text-kitahata-final.dvi

Size: px
Start display at page:

Download "text-kitahata-final.dvi"

Transcription

1 /JST kitahata@physics.s.chiba-u.ac.jp

2 : Belousov-Zhabotinsky (BZ )

3 A BZ 44 B 46 B B

4 1 1.1??????? (Newton) 3

5 19 20 (Einstein) c c (Planck constant) h h GPS Global Positioning System: [1] 4

6 1.3 : A B B A 0 0 m d2 x = F, (1.1) dt2 m x F k (1.1) m d2 x = kx, (1.2) dt2 x 1 m d2 x = kx, (1.3) dt2 x(t) =A cos ( ) ( ) k k m t + B sin m t, (1.4) 5

7 (Lagrange) (Hamilton) ( ) 4 β F ( ) r 2 ( m 1 m 2 ) ( ) F = G m 1m 2 r 2, (1.5) G G = [m 3 s 2 kg 1 ], (1.6) x 1 x ( )F 12 F 12 = Gm 1 m 2 x 2 x 1 x 2 x 1 3 = Gm 1m 2 1 x 2 x 1 2 x 2 x 1 x 2 x 1, (1.7) x 2 x x 2 x ( )F F 21 = Gm 1 m 2 x 1 x 2 x 1 x 2 3 = Gm 1m 2 1 x 1 x 2 2 x 1 x 2 x 1 x 2, (1.8) F 12 = F 21, (1.9) ( ) (Coulomb) (Lorentz) ( ) 6

8 (a) t = T (b) t = T t = 0 x = x2 t = 2T x = x2 x = x1 x = x1 1.1: (a)t =0 x = x 1 t = T x = x 2 (b)t = T (a) t =2T x = x q 1 q F 12 F 12 = 1 x 2 x 1 q 1 q 2 4πɛ 0 x 2 x 1 3 = 1 1 x 2 x 1 q 1 q 2 4πɛ 0 x 2 x 1 2 x 2 x 1, (1.10) ɛ 0 = [F m 1 ], (1.11) 2 1 F 21 F 12 = F 21, (1.12) 1 x 1 v 1 X i 1 F 1 F 1 = f (X i x 1 ), (1.13) i 1 (1.1) 1.1 t =0 x = x 1 t = T x = x 2 ( ) t = T x = x 2 t = T F 1 X i x 1 X i x(t) t =0 x = x 1 t = T x = x 2 x(t) =x(2t t), (1.14) x(t) t = T x = x 2 T t =2T x(0) 1 7

9 q 1 1 E B 1 F 1 ( F 1 = q 1 E + dx ) 1 dt B, (1.15) E B Maxwell E = ρ ɛ 0, (1.16) B =0, (1.17) E + B =0, (1.18) t E B μ 0 ɛ 0 t = μ 0j, (1.19) ɛ 0 μ 0 ρ j j = ρv, (1.20) [2]

10 V U N 3 P T ( ) ρ cm 1 l K 3 (Avogadro) n n

11 + 2.1: ( ) (detailed balance) ( ) ( 2.1 ) A B ( ) B C A C A B 2 T A = T B T B = T C T A = T C, (2.1) U ( 2.2) du =d Q +d W, (2.2) 2 (Nernst) 0 10

12 du 2.2: du d Q d W (Clausius) (Thomson) (Kelvin) 4 (Ostwald ) d Q du U T V ( ) U Q W ( ) 4 100% (Clausius) energy en τρoπη [3] 11

13 P A B 0 D C V 2.3: PV A B C D A (A B C D) (B C D A) A B A B? (Carnot) P V 2.3 n mol A B T H C D T C U A B = Q A B + W A B = Q A B nrt H (ln V B ln V A )=0, (2.3) U B C = W A B = nr (T H T C ), (2.4) U C D = Q C D + W C D = Q C D nrt C (ln V D ln V C )=0, (2.5) U D A = W D A = nr (T H T C ), (2.6) W W = (W A B + W B C + W C D + W D A ), (2.7) 12

14 Q Q = Q A B, (2.8) η η = W Q = nrt H (ln V B ln V A )+nrt C (ln V D ln V C ). (2.9) nrt H (ln V B ln V A ) V γ 1 T = const. (2.10) ( γ 6 ) V A = V D, (2.13) V B V C η = T H T C, (2.14) T H η (Joule) (2.3) (2.5) Q A B = Q C D, (2.15) T H T C (2.15) d Q =0, (2.16) T ds = d Q T, (2.17) S S S S S ( ) 1 6 γ = C P, (2.11) C V C V C P C P = C V + R, (2.12) C V = 3 2 R C V = 5 2 R 13

