Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University P

Size: px
Start display at page:

Download "Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University P"

Transcription

1 Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary Physics Laboratory

2 , Hayashi et al. (1985) Formation of the Solar System. Hayashi et al. (1985),. Hayashi et al. (1985),,.,,. Hayashi et al. (1985),. Hayashi et al. (1985). Hayashi et al. (1985),. Hayashi et al. (1985) VIII. Hayashi et al. (1985) 20,,,.

3 i

4 ii Hill A Hayashi et al. (1985) 30

5 iii I II III IV V a b VI a b c d e f VII a b c

6 iv d VIII a b c IX a b X a b XI

7 ,. 10, 300.,.,,., , T-. 50, 60.,,,.,,,,., 80,., Hayashi et al. (1985)..,., Hayashi et al. (1985),.,,,. 1.2, Hayashi et al. (1985) (2 ).,,,,

8 1 2. 3, Hayashi et al. (1985). 4. A, Hayashi et al. (1985).

9 2 3 2,.,,., Hayashi et al. (1985),. 2.1,, H 2,..,.,.,.,.,,., H K., ( ).,, H 2 He,.,,., 99 H He 1 (O, C, Si, Fe, N, Mg ).,, 0.01M.

10 2 4,.,. H 2 O. 170K, 2.7AU, H 2 O,. 2.7AU,,.,,., 1/10,. 2.2., z.,, z 0., 1µm,.,,..,,. m,,.,.,.,,.,,. km,. cm, km, m. km.

11 ,.,,,.,.,,.,.,..,,,., H 2 O,,., 10M (M ).,. 10M, , , ,,.,,. 2.4,,.,,

12 2 6,.,., 10M.,. 300M, 1M.,.,,,.,..,,,. 2.5,.,.,,.,.,.,.,. 0.2M,,,.,,., ( ), -.

13 3 7 3, Hayashi et al. (1985),. 3.1,..,, ( ).,, , v = v(x, t), ρ = ρ(x, t), p = p(x, t). v, ρ, p. v = 0, ρ = ρ 0, p = p 0, v = v 1 (x, t), ρ = ρ 1 (x, t), p = p 1 (x, t),.,,. ρ t + (ρv) = 0 (3-1) ρ v = p t (3-2) pv = nkt (3-3) V, n, k, T,,,. (3-3) µ m H, p = kt µm H ρ (3-4)

14 3 8. (3-1), (3-2), v = v 0 + v 1, ρ = ρ 0 + ρ 1, p = p 0 + p 1, ρ 1 t + ρ v 1 0 x = 0 (3-5) ρ 0 v 1 t = p 1 x (3-6)., 2. (3-5) (3-6) t, x,, (3-4), 2 ρ 1 t 2 + ρ 2 v 1 0 t x = 0 (3-7) ρ 0 2 v 1 x t = 2 p 1 x 2 (3-8) 2 ρ 1 t 2 = 2 p 1 x 2 2 ρ 1 t 2 = kt µm H 2 ρ 1 x 2 (3-9). (3-9)., c s., 2 ρ t 2 = c s 2 2 ρ x 2 ( ) 1/2 kt c s = (3-10) µm H., T =const., p = c s 2 ρ ,. v = v(x, t), ρ = ρ(x, t), p = p(x, t).,

15 3 9,.,, Poisson 3. ρ t + (ρv) = 0 ρ v t = c s 2 ρ c Φ (3-11) 2 Φ = 4πρG (3-12) Φ, G. v = v 1, ρ = ρ 0 + ρ 1, Φ = Φ 0 + Φ 1, (3-7), ρ 0 v 1 t 2 = c ρ 1 s x Φ x (3-13), 2 v 1 ρ 0 x t = c s 2 2 ρ 1 x 2 ρ 2 Φ 1 0 x 2 (3-14), Poisson 2 Φ 1 x 2 = 4πGρ 1 (3-15). (3-7), (3-14), (3-15), 2 ρ 1 t 2 = c s 2 2 ρ 1 x 2 + 4πGρ 0ρ 1 (3-16). ρ 1 x k, ω,, (3-16), ρ 1 = A exp i(kx ωt) (3-17) ω = c s 2 k 2 4πGρ 0 (3-18). ω 2 < 0 ω, ρ 1 t.,,. ω 2 > 0 ρ 1,. ω = 0 k k J, c s 2 k J 2 = 4πGρ 0 (3-19)

16 3 10, ( ) 1/2 4πGρ0 k J = (3-20) c s 2. k J Jeans. Jeans,. Jeans 2π Jeans λ J. λ J = 2π k J = ( ) 2 1/2 πcs (3-21), Jeans,. Gρ 0,., λ J, 1M ( ). ρ 0 = M /λ J 3 (3-21), λ J = πc s 2 GM (3-22), AU. 3.2,, *1,,.,, H 2 O..,,., H 2 O,.,,. *1 (r, θ, z) rθ

17 ,., ( ). 4πr 2 σ SB T 4 = πr 2 L 4πa 2 (3-23). r ( ), σ SB Stefan-Boltzmann, T, L, a.,, ( ) 1/4 ( ) 1/2 L a T = 280 1AU K (3-24) L., (3-10) T = 280K, ( ) T c s = K. cm s 1 (3-25) z.,, z. z,, z., 2 c s ρ gas ρ gas z = z GM R (3-26). c s, ρ gas, M, R. p = c s 2 ρ. R = (a 2 + z 2 ) 1/2, c s 2 dρ gas ρ gas = GM a 3 z dz (3-27)

18 3 12 ρ gas z = 0 ρ *2 g0, z : 0 z, ρ gas : ρ g0 ρ gas, ( ) c 2 ρgas s ln = GM z 2 a 3 (3-28) 2,., ρ g0 ( ρ gas = ρ g0 exp GM ) 2a 3 c 2 z2 s [ ( ) ] 2 z ρ gas = ρ g0 exp ( 2a 3 ) 2 1/2 c s z 0 = = GM z 0 (3-29) (3-30) ( 2kT a 3 ) 1/2 (3-31) µm H GM, z 0,. a = 1AU, ( a ) 5/4 z 0 = AU (3-32) 1AU., ( 1/20), (A-4) (A-5). σ gas, ρ gas, σ gas =. (3-33) (3-30), σ gas = ρ g0 ρ gas dz (3-33) [ ( ) ] 2 z exp dz (3-34) z 0 = ρ g0 πz0 (3-35) *2 (A-6) ρ gas.

