4 2,, i Abstract Systematization of Problem Solving Strategy in High School

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

Pari-gp /7/5 1 Pari-gp 3 pq

Pari-gp /7/5 1 Pari-gp 3 pq Pari-gp 3 2007/7/5 1 Pari-gp 3 pq 3 2007 7 5 Pari-gp 3 2007/7/5 2 1. pq 3 2. Pari-gp 3. p p 4. p Abel 5. 6. 7. Pari-gp 3 2007/7/5 3 pq 3 Pari-gp 3 2007/7/5 4 p q 1 (mod 9) p q 3 (3, 3) Abel 3 Pari-gp 3

More information

学習内容と日常生活との関連性の研究-第2部-第4章-1

学習内容と日常生活との関連性の研究-第2部-第4章-1 69 V A V + A V A 2A 2 http://www.jba-hp.jp/ http://www.kbn3.com/ http://www.usba.org/ 70 (1) (1996)35 7 pp.28-33 (2) (1994) 71 () 3 1 1 99 8 1 10 1 11.3 2.5 1 100 11.4 30.9 1 72 (1) http://www.stat.go.jp/data/zensho/1999/zuhyou/a906-6.xls

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

表紙参照.PDF

表紙参照.PDF CIRJE-J-94 2003 5 CIRJE http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp_j.html The Erosion and Sustainability of Norms and Morale KANDORI, Michihiro The initially high performance of a socioeconomic

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing 1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

2016

2016 2016 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G 2 3.1 u S u u u 1 G u S

More information

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o 78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o

More information