15 1 2 U 1, P 1, V 1, S 1, T 1 U 2, P 2, V 2, S 2, T 2 2.4: U 1, P 1, V 1, S 1, T 1 U 2, P 2, V 2, S 2, T 2 2.5: ds 1 = du 1 T ds 2 = du 2 ( ) T ds =ds 1 +ds du 1 = du 2 ds =0 ds = du 1 T 1 + du 2 T 2 = ( 1 T 1 1 T 2 du 1 ) du 1 =0. (2.18) T 1 = T 2, (2.19) T 1 >T 2 ds >0 du 1 < ds 1 = du 1 + P 1 dv 1, T (2.20) ds 2 = du 2 + P 2 dv 2, T (2.21) 14

16 V,N 2V,N 2.6: du 1 = du 2 dv 1 = dv 2 ds =ds 1 +ds 2 ( 1 ds = 1 ) ( P1 du 1 + P ) 2 dv 1. (2.22) T 1 T 2 T 1 T 2 ds =0 du 1 dv 1 T 1 = T 2 P 1 = P 2 2 V N V T 2V ( 2.6 ) d W =0 d Q =0 U U = N N A C V T, (2.23) 2V 2V U N V 2V

17 V,N 2V,N T T 2.7: T ( ) ds = du T + P dv. (2.24) T PV = Nk B T du =0 ds = Nk B dv, (2.25) V ΔS = 2V V Nk B V dv = Nk B[ln V ] 2V V = Nk B ln 2, (2.26) 2.2? ( ) N 16

18 1 x y z 6 6N 6N N ( )?? V N ( ) x y z x S x x v x Δt v x Δt = v xs x Δt, (2.27) 2V/S x 2V x 1 mv x mv x 1 2mv x 7 Δt SNmv 2 x Δt/V S x Nm v 2 x /V Nm v 2 x /V P P = Nm v 2 x, (2.28) V v 2 = v 2 x + v 2 y + v 2 z, (2.29) x y z v 2 = 1 2 vx = 1 2 vy = 1 2 vz, (2.30) P = Nm v 2, (2.31) 3V 7 17

19 n mol PV = nrt, (2.32) R nn A = N(N A ) 3RT v 2 = m 2N A 2, (2.33) E k B = R/N A E = 3 2 k BT, (2.34) U U = 3 2 nrt = 3 2 Nk BT, (2.35) [4, 5] N 3N 3N 1 ( ) 3N 3N 1 3N 1 ( ) (ergodic) Ξ ξ +dξ V (ξ)dξ, (2.36) 18

20 N,V,E N,2V,E 2.8: Ξ( Ξ ) Ξ = ξv (ξ)dξ V (ξ)dξ, (2.37) (Ξ Ξ ) 2 (ξ ξ ) 2 V (ξ)dξ =, (2.38) V (ξ)dξ Ξ W (ξ) ξw (ξ)dξ Ξ =, (2.39) W (ξ)dξ (Ξ Ξ ) 2 (ξ ξ ) 2 W (ξ)dξ =, (2.40) W (ξ)dξ (microcanonical distribution) 2.2.3? (Boltzmann) W S = k B ln W, (2.41) ( ) k B 2.8 W (N,V,E) = V N (2πmE) 3 2 N h 3N N!Γ ( 3 (2.42) 2N +1), 19

21 8 S = k B ln W V ΔS = k B ln (2V ) N k B ln V N = k B N ln 2, (2.46) ΔS ( ) W 1 W 2 2 W 2 =2 N W 1 ΔS = k B ln W 2 k B ln W 1 = k B ln ( 2 N ) W 1 kb ln W 1 = k B 2 N = Nk B ln 2. (2.47) (T )? S S S tot S tot E tot S S E W tot (E) S W (E) W (E) S hb W tot (E) =W (E) W (E tot E), (2.48) S hb (E tot E) =k B ln W (E tot E), (2.49) 8 3 m N E E +de W de = 1 N!h 3N dr 1 dr N dp 1 dp N, (2.43) E p p N 2 E+dE 2m N! r k V N p k 2m(E +de) 3N 2mE 3N ( 2mE 3N de ) r n W de = V N N!h 3N [ π 3N 2 (2m(E +de)) 3N 2 Γ ( 3N 2 +1) S = k B ln W = k B N = k B N π 3N 2 (2mE) 3N 2 Γ ( 3N 2 +1) ] = V N (2πmE) 3N ( 2 3N N!h 3N 3N Γ +1) 2 2 [ln V + 32 ln(2πme) 3lnh ln N ln ( 32 N ) [ ( ) V ln N N (N ) ] π n 2 r n Γ ( n 2 +1) de E. (2.44) + 3 ( ) 4πmE 2 ln 3h ]. (2.45) N 2 20