19 3 13.,. ρ g0 = σ ( gas = a ) πz0 1AU (3-36)., ( )., M disk = 36AU 0.35AU 2πaσ gas da (3-37) < a < 36 ( 0.39AU, 30AU). (A-5), M disk g 10 2 M (3-38).,. 3.3,,.,.,.,,,.,, v z., dv z dt = ρ gas ρ mat v th r v z GM a 3 z (3-39)

20 3 14. ρ mat, v th, r z.,. (3-39),. dv z dt v z = ρ mat ρ gas = 0 (3-40) r v th GM a 3 z (3-41) , dm dz = p sπr 2 ρ dust (3-42). m, p s, ρ dust. ρ dust z, ρ dust = σ dust /2z 0, ρ mat m = 4πr 3 ρ mat /3, (3-42), 4πr 2 ρ mat dr = p s πr 2 σ dust dz 2z 0 σ dust dr = p s dz (3-43) 8z 0 ρ mat., r 0 z 0, r 0 r, z 0 z, r = r 0 + p sσ dust 8ρ mat (1 zz0 ) (3-44)., p s. r m = p s σ dust /8ρ mat, z. r = r 0 + (1 zz0 ) r m (3-45)

21 ,. dt = dz/v z. (3-41), dt = ρ gas v th a 3 dz ρ mat r GM z. (3-45), dt = A [ dz 1 r m 1 + r 0 /r m z z 0 (1 + r 0 /r m ) 1 ] z. z : z 0 z, t sed = A ( ) 1 z0 r ln r m 1 + r 0 /r m zr 0. (3-48), (t K Kepler ), A 8 = t m π (3-46) (3-47) A = ρ gasv th a 3 ρ mat GM (3-48) A r m (3-49) r m = p sσ dust (3-50) 8ρ mat a 3 ( ) 2 tk = (3-51) GM 2π ( ) 1/2 8 kt 8 v th = = π µm H π c s (3-52) z 0 = c st K 2π (3-53) 2ρgas t K p s πρ dust = 4t K π 3/2 p s ρ gas rho dust (3-54). ρ gas /ρ dust = ζ (3-49), z t sed = 4 ( ) t K 1 z0 r ln π 3/2 p s ζ 1 + r 0 /r m zr 0., ζ. (3-55)

22 z = 0.,,, Poisson., 2 Φ = 1 r σ dust + 1 t r r (rσ dustv r ) + 1 r v r t + v v r r r = c 2 s σ dust σ dust r v θ t + v r ( r r Φ ) r r θ (σv θ) = 0 (3-56) + v θ 2 r Φ r (3-57) r (rv θ) = 0 (3-58) + 1 r 2 2 Φ θ Φ z 2 = 4πGσ dustδ(z) (3-59) σ dust, r, v r, v θ v r, θ, Φ, δ(z) Dirac. (3-57) 2 z, ρ dust dz = σ dust.,,.,. σ = σ 0, v r = v r0 = 0, v θ = v θ0 = rω K (Ω K Kepler ), Φ = Φ 0, σ = σ 1, v r = v r1, v θ = v θ1, Φ = Φ 1. σ = σ 0 + σ 1, v r = v r0 + v r1, v θ = v θ0 + v θ1, Φ = Φ 0 + Φ 1 (3-56) (3-58), 1 r v r1 t σ 1 t + σ 0 r = 2Ω K v θ1 c s 2 v θ1 ( r Φ 1 r r. r, r (rv r1) = 0 (3-60) σ 1 σ 0 r Φ 1 r (3-61) + v r1ω K = 0 (3-62) t ) Φ 1 z 2 = 4πGσ 1δ(z) (3-63) A exp i(kr ωt) (3-64)

23 3 17. k, ω. (3-60), (3-61), (3-62), iωσ 1 = σ 0 r (1 + ikr)v r1 ikσ 0 v r1 (3-65) iωv r1 = 2Ω K v θ1 c s 2 ikσ 1 + 2πiGσ σ 0 (3-66) iωv θ1 = v r1ω 2 (3-67). (3-65), ( ik/r k 2 ). (3-63), ɛ < z < ɛ, 1 ɛ ( r Φ ) ɛ 1 2 Φ ɛ 1 dz + r ɛ r r ɛ z 2 dz = 4πGσ 1 δ(z) dz (3-68) ɛ. 1, 1 ( r Φ ) 1 r r r z=0, [ 1 z ( r Φ ) ] ɛ [ ] ɛ 1 Φ1 + r r r z=0 z (z) = 4πGσ 1 (3-69) ɛ ɛ 1 2. Φ 1 (z), z, 2 Φ 1 z (ɛ) = 4πGσ 1 (3-70) Φ 1 z (ɛ) = 2πGσ 1 (3-71). z > ɛ Laplace. ( 1 r Φ ) Φ 1 r r r z 2 = 0 (3-72) Φ 1. (3-72), ( ) ik Z r k2 Φ 1 = Z(z) exp i(kr ωt) (3-73) + 2 Z z 2 = 0 (3-74)

24 3 18,. Z 2 Z z 2 = k2 Z (3-75) Z(z) = C[exp(kz) + exp( kz)] (3-76) ( ). Φ 1 0, z > 0 Z = C exp( kz), z < 0 Z = C exp(kz) ( k > 0). z > 0, z, z = ɛ, (3-71), Φ 1 = C exp( kz) exp i(kr ωt) (3-77) Φ 1 z (ɛ) = kc exp( kɛ) exp i(kr ωt) = kφ 1(ɛ) (3-78) Φ 1 (ɛ) = Φ 1 = 2πGσ 1 k (3-79). z < 0. (3-65), (3-66), (3-67), (3-79), ω 2 = Ω 2 K 2πGσ 0 k + c s 2 k 2 (3-80). ω 2 k 2, D,., D 4 = (πgσ 0) 2 (c s Ω K ) 2 (3-81) c s < πgσ 0 Ω K (3-82), ω 2,. (3-80) k, dω 2 dk = 2c2 sk 2πGσ 0 (3-83)

25 3 19 ω 2, 0, k k, k = πgσ 0 c 2 s (3-84) c 2 s = (πgσ 0 ) 2 /Ω 2 K, k = Ω2 K πgσ 0 (3-85), (3-82), k = k. 3.4,., Kepler,., v. m, m, r, r, M = m + m, µ = mm /(m + m ), b.,, v imp.. (3-86), µbv = µ(r + r )v imp (3-86) 1 2 µv2 = 1 2 µv imp 2 GMµ r + r (3-87) v imp = bv r + r (3-88), (3-87), 2 [ b 2 = (r + r ) G(m + ] m ) v 2 (r + r ) (3-89)

26 3 20. σ col, [ σ col = πb 2 = π(r + r ) G(m + ] m ) v 2 (r + r ) (3-90). G(m + m )/v 2 (r + r ) = θ, σ col = π(r + r ) 2 (1 + 2θ) (3-91). θ.,.., f, ( σ col = π(r + r ) 2 f θ ) f (3-92). f 1.8, 2.8., (r, θ) 2. m, 2m = M, m 2 /2m = µ. 2 b, v, 90., [ d 2 r µ dt 2 r µ ( ) ] 2 dθ = GMµ dt ) ( 2 dr dθ dt dt + r d2 θ dt 2 r 2 (3-93) = 0 (3-94). (3-94), ( d r 2 dθ ) = 0 (3-95) dt dt, r 2 dθ dt = const. (3-96)

27 3 21.., r 2 dθ dt = bv (3-97),. (3-94) (3-93), dθ dt = bv r 2 (3-98), d 2 r dt 2 b2 v 2 r 3 = GM r 2 (3-99) d 2 r dt 2 = d dt dr dt = dr dθ dθ dt = bv dr ( ) r 2 dθ dr = b2 v 2 d dt r 2 dθ ( 1 dr r 2 dθ ) (3-100) (3-101), (3-99), ( ) d 1 dr dθ r 2 = 1 dθ r GM b 2 v 2 (3-102). 1/r = u, d dθ [ u 2 d dθ ( )] 1 = u GM u b 2 v 2 (3-103), d 2 ( u dθ 2 = u GM ) b 2 v 2 (3-104), (3-104) w,. d 2 w = w (3-105) dθ2 w = A cos θ + B sin θ (3-106) 1 r GM b 2 = A cos θ + B sin θ (3-107) v2

28 3 22 A B. r θ=0 =,, r θ=3π/2 =,., A = GM b 2 v 2 (3-108) B = GM b 2 v 2 (3-109) 1 r = GM b 2 (sin θ cos θ + 1) (3-110) v2 dr (0) = v, dt dr dt = GM bv v = GM bv (cos θ + sin θ) (3-111) (3-112), 90 b = GM v 2., 90 σ exc, = 2Gm v 2 (3-113) ( ) 2 2Gm σ exc = πb 2 = π (3-114)., 90, 90 n 1/3 Λ,. Λ = v2 2Gm v 2 ( ) 1/3 1 (3-115) v ( ) 2 2Gm σ exc = π ln Λ (3-116) v 2

29 , Kepler. v. Hayashi et al. (1985), v/v K e 2i e, i,, v K Kepler., n, σ col, v, t grow = 1 nσ col v (3-117). t grow,., t grow,, t grow,. a n, n = 1 m σ dust 2 2ai (3-118). m 1 ( ), σ dust, 2 2ai. 2i = v/v K = v/aω K, (3-118), n = σ dustω K 2mv (3-119).,, (3-119) (3-92) (3-117), t grow = ρ matr 3πσ dust t K f 2 (1 + 2θ/f) (3-120). ρ mat, t K, Kepler, m = 4πr 3 ρ mat, Ω K = 2π/t K. r = (3m/4πρ mat ) 1/3, a = 1AU, m = g, (A-26), ( ) ( ) 1/3 m ( a ) 3 t grow = 0.22 f 2 (1 + 2θ/f) g 1AU (3-121)

30 3 24. σ dust (A-4), ρ mat 2g cm 3, 1g cm 3 *3. m = 1M, m = 10M,,,, , , ,., ( , ).,. 3.5,, ,,.,, Mp = 10M,,....,,,. Kepler, ( 10 7 ),,. *3 H 2 O,.

31 Hill, Hill, Hill. Hill,. Hill. Hill,,., - a, Hill r H, M p, Kepler Ω K = GM /a 3,, GM (a r H ) 2 = GM p r 2 H + (a r H ) GM a 3 (3-122).,. Kepler. Taylor, 1,,, GM a 2 ( 1 + 2r ) H = GM p a rh 2 + (a r H ) GM a 3 (3-123) ( ) 1/3 Mp r H = a (3-124) 3M.,., Hill,. M p = 3M a 3 r3 H (3-125)

32 ,. a, 4r H, M gas, M gas = 2πa 4r H σ gas (3-126). σ gas (A-5). M gas = M total (M total ), r H (3-124), ( M total 8πa 2 ) 3/2 σ gas = 1 (3-127) M 3 1/3 M 1000.,. A 13,.,,, ,...,, 1 2 mv2 imp = mc T (3-128). m, v imp, c ( SiO 2 c J/kg K), T., T = v2 imp 2c (3-129)

33 3 27. v imp v esc, M p r p, v imp = 2GM p r p (3-130). M p = 0.1M, v imp m s 1. T (3-128), K. SiO C, m.,,.