22 (2.48) ( ) W tot (E) =W (E) W Shb (E tot E) (E tot E) =W (E) exp, (2.50) E tot E (Taylor) ( Shb (E tot ) W tot (E) =W (E) exp 1 S hb k B k B E E +ø( E 2) ), (2.51) ( Shb (E tot ) W tot (E) =W (E) exp ( E exp E k BT E W (E) exp k B E S hb = T, (2.52) ) ( exp E k B k B T +ø( E 2) ), (2.53) ) T ( E ), (2.54) k B T (canonical distribution) T Ξ ξ E(ξ) Ξ ) Ξ(ξ) exp ( E(ξ) k BT dξ Ξ = ), (2.55) exp ( E(ξ) k BT dξ Ξ E ) E(ξ) exp ( E(ξ) dξ U = E = exp ( E(ξ) k BT k BT ) dξ = ( 1 k BT ( ) ln ( exp E(ξ) ) ) dξ, (2.56) k B T Z = ( exp E(ξ) ) dξ, k B T (2.57) β = 1 k B T, (2.58) U = ln Z, (2.59) β Z (partition function) F F = k B T ln Z, (2.60) 21

23 i. (relaxation) 1 ( ) (Gibbs)

24 i-a. T T 0 k dt dt (T 0 T ). (3.1) T (t) =T 0 +[T (0) T 0 ] e kt, (3.2) (Fluctuation-dissipation theorem) [4, 6, 7] i-b. ( ) ( ) ( ) ii. (Nonequilibrium open systems) 2 ( ) ( ) ( ) (Prigogine) (dissipative systems) [8] ii-a. [8, 9]

25 ( )T H ( )T C 3.1: ii-b. 2 ii-a. - (Belousov-Zhabotinsky) (BZ ) (Schrödinger) What is life? [10] 24

26 A+B C+C. (4.1) k + k d[a] dt d[b] dt d[c] dt = k + [A][B] + k [C] 2, (4.2) = k + [A][B] + k [C] 2, (4.3) = k + [A][B] k [C] 2, (4.4) [A] A A B A B [A] [B] [C] t [A] u = [B], (4.5) [C] du = F (u), (4.6) dt (dynamical systems) du dt = F (u,t), (4.7) 25

27 F (u,t) t u u m d2 x = kx, (4.8) dt (m k ) v = dx dt, (4.9) ( d dt ) ( x = v ) v k m x, (4.10) 4.1.3? N N 1 N N ( (limit cycle; ) ) N 3 ( (torus)) (chaos) 1 (bistable)

28 1 1 dx dt = F (x), (4.11) dx dt = F (x) =0, (4.12) x = x 0 x = x 0 +Δx d dt (x 0 +Δx) =F (x 0 +Δx), (4.13) ( ) = dδx dt, (4.14) ( ) = F (x 0 )+ df dx Δx + o(δx 2 ). (4.15) x=x0 x = x 0 F (x 0 )=0 dδx = df dt dx Δx, (4.16) x=x0 Δx Δx 0 Δx =Δx 0 exp(at), (4.17) a = df dx. x=x0 (4.18) a = df dx 0, x=x0 (4.19) a = df dx > 0, x=x0 (4.20) F (x) ( ) 27

29 F(x) O x 4.1: x dx x x dt x x x - (Stuart- Landau) dx dt = αx ωy (x 2 + y 2 )x, (4.21) dy dt = αy + ωx (x 2 + y 2 )y, (4.22) ( α >0 ) 1 dr dt = r dx x dt + r dy y dt 1 x = r cos θ, (4.27) y = r sin θ, (4.28) r = x 2 + y 2, (4.29) ( y ) θ = arctan, (4.30) x dx dt dy dt = αx ωy (x 2 + y 2 )(x βy), (4.23) = αy + ωx (x 2 + y 2 )(y + βx), (4.24) dr dt dθ dt = αr r 3, (4.25) = ω βr 2, (4.26) 28