34 4 28 4, Hayashi et al. (1985),.,, AU,.,,,.,., H 2 O, H 2 O,.,,., 20 1,.,.,,,.,.,, 10 7,,,,., 10M,,., 10 3 M,.,

35 4 29,.,.,,,.

36 A Hayashi et al. (1985) 30 A Hayashi et al. (1985),., H 2 He,,,. ( ).,. I 1960,. 1960, ( T- ),,,., 1970,, (,, ),,.,., 3. Cameron (1978a), Safronov (1969),. Cameron 2.,., Safronov,. 2,. 2, Safronov,,,,.

37 A Hayashi et al. (1985) 31 1 ( )., (, ).,,,.,,. ( (1981a) ),. I ( )..,.,.,,. 10,,,.,,..,,,.,.,. 2,.., VI,,.,,,,, , T,. 3,,.,,,

38 A Hayashi et al. (1985) 32.,, 10 3,,,. X 1. II.,,

39 A Hayashi et al. (1985) 33. I,,.,.,,,.,.,,,.,,.,.,,,.,,..,.,,,.,,..,,.,,, VI.,, I,., 1960,.

40 A Hayashi et al. (1985) 34 III,.,..,. ( 10K) ( g cm 3 )., ( cm s 1 ). ( kt c s = µm H ) 1/2 = ( T 10K µ(= 2.34) H 2 He. ) 1/2 ( ) 1/ (A-1) µ 1M,, (,, ).. a = GM /2c 2 s = (10K/T ) (AU) (A-2), 10 2 AU ( g cm 3 ),, (T 10K)., H 2 (T 1600K), 7/5 (P ρ 7/5 )., 10 4 K.,, (Bodenheimer[1981] ).,.,,,.,, Miyama et al.(1984) Narita et al.(1984)

41 A Hayashi et al. (1985) 35,.,. Miyama et al.(1984)., 2, α = E th / E grav, β = E rot / E grav,,. β > 0.1, α β, αβ., Case > αβ > Case > αβ 3,.,, (Goldreich and LyndenBell 1965a, b). Case2,. Case1,, J( αβ ) g cm 2 s 1 J = g cm 2 s 1.,,. (αβ << 1). Tscharnuter(1981) 3M, α = 1, β = ( 3M J = g cm 2 s 1 ). 0.1c s z µ. z., M, ρ = g cm 3, T = K, a = AU. Tscharnuter ,,., Narita et al.(1984), ( β = 0). 4 (

42 A Hayashi et al. (1985) 36 )., α 0.2,,. α = 0.4,.,,,., Cameron (Cameron 1978a; DeCampli and Cameron 1979).,, , ( 2M ), L 1551 IRS 5 Kaifu et al.(1984). 0.1pc, (A-2) km s 1., (, ).,,,, ( ).,. Hayashi(1981b),,.,,, (T > 10 3 K, ),.,., ( ),,.,.,

43 A Hayashi et al. (1985) 37.,,. IV, 2., 0.02M, 1M., Cameron (Cameron and Pine 1973; Cameron 1978a; DeCampli and Cameron 1979; chapter by Cameron)..,,.,,.,,,.,,.,,..,,., III,,.., (, Safronov 1969; Kusaka et al. 1970; Weidenschilling 1977b; Wetherill 1980b; Hayashi 1981a, b ). 0.01M,, H 2 He., 0.01M.,,.,,.,

44 A Hayashi et al. (1985) 38.,.,. (Fig.1 ).. Cameron,,., ( V ).,,., a T (K), ( ) 1/4 ( ) 1/2 L a T = 280 (A-3) L 1AU. L, L., T L, L = 1L,, T Hayashi(1981b)., σ dust, ( ).,., ( a ) 3/2 7.1 g cm 2 for 0.35AU < a < 2.7AU 1AU σ dust = ( a ) 3/2 30 g cm 2 for 2.7AU < a < 36AU 1AU (A-4)

45 A Hayashi et al. (1985) 39.,, T < 170K(H 2 O ). (A-3) a > 2.7AU. σ gas ( ). ( σ gas = a ) 3/2 g cm 2 for 0.35AU < a < 36AU (A-5) 1AU σ dust, σ gas M. Hayashi(1981b), z, ρ gas, z 0., ( ρ gas = a ) 11/4 g cm 3 (A-6) 1AU, z 0 = ( 2kT a 3 ) 1/2 ( a ) 5/4 = AU (A-7) µm H GM 1AU. (A-3) (A-7),,,.,,. V,,.,.,, (ter Haar 1950). (Lin and Papaloizou 1980; Lin 1981)., z,.,.,,.

46 A Hayashi et al. (1985) Me, V, E, Ma, J, S, U, N (Hayashi 1981b). a,., z ( Nakagawa et al ). v z = ρ mat ρ gas r v th GM a 3 z (A-8) ρ mat r,, ρ gas, v th ( (8kT/πµm H ) 1/2 )., v z r = 1µm, a = 1AU 10 2 cm s 1.,,.,,.

47 A Hayashi et al. (1985) 41, dm dz = p sπr 2 ρ dust (A-9). m(= 4πρ mat r 3 /3), p s, ρ dust (= σ dust /2z 0 ),,,. r 0 < 1µm, z 0. z 0 (A-7),. p s (A-9), z r, r = r 0 + (1 z/z 0 )r m (A-10) r m = p sσ dust 8ρ mat (A-11). σ dust (A-4). r m r 0, (Safronov 1969). p s = 1,,, r m = 4.4, 3.2, 0.2. ρ mat = 2 g cm 3, 2 1 g cm 3.,., v z r.,,.,. (7), (8), (A-10) dt =dz/v z, z 0 z t sed = 4 ( ) t K 1 z0 r ln π 3/2 p s ζ 1 + r 0 /r m zr 0 (A-12). t K (= 2π(a 3 /GM ) 1/2 ), ζ ( IV a < 2.7AU ζ = 1/240 a > 2.7AU ζ = 1/56 )., z = z 0 /10, p s = 1, r 0 = 1µm,,, t sed = , , yr. t sed t K 10 3, t sed.,

48 A Hayashi et al. (1985) 42.., (A-8), (A-12).,. t sed t K ( ) Nakagawa et al. (1981) Weidenschilling (1980),,,..,,., Nakagawa et al. (1981),, cm, ( 3 ). 3, z. 1 ρ dust (z), z. v z,, ( ), v r

49 A Hayashi et al. (1985) 43., v r v z, v z., z 0.1z 0., (A-11).. Nakagawa et al. (1985),, 1,,,, 18cm, 5cm, 0.5cm.,., Weidenschilling(1980),, 1,, 1 cm. b,. 3.5M /a 3 (Jeans 1929),,. 1AU, 1/10 5. Safronov(1969), Hayashi(1972), Goldreich and Ward(1973),.,,,.,. Ω K [= (GM /a 3 ) 1/2 ], e i(ωt+kr), ω 2 = Ω K 2 2πGσk + c s 2 k 2 (A-13). σ, c s (Toomre 1964; Goldreich and Lynden-Bell 1965a, b). ω 2 < 0,, ω 2 > 0. ω 2 k 2, c s c s = πgσ/ω K,, σ σ = Ω K c s /πg., (A-5) σ gas σ,.,,

50 A Hayashi et al. (1985) 44 Cameron σ > σ (Cameron and Pine 1973; Cameron 1978a).,,.,.,,.,, c 2 s = γ(p gas + p dust )/(ρ gas + ρ dust ). γ 1, p gas, p dust, ρ gas, ρ dust,,., c s. c 2 s γp gas /ρ dust, p gas ρ dust. c s c s, ω2 k = Ω 2 K /πgσ ( 4 ).,,,.., k,, ( ) 2 ( 2π m = πσ dust k = (2π) 2 σdust πa 2 ) 3 M (A-14).,, , , g. (A-14).. M c s = c s, 1AU 1 m. ρ dust AU 0.1 g cm 3, g cm 3., 1,., Hayashi (1977) 2.,.,. Coradini et al.(1981) 2,,., Sekiya (1983), z., 1,, (A-14).

51 A Hayashi et al. (1985) c s c s, k k.,,, (A-14).,., Goldreich and Ward (1973) Weidenschilling (1980),,.,. Weidenschilling (1980), 1AU 1cm,,.,.,. VI V b.,,,..,,

52 A Hayashi et al. (1985) 46 ( Safronov (1969); R. Greenberg et al. (1978b); Wetherill (1980a, b) ).,,,, ( VII c. )..,,.,.,,,,. a ( ), σ col = π(r + r ) 2 (1 + 2θ) (A-15) θ = G(m + m )/v 2 (r + r ) (A-16). r, r, m m, v, θ Safronov (Wetherill (1980b) ),., (A-15),, θ < 1,. Nishida (1983),, 3,.,, σ col v, 2. Nishida,.,.,,. Nakazawa and Hayashi (1985) 2,

53 A Hayashi et al. (1985) 47, R p, N (N = 560).,, ( ρ mat = 3.34 g cm 3 ) 1.8R p, 2.8R p (ρ mat = 1.67 g cm 3 ),., Hill, ( 5).,,., f(r + r )., f = , (A-15), σ col = π(r + r ) 2 f 2 (1 + 2θ/f) (A-17)., σ col, 2θ/f < 1, f 2. (A-17),,. 5. (a): fr P (f R P ),,. (b): fr P,,.

54 A Hayashi et al. (1985) 48 b.,.,.,,.,..,., t exc Chandrasekhar (Chandrasekhar 1942, 48-79)., t exc = 1 nσ exc v (A-18) ( ) 2 2Gm σ exc = π ln Λ (A-19) v 2 Λ = v2 2Gm ( ) 1/3 1 (A-20) n n, v, m. (A-20), Λ 90 2Gm/v 2 n 1/3. (A-19) 90 ln Λ. (A-18) 2.,.,. F D F D = 1 2 C Dπr 2 ρ gas ( u) 2 (A-21)

55 A Hayashi et al. (1985) 49. C D, Re Ma, u. C D = 1., Adachi et al. (1976) Weidenschilling (1977a),, C D ( VI e. )., t dis, t dis = mv F D 2m πr 2 1 ρ gas v (A-22)., u v. t exc = t dis, v, e i, v v K = e = 2i = [( aσdust r 2 ρ gas ) ] 1/5 ( ) 2/5 m ln Λ (A-23) M. a, v K (= (GM/a) 1/2 ) (, Hayashi et al. (1977) Nakagawa (1978) ). e i. σ dust ρ gas (A-4) (A-6). (A-23),.,, e, m 6., m = g e , e.,,,., v, 2θ t exc. 6, (A-17) 2θ/f. 2θ/f 1,, (A-23). t exc (= t dis m 1/15 ) m,,,, 10 4, 10 6, VI c.-f..