30 = cos θ [ αr cos θ ωr sin θ r 2 r cos θ ] + sin θ [ αr sin θ + ωr cos θ r 2 r sin θ ] = αr r 3, (4.31) dθ dt = θ dx x = sin θ = ω, dt + θ dy y dt r [ αr cos θ ωr sin θ r 2 r cos θ ] + cos θ r [ αr sin θ + ωr cos θ r 2 r sin θ ] (4.32) α>0 - α (bifurcation) ( ) [11, 12] 2 [13, 14, 15] (Brown) 3 (random walk) 4 2 (entrainment) (synchronization)

31 1 i x i ( x i +1 1 ), 2 x i+1 = ( x i 1 1 ) (4.33), 2 x i+1 = x i + ξ i, (4.34) ( 1 1 ), 2 ξ i = ( 1 1 ) (4.35), 2 x 0 =0 n 1 x n = ξ i, (4.36) i=0 < x i > x i ξ i = ( 1) = 0, (4.37) 2 ξ i ξ j = δ ij, (4.38) 5 x n = n 1 n 1 ξ i = ξ i =0, (4.40) i=0 i=0 ( n 1 ) 2 x 2 n = ξ i = n 1 n 1 ξ i i=0 i=0 j=0 i=0 j=0 n 1 n 1 ξ j = ξ i ξ j = n, (4.41) n n P (n, t) i n P (n, i +1)= 1 [P (n +1,i)+P (n 1,i)]. (4.42) 2 P (n, i +1) P (n, i) = 1 [P (n +1,i)+P (n 1,i) 2P (n, i)], (4.43) 2 i+1 t+δt i t n x n+1 x+δx n 1 x Δx P (x, t +Δt) P (x, t) = 1 [P (x +Δx, t)+p (x Δx, t) 2P (x, t)]. (4.44) 2 5 ξ i ξ j i j δ ij (Kronecker delta) δ ij = { 1 (if i = j), 0 (if i j), (4.39) 30

32 P (x, t +Δt) P (x, t) Δt = 2(Δx)2 Δt P (x +Δx, t)+p (x Δx, t) 2P (x, t) (Δx) 2 (4.45) (Δx)2 Δt (= C) Δx 0 Δt 0 P t = C ( ) P = C 2 P 2 x x 2 x 2, (4.46) u N u = NP u u t = D 2 u x 2, (4.47) (diffusion equation) D (diffusion coefficient; diffusion constant) [ 2 / ] (D = C/2) 1 u t = D 2 u, (4.48) 2 =Δ= 2 x y (Laplacian) ( z2 3 ) 6 u u = J, (4.51) t J 7 D J = D u, (4.52) u t = (D u) =D 2 u, (4.53) 6 ( (Langevin) ) m d2 x dt 2 dx = γ + ξ(t), (4.49) dt ( m γ ξ(t) ) ( (Fokker-Planck) ) [ ] P t = D (1) i (x,t)+ 2 D (2) ij x i x i x (x,t) P, (4.50) j ( D (1) D (2) - (Kramers-Moyal coefficients)) [16] 7 (Fick) (Fourier) 31

33 D 1 (Green function) u(x, t =0)=u 0 (x) ( ) x ± u 0 du dx 0 u(x, t =0)=δ(x) (4.54) G(x, t) 8 u(x, t =0)=u 0 (x) u(x, t) = dx G(x x,t)u 0 (x ), (4.58) 9 G(x, t) (Fourier Transform) G(x, t) = D 2 G(x, t) t x 2, (4.61) G(x, t =0)=δ(x), (4.62) G(x, t) G(k, t) = dxg(x, t) exp(ikx), (4.63) G(k,t =0)= dxg(x, t = 0) exp(ikx) = dxδ(x) exp(ikx) =1, (4.64) 8 δ(x) (Dirac) f(x) = dx f(x )δ(x x ), (4.55) 9 t =0 u(x, t =0)= δ(x) =δ( x). (4.56) δ(x) = 1 dke ikx, (4.57) 2π dx δ(x x )u 0 (x )=u 0 (x), (4.59) u t = t = dx G(x x,t)u 0 (x ) dx G(x x,t) u 0 (x ) t = dx D 2 G(x x,t) x 2 u 0 (x ) = D 2 x 2 dx G(x x,t)u 0 (x ) = D 2 u x 2. (4.60) G(x, t) u(x, t =0)=u 0 (x) 32