56 A Hayashi et al. (1985) 50 6 e 2θ/f..,,, E, J, N. E f = 1.8, J, N 2.8 (Nakagawa et al. 1983). c, VI b.,.,,., (A-4) ( 2 VI e. )., n. n = σ dustω K 2mv (A-24) Ω K (= 2π/t K ) v/ω K ( 2ai) ( )., t grow, (A-17) σ col, (A-23) v., t grow = 1 nσ col v = ρ matr 3πσ dust t K f 2 (1 + 2θ/f) (A-25)

57 A Hayashi et al. (1985) 51. ρ mat (= 3m/4πr 3 ). σ dust (A-4), t grow = ( ) ( ) 1/3 m ( a ) f 2 (1 + 2θ/f) yr (A-26) g 1AU , a < 2.7AU a > 2.7AU. t grow, Safronov, v., 6 2θ/f < 1, t grow ra 3.,, t grow a 3. t K 1/σ dust a 3/2., (A-26), (m=1m ), (m=10 ), ,.,,. d,,., (Nakagawa (1978), Nakagawa et al. (1983)).,, (Adachi et al. (1976) Weidenshilling (1977a))., σ dust,.,. e t exc, D r D r = e 2 a 2 /t exc. D r, t dif, a/10., t dif = (a/10) 2 /D r = t exc /100e 2 (A-27). t dif t grow., g t dif t grow..,, (A-25)., Nakagawa

58 A Hayashi et al. (1985) 52 et al. (1983), ( VI e. ).,. v r ( CD πr 2 v r = m ) ρ gas a(e + i + η)ηv K (A-28). η 1/2, η = 1 ( ) / ( ) dpgas GM ρ ( gas 2 da a 2 = a ) 1/2 (A-29) 1AU (Adachi et al. (1976) Weidenshilling (1977a)). t flow, a/10, t flow = a/10 v r = t dis (1 + η/e) 10η (A-30). v r, t flow t grow.,.,,.,.,. e 2. 1 N, 1.,,., N, ,,. Nakagawa et al. (1983),, a. VI d.,,.

59 A Hayashi et al. (1985) 53, σ(m, a) = (inward flow) + (diffusion) + (coalescence) t (A-31) ( Nakagawa et al. (1983) ). σ(m, a)dm, m m+dm, a. (A-31),,.,, VI a. f., (A-31). ( ),. Fujiwara and Tsukamoto (1980),,.,. Nakagawa et al. (1983) (A-31),,,, 4,,,, g, , , , ( II)., g,., a, (A-26), ( ), a.,.,.,, 2θ/f 1, (A-26) ( 7 ). 8. mσ(m, a) m. Nakagawa et al. (1983), g.,, σ(m, a),, , (A-26) t grow m 1/3 a 3. Safronov (1969) Wetherill (1980a, b) ( ) g

60 A Hayashi et al. (1985) 54 2: (yr) 7, ( )., (A-26) (Nakagawa et al. 1983).,,, 10M ( VII )., , M ( 2).,, g., VI f.,.,,.,,,., 2

61 A Hayashi et al. (1985) 55 8 m/m mσ(m, a). m.. f, (A-25), σ dust, Safronov θ.,,,.,,. θ,. Nakagawa et al. (1983), g, ( VII a. ).,., Takeda et al. (1985), (A-21) C D, (θ >> 1) 1

62 A Hayashi et al. (1985) C D Mach M Gm/rv 2. v, (A-21) u. Gm/rv 2 Safronov. C D Gm/rv 2 Mach., Takeda et al., 2 1/2 1/3.,., VII d., ( ),.,,,, (,, ).

63 A Hayashi et al. (1985) 57 9 Gm/rv 2 M C D , (Takeda et al. (1985)). M, C D Gm/rv 2. mathcalm 1.0, 0.7, 0.5, Gm/rv 2 C D,,., Gm/rv 2,,,.

64 A Hayashi et al. (1985) 58 VII,, g,..,,, ( VII a. ).,,,. Perri and Cameron (1974).. Mizuno et al. (1978) ( ),. Mizuno (1980),.,,,.,.. a,, Hayashi et al. (1979).,.,., L,., L = GM p Ṁ p /R p (A-32) M p R p, Ṁ p. κ( )

65 A Hayashi et al. (1985) 59 κ mol + κ dust. κ mol, κ dust. κ mol Mizuno (1980), κ dust.,.,., VI, Ṁ p = 10M /10 7 yr., M p, R p, κ dust,,. 10, Mizuno (1980) M total M p (M total ). κ dust = 1 cm 2 g 1. M p, Hill, M p M total., M total >> M p,., M p,., Jeans. Mp κ dust. 11, Mp κ dust. :,,. κ dust >> 1 cm 2 g 1, Mp 70M, Perri and Cameron (1974). κ dust 1 cm 2 g 1 (Mizuno (1980); Mizuno and Wetherill (1984))., κ dust, Mp., Mp, 10M. [,.,,., M p /, Mp. ]., Mp,,. M total 2Mp, 20M..,,

66 A Hayashi et al. (1985) M p M total., a = 5.2AU( ), Ṁ p = 10M /10 7, κ dust = 1cm 2 g 1., M p (Mizuno (1980)). 11 κ dust M p

67 A Hayashi et al. (1985) 61 b, Hill., Hill. Hill? Sekiya et al. (1984)., smoothed particle 3 (4000 ).,,,., , 4r H (r H (A-33) Hill ), Hill ( 13 )., 1M /100 yr. HelmholtzKelvin ( ), , HelmholtzKelvin.,. VII c., 10 7.,., M total, Hill r H ( 4r H ) r H = a ( Mtotal 3M ) 1/3 (A-33). a. Hill Hill.,.,,. 4r H, Hill (A-33) r H (M total ) 1/3.

68 A Hayashi et al. (1985) /10., x y,.,, M = 2πa 2(2r H + ea)σ gas (A-34) ( 13 ). a e., σ gas, (A-33) (A-34) M = M total,., (A-5) σ gas,,,,, M, M, M, M.,.,,,., ( VII d. ).