34 G(k,t) t = dx exp(ikx)g(x, t) t = dx exp(ikx)d 2 G(x, t) 2 x = D dx exp(ikx) 1 dk ( k 2 ) exp( ik x) 2π G(k,t) = D dx dk k 2 exp(i(k k )x) 1 2π G(k,t) = D dk k 2 G(k,t)δ(k k) = Dk 2 G(k,t) (4.65) δ(k) = 1 2π dx exp( ikx), (4.66) t G(k,t) = exp( Dk 2 t), (4.67) G(x, t) G(x, t) = 1 dk exp( ikx) exp( Dk 2 t) 2π = 1 [ ( dk exp Dt k + ix ) ] 2 x2 2π 2Dt 4Dt ) 1 = exp ( x2 4πDt 4Dt (4.68) (4.69) (Gauss) + dx exp( ax 2 )= π a, (4.70) 10 ( ) (Gauss) t u 0 x =0 10 [ dx exp( ax 2 )] 2 = = dx exp( ax 2 ) dx dy exp( ay 2 ) dy exp[ a(x 2 + y 2 )] 2π = rdr dθ exp( ar 2 ) 0 0 = 2π r exp( ar 2 ) = 0 [ ] 1 2π 2a exp( ar2 ) 0 = π a, (4.71) 33

35 x = + dxxg(x, t) = + ) 1 dxx exp ( x2 =0. (4.74) 4πDt 4Dt ( x x ) x 2 + = dxx 2 G(x, t) =2Dt. (4.75) + dxx 2 exp( ax 2 )= 1 2 π a 3, (4.76) ? du dt = f(u), (4.79) 2 u i (i =1, 2) du 1 dt du 2 dt = f(u 1 )+K (u 2 u 1 ), (4.80) = f(u 2 )+K (u 1 u 2 ), (4.81) K b x = x b + + dx exp( ax 2 )= dx exp [ a ( x b ) 2 ] = π a, (4.72) b z = I(b) [ ( ) ] dx exp( ax 2 )= dx exp a x 2 π b = a, (4.73) π dx exp( ax 2 )= a, (4.77) a + x 2 dx exp( ax 2 )= 1 π 2 a 3, (4.78) 34

36 u i u i+1 u i+2 x i x i+1 x i+2 x 4.2: du i dt = f(u i)+k (u i+1 u i )+K (u i 1 u i ), (4.82) Δx u i+1 u i 1 u i u i+1 = u i + u x Δx u x=xi 2 x 2 Δx 2 + o ( Δx 3), (4.83) x=xi u i 1 = u i u x Δx u x=xi 2 x 2 Δx 2 + o ( Δx 3). (4.84) x=xi u i x x i du i dt = f(u i)+kδx 2 2 u x 2. (4.85) x=ui u i u KΔx 2 D u t = f(u)+d 2 u x 2. (4.86) (reaction-diffusion equation) u t = f(u)+d 2 u, (4.87) [17, 18](Turing pattern) i) ii) u t = u3 + u 4v + D u 2 u v t = u 3v + a + D v 2 v (4.88) 35

37 (a) (b) 4.3: (4.88) (a)a =0 (b)a =0.05 D u =1 D v =20 a =0 u t = v =0, (4.89) t u = v =0, (4.90) u = 0+Δu, (4.91) v = 0+Δv, (4.92) ( d dt Δu Δv ) ( = )( Δu Δv ) ( A Δu Δv ), (4.93) A λ = 1, (4.94) u = v =0 ( ) 1 u = 0+ Δu(k)e ikx dk, (4.95) v = 0+ Δv(k)e ikx dk, (4.96) Δu(k) t ( e ikx dk = 4 3 Δu(k)e dk) ikx + Δv(k)e ikx dk + D u 2 36 x 2 Δu(k)e ikx dk Δu(k)e ikx dk, (4.97)

38 ( Δu Δv Δu(k)e ikx dk) 3 2 x 2 Δu(k)e ikx dk = k 2 Δu(k)e ikx dk, (4.98) [ ] Δu(k) Δu(k)+4Δv(k)+D u k 2 Δu(k) e ikx dk =0, (4.99) t x 0 Δu(k) = ( 1 D u k 2) Δu(k) 4Δv(k). (4.100) t Δv(k) =Δu(k) ( 3 D v k 2) Δv(k). (4.101) t ( ) ( )( ) ( ) Δu(k) 1 Du k 2 4 Δu(k) Δu(k) = A. (4.102) t Δv(k) 1 3 D v k 2 Δv(k) Δv(k) k A 2 λ 2 + ( 2+(D u + D v )k 2) λ + ( 1 D u k 2)( 3 D v k 2) +4=0, (4.103) 1 2 ( 1 Du k 2)( 3 D v k 2) +4> 0, (4.104) ( k 2 D ) 2 v 3D u + 4D ud v (D v 3D u ) 2 2D u D v 4(D u D v ) 2 > 0, (4.105) k 2 D v 3D u D v 3D u 4D u D v (D v 3D u ) 2 (D v D u )(D v 9D u ) > 0. (4.106) D v 3D u > 0 D v D u D v 9D u < 0, (4.107) D v < 9D u D v > 9D u k D v 9D u k 2 = D v 3D u 2D u D v, (4.108) 1 k = 3, (4.109) 2D u 2D v

39 5 5.1 Belousov-Zhabotinsky (BZ ) - (Belousov-Zhabotinsky) BZ BZ 5.1 BZ ( /TCA ) ( (target pattern) ) [19] - [20, 21, 22] BZ 1972 (Field) (Körös) (Noyes) BZ 10 [23] 3 FKN BZ (Oregonator) FKN BZ 2 HBrO 2 ( ) 5 A+Y k1 X+P, (5.1) X+Y k2 2P, (5.2) A+X k3 2X + 2Z, (5.3) 2X k4 A+P, (5.4) Z+B k5 hy. (5.5) A BrO 3 B CH 2(COOH) 2 +BrCH(COOH) 2 P HOBr X HBrO 2 Y Br Z h 1 Br (h ) 38

40 5.1: BZ A B X Y Z 3 dx dt = k 1AY k 2 XY + k 3 AX 2k 4 X 2, (5.6) dy dt = k 1AY k 2 XY + hk 5 BZ, (5.7) dz dt =2k 3AX k 5 BZ. (5.8) X Y Z 3 X Y Z k 1 k 5 (5.1) (5.5) 3 [24] (Tyson) 3 Y 2 X Z Y Y Y X Z 2 ( ) [25] 2 ( X U Z V ) ɛ du dt U q = U(1 U) fv f (U, V ), (5.9) U + q dv = U V g (U, V ). (5.10) dt U HBrO 2 V ( [Fe(phen) 3 ] 3+ ( (ferriin) ) (ferroin) ) 3 f q ɛ (5.9) (5.10) 1 ( ) 1 ( ) 39

41 (a) (b) 5.2: ( ) BZ (a) (target pattern) (b) (spiral pattern)? 2 3 BZ BZ BZ BZ 1 BZ ( ) 5.2 (target pattern) (spiral pattern) 1 continuous stirred tank reactor (CSTR) 40

42 (a) (b) 5.3: 2 (a) (b) 2 Oregonator 2 ( 5.3 ) 5.2 (Navier-Stokes) xy Γ z = f(x, y) at Γ, (5.11) 2 41

43 x y z = z(x, y), (5.12) 2 ( ) F F =2γ 1+ z 2 dxdy, (5.13) Γ γ 1 z F = [1+ 12 ] z 2 dxdy, (5.14) F Γ δf δz =0, (5.15) 2 z =0, (5.16) z(x, y) =f(x, y) at Γ, (5.17) f(x, y) = const. k, (5.18) z(x, y) =k, (5.19) 3? 0 2 z = 2 z x z =0, (5.20) y2 1 2 (κ 1 + κ 2 )= 1 2 ( ) = R 1 R 2 ( 2 ) z x z y 2, (5.21) 0 42