69 A Hayashi et al. (1985) , P, a e. c,, ;. Elmegreen (1978) Horedt (1978), T.,.,. Sekiya et al. (1980a),. III, E b, GM E b = 2r σ gas2πr dr = erg (A-35). T,

70 A Hayashi et al. (1985) 64, L av = Ω 4π (ζ swl sw + ζ uv L uv ) (A-36). ζ L, sw uv. ζ sw ζ uv 0.1 (Sekiya et al. (1981))., Ω, π., t es = E b L av = L ζ sw L sw + ζ uv L uv π Ω yr (A-37). T L sw L uv. T, 10 3., L uv = 10 2 L (Gahm et al. (1979))., , L sw + L uv L,,. L sw + L uv = L,.,, Ezer and Cameron (1965) T., d 4,,,,.,, H 2 He. Slattery (1977) Hubbard and MacFarlane (1980),.,, ( 15M ).,. VII B,.,,.,

71 A Hayashi et al. (1985) ,.,., VI, 10 8,.,,.,, (A-5) σ gas.,., 1/3.5, 100M., 1/3.5..,, T., 2,.,., ( 1M )., 1M., : 1M 0.1M ( VIII A, )., VI D,,.,,. VIII VI, ,.,,. ( Safronov (1969) ).,

72 A Hayashi et al. (1985) 66..,,.,. a, ( ).,.,., T f,. 4πR 2 p σt 4 f. σ Stefan-Boltzmann, R p. (A-32)., T f 4 = L 4πR p 2 σ (A-38).,.,., τ(= κρ dr), dt 4 dτ = 3 L 4σ 4πr 2 (A-39)., T b, T b 2 = Lτ b 4πR p 2 σ = τ bt f 4 (A-40) τ b. τ b 1, T b T f τ b 1/4.. Hayashi et al. (1979) Nakagawa et al. (1985b)..

73 A Hayashi et al. (1985) 67. VII a, Ṁp, M p, κ dust. 3, VI f Ṁp = 1M /10 6, κ dust = 1cm 2 g 1 (Mizuno (1980); Mizuno and Wetherill (1984)). M p. 14, T b M p., (A-38) T f., M p > 0.1M, M p.,,, τ b., M p > 0.1M, T b. ;, ( VIII b ),,., Safronov (1978) Kaula (1979b).,.,,,. ;,.,,,. b,, 0.2M.,., 100km, 10 3 (Sasaki et al. 1983).,,., 0.2M 15 3,,,.

74 A Hayashi et al. (1985) M p, T b (Nakagawa et al. (1985b). T f. Stevenson (1981)., Sasaki and Nakazawa (1985).,.,. 2,., 10 7., ( )., Sasaki and Nakazawa (1985),. 14 T b., 0.2M, *4 ( 16 )..,,.,,, *4,

75 A Hayashi et al. (1985) 69.,.,.,. 1,, FeO FeS,.,, :,,. 15,.,. 3,.,,,.,,, :, (Stevenson 1981).,, ( )..

76 A Hayashi et al. (1985) M, 0.77M, 1.0M ( a, b, c).,. c g, 50atm (Nakazawa et al. 1985b). ;, g ( Ne , Xe ).,. (Brown 1949) (Hamano and Ozima 1978). 2. 1, ( VII c., 10 7 ). 2, H 2 He, Xe Kr. 2 Sekiya et al. (1980a,b), Sekiya et al. (1981).,.

77 A Hayashi et al. (1985) b, p, m, s.,.,,. 17., ρu dh dr = Γ (A-41). Γ, u, H,. Ṁatm = r m H = 1 2 u2 + r m γ P γ 1 ρ GM r Ṁ atm = 4πρur 2 = constant, (A-41) rs / [ 4πr 2 GM Γ dr + 5 3γ GM + γ + 1 ( ) Γr 4(γ 1) r s 4 ρu s ] (A-42) (A-43)., (Sekiya et al. 1980a )., c 2 s = u 2 s = GM + γ 1 2r s 2 ( ) Γr ρu s (A-44)., u 2 m P m/ρ m (GM /r m )., m s ( 17 ).

78 A Hayashi et al. (1985) 72, Ṁatm,., Γ Γ = F uv ζ uv κ uv ρ (A-45). F uv, ζ uv, κ uv,,,., (A-43). r m 1, Ṁatm = 4πr3 mf uv ζ uv GM (A-46). r m = 5R, ζ uv = 0.4( ), F uv = erg cm 2 s 1 ( L uv = L, VII c. ), g 1., g AU Ṁatm (Sekiya et al. 1981). Sekiya et al. (1980a,1981),.,,,,

79 A Hayashi et al. (1985) 73., 1AU 18., Ṁatm F uv.,,, (A-43) GM /r m.,. H 2 O, 0.4 ζ uv., T, 1AU 10 4 erg cm 2 s 1 (Gahm et al. 1979). F uv = erg cm 2 s 1, Ṁatm g yr 1.,., , Hill.,. Sekiya et al. (1980b), Xe Kr. 2.,, H 2,.,. IX Darwin 1879,., ( Ringwood and Kesson 1977; Binder 1977; O Keefe and Sullivan 1978 ),.,. ; Hill,..,.,.,.

80 A Hayashi et al. (1985) 74 a, Hill., Hill.,.,,,.,., Jacobi E 1 2 (ẋ2 ẏ 2 ż 2 ) Ω 2 (x2 y 2 ) GM r 1 GM r 2 const. (A-47). 1 4,,. E. E, E 0.,, E, Hill., : (E < 17GM /a) (E > 17GM /a). a, a 1AU., 19a,, Hill., E ;,, E (Nakazawa et al. 1983).,, (Hayashi et al. 1977; Heppenheimer and Porco 1977).,, ( ).,,,

81 A Hayashi et al. (1985) 75 19b Hill (Nishida 1983)...,,. 19 ( P ). (a) (E = 0.33GM /a), (b) (E = 104GM /a)..,., :, (Mignard 1980,1981), Hill (Ruskol 1972).,,,., Hill.,,.,, Hill., Hill 10 2.,,.