44 6 43

45 A Belousov-Zhabotinsky(BZ) Belousov-Zhabotinsky A.1 I II III II III ( II) ( III) 1 (CeSO 4 ) Ru(bpy) 3 Cl 2 ) (Br 2 ) 2 (FeSO 4 )1 mol (C 12 H 8 N 2 )3 mol 2 A.1: BZ I II III NaBrO mol/l 0.3 mol/l 0.3 mol/l H 2 SO mol/l 0.6 mol/l 0.45 mol/l CH 2 (COOH) mol/l 0.1 mol/l 0.1 mol/l NaBr 0.03 mol/l 0.03 mol/l 0.03 mol/l Fe(phen) 3 SO mol/l mol/l mol/l 1 BZ 2 1 mol/l 3 mol/l 1 mol/l 0.3 mol/l 0.02 mol/l 44

46 BZ 45

47 B B.1 [26, 27] B.1 l F l 2l 3 γ F =2γl. (B.1) [N/m] Δx ΔW (B.1) ΔW = F Δx, ΔW =2γlΔx = γδs, (B.2) (B.3) ΔS Δx (a) (b) F F F B.1: (a) F l γ (b) F Δx 3 2 2l F F +ΔF F F ΔF 6 46

48 [J/m 2 ] [N/m] [J/m 2 ] l 3 l 1 l ρgl 3 = γl, (B.4) l = γ ρg, (B.5) ρ g l l c (capillary length) B.2? B.2(a) (van der Waals) [28] ( B.2(a) ) B.2(b) a a ɛ n u = 4 3 πa3 nɛ, (B.6) 47

49 (a) (b) 0 a z B.2: (a) ( ) ( ) (b) z =0 z a V U = nv u = πa3 n 2 ɛv, (B.7) z(z a) Ṽ (z) = a z ( ) π a 2 z 2 2 dz = π 3 (a z)2 (2a + z), (B.8) Δu(z) πnɛ Δu(z) =ɛnṽ (z) = 3 (a z)2 (2a + z), (B.9) S z = z z +Δz nsδz a Ũ = Sɛn 2 Ṽ (z)dz = π 4 Sn2 ɛa 4, (B.10) Ũ 0 E = U + Ũ = k VV + k S S, (B.11) k S γ 7 γ = π 4 n2 ɛa 4. (B.12) n [1/ ] ɛ [ ] a [ ] γ [ / ] 7 k V (chemical potential) 48

50 [1] R. P. Feynman, R. B. Leighton, M. L.Sands, The Feynman lectures on physics, Vol I (Addison-Wesley, Reading, 1965). :, I (, 1967). [2] (, 1973). [3], (, 1972). [4], (, 1972). [5], (, 2002). [6], (, 1997). [7], (, 2000). [8] G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations (Wiley, New York, 1977). : (, 1980). [9] I. Prigogine and D. Kondepudi, Modern thermodynamics: from heat engines to dissipative structures (Wiley, New York, 1998). :,, (, 2001). [10] E. Schrödinger, What is life? : the physical aspect of the living cell (Cambridge University Press, Cambridge, 1945). :,, (, 1951). [11] S. H. Strogatz, Nonlinear dynamics and chaos (Perseus Books, 2000). [12] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos (Springer- Verlag, New York, 1990). :, (Springer, 2000). [13] (, 2005). [14] Y. Kuramoto Chemical oscillations, waves and turbulence (Springer-Verlag, 1984). [15] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization (Cambridge University Press, Cambridge, 2001). [16] H. Risken, The Fokker-Planck equation (Springer-Verlag, 1989). [17] A. M. Turing, Phil. Trans. Roy. Soc. London B, 327, 37 (1952). 49

51 [18] (, 2006). [19] A. N. Zaikin and A. M. Zhabotinsky, Nature, 225, 535 (1970). [20] R. Kapral and K. Showalter, Chemical Waves and Patterns (Kluwer Academic, Dordrecht, 1995). [21], (, 1992). [22],,, III (, 1997). [23] R. J. Field, E. Körös, and R. M. Noyes, J. Am. Chem. Soc., 94, 8649 (1972). [24] R. J. Field and R. M. Noyes, J. Chem. Phys., 60, 1877 (1972). [25] J. J. Tyson and P. C. Fife, J. Chem. Phys., 73, 2224 (1980). [26] P.-G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves (Springer, New York, 2004). :, :,,, (, 2003). [27], (, 1980). [28] J. N. Israelachvili, Intermolecular and surface forces, (Academic Press, London, 1985). :,, (, 1991) : (, 1996). 50

52 ( ) ( )

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Maxwell

Maxwell I 2016 10 6 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 11 2 13 2.1...................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information