82 A Hayashi et al. (1985) 76.,, Hill., Hill,,,.,, Hill., Nakazawa et al.(1983),, Hill. Nakazawa et al.(1983), t r t, ρ(r, t) = ρ 0 (r) f(t), ( f(t) = exp t t atm ) (A-48). ρ 0 (r), t atm, ( VIII c. )., Hill., E,. E., E ρ(r, t) A. A, A = C DπR 2 M 2M M = cm 2 g 1 (A-49). R M M M, C D ( C D = 1/2 )., Nakazawa et al. (1983) E, E = 2πAGM ρ 0 (r p )f(t)f (A-50). r p, F 0.5.,., E. ρ 0 = g cm 3 ( r = 6R ), (A-50), E = 0.17f(t)GM /a. 0.33GM /a, f(t)GM /a., f(t) > 1/25, Hill.

83 A Hayashi et al. (1985) 77,,., ρ 0 (r) r, r p ( 19a )., Nakazawa et al. (1983) Monte Carlo., f(t) > 1/50, 1/50, Hill,.,.,,, Roche. Nakazawa et al. (1985a),,.,,, f(t) < 1/5 Hill,. (f(t) > 1/50)., 1/5 < f(t) < 1/50, Hill,.,. b, 1 ; 30.,.,.,, ( ).,,., Pollack et al. (1979), Lunine and Stevenson (1982). Hunten (1979)

84 A Hayashi et al. (1985) 78.,,.,.,,.,,,..,.,. VII d.,,..,,,.,,,,.,,., ;,,.,., ( 5 ).,,.,., Roche,,.,., Roche,,,.,, ( 20 ).

85 A Hayashi et al. (1985) 79 X,. 2, σ dust.,. (A-25) 8, g, g, 10 3.,,., VI, VII,.,,,...,,,.,. 20. Roche.,..

86 A Hayashi et al. (1985) 80 a, Nakagawa and Hayashi (1985),. 8 Runge-Kutta,., ( ), dv dt = GM r r 3 GM r r J J r r J 3 (A-51) dv J dt = G(M + M J ) r J r J 3 (A-52). r, r J, v, v J. M J., , 0, , 3/1, 2/1, 3/2,, , 0.3,. ( 21, 22 )., ( 21, 22 )., 3/2, Hill.,,, ( 23 )..,,., (Chapman et al ) g,.,.

87 A Hayashi et al. (1985) e ϖ. 2, 2/1, e (a) (b), (A) (B) ( e cos ϖ, e sin ϖ). ((b) (B)), e, ϖ.,, 2.2AU 3.2AU,.. (A-4) σ dust, 1M, 10 3., g, 10 3.,.,,,., (

88 A Hayashi et al. (1985) e max, a init ( ) e J = 0 e J = 0.048( ). b. ).,, ; e = 0.3, ev K km s 1,,.,,. σ dust,., ;,, 3/2, 10 4,.,,,,.,,,., ,

89 A Hayashi et al. (1985) P, J. S AU ,.,,. b,.,, (McCord and Gaffey 1974; Chapman et al. 1978)., Pribram Lost City,,.,,,.,, (, ),..,

90 A Hayashi et al. (1985) 84,,.,., (A-25) f = 1, θ = 0, t col., t col = 1 nσ col v = ( ρmat r 3πσ dust ) t K (A-53). r g 700km, (A-4), a = 2.7AU σ dust = 2g cm 2, (A-53), ( ) 1 t col = σdust ( r ) 2 g cm 2 700km yr (A-54)., σ dust, km s 1,,,. (A-54),, 10 7., ( 129 I 129 Xe ) ;, t col,,,.,,.,, ( ) 3 : 1.

91 A Hayashi et al. (1985) , 1,. km s 1., ( 0.1km s 1 ) 10km s 1,.,,.,. (, Tsuchiyama and Nagahara [1981] 1 K hr 1 ),. :,,,,.,,,,.,,,,.,., H 2 O,., VI,.,,.,, ( )..,,,,.

92 A Hayashi et al. (1985) 86,, (, ). ( 10 9 ),,. (, ).,.,,, (, ).,,.,.,,,,,. XI,..,,. 24, -,.,. 24,.,.,. ( ),.,.,.,,.,,..

93 A Hayashi et al. (1985) 87,,.,.,, ;,...,,. (, ).,,,., ( T-Tauri ),,.,.,,. ;.,.,.,,.,,,.

94 A Hayashi et al. (1985)

95 A Hayashi et al. (1985) 89,.,,.,,,..,.,..,,,,,,.

96 A Hayashi et al. (1985) 90 1) Adachi, I., Nakazawa, K., Hayashi, C. 1976: The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog. Theor. Phys., 56, ) Hayashi, C. 1981: Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula. Progress of Theoretical Physics Supplement, 70, ) Hayashi, C., Nakagawa, K. and Nakazawa, Y., 1985: Formation of the solar system. In Protostars and Planets II, eds. D. C.Black and M. S. Matthews. Univ. of Arizona Press, ) Nakagawa, Y., Hayashi, C. Nakazawa, K. 1981: Growth and Sedimentation of Dust Grains in the Primordial Solar Nebula. ICARUS 45, ) Nakagawa, Y., Nakazawa, K. Hayashi, C. 1983: Accumulation of Planetesimals in the Solar Nebula, ICARUS 54, ), 2008: 21., 1064pp. 7), 2007:., 204pp. 8),, 1996:., 192pp. 9), 1999:., 173pp. 10) de Pater, I., Lissauer, J. J., 2001: Planetary Sciences. Cambridge University Press, 544pp. 11), 2004: ), 2008:..

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University

Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Formation of hot jupiters by slingshot model Naoya Okazawa 22070283 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group 2011 4 18 1,.,,.,.,.,..,.,.,,.,.,,,.,.,.,.,,,..

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information