$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

Size: px
Start display at page:

Download "$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W"

Transcription

1 , 2000 pp72-87 $\overline{n}b_{+}/b_{+}$ scikumamoto-uacjp September 27, 2000 \S 1 Introduction $\#_{dt}^{1}d^{2}=\exp(q_{2}-q_{1})$ $arrow_{dt}^{d^{2}}2=\exp(q_{3}-q_{2})-\exp(q_{2}-q_{1})$ (11) $\{$ : $\frac{d^{2}q_{\tau\iota-1}}{\frac d^{2}q_{\iota}= dt^{2}dt^{2}},=\exp(q_{n}-q_{n-1})-\exp(q_{n-1}-\exp(q_{n}-q_{n-1})-q_{n-2})$ $p_{i}=\delta^{\underline{j}}ddt$ $i=1,$ $\ldots,$ $n$ $L(t)$ (12) $L_{ij}(t)=\{$ $0$ 1 $p_{i}$ $\exp(q_{i+1}-q_{i})$ if $j>i+1$ or $i>j+1$ if $j=i+1$ if $i=j$ if $i=j+1$ $L(t)$ (13) $\frac{dl(t)}{dt}=[l(t)_{+}, L(t)]$, (13) (12) 3 Bruhat Kostant 1 Theorem[K2] $W_{\infty}(t),$ $W_{0}(t)$ $TV_{\infty}(t)=(w_{ij}^{\infty}(t))_{1\leq i,j\leq n},$ $lf^{\gamma_{0}}(t)=(w_{ij}^{0}(t))_{t\leq i,\gamma\leq n}$, 72

2 $w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W_{\infty}(t)L(0)W_{\infty}^{-1}$ $(t)$ (14) $W_{\infty}^{-1}(t)W_{0}(t)=\exp(tL(O))$ $L(t)$ $L(t)$ $n\cross 7l$ A $(\Lambda)_{ij}=\delta_{i+1,j}$ $W_{\infty}(t)$ (15) $W_{\infty}(t)\Lambda TV_{\infty}^{-1}(t)=\Lambda+$ (14) $W_{\infty}(t)L(0)W_{\infty}^{-1}(t)=l\prime V_{0}(t)e^{-tL(0)}L(0)e^{tL(0)}lV_{0}^{-1}(t)$ $=W_{0}(t)L(0)W_{0}^{-1}(t)$ $W0(t)$ (16) $W_{0}(t)L(0)\ddagger\eta_{1}^{r_{0}-1}(t)=diag[a(s)]\Lambda^{-1}+$ $(\Lambda^{-1})_{ij}=\delta_{i-1,j}$ $diag[a(s)]$ (15) (16) $L(t)=$ $L(t)$ () (14) Riemann-Hilbert(R-H) $G=GL(n, C),$ $g=gl(n, C)$ $SL(n, C),$ $sl(n, C)$, $GL(n, C),$ $gl(n, C)$ $n,\overline{n}$ $g$, $h$ $g$ $N,\overline{N},$ $H$ $n,\overline{n},$ $h$ $G$ 73

3 (14) $W_{0}(t)$ $T(t)$ $\tilde{w}_{0}(t)=t^{-1}(t)\dagger V_{0}(t)$ (14) (17) $W_{\infty}^{-1}(t)T(t)\tilde{W}_{0}(t)=e^{tL(0)}$ $y\in g$ $G^{y}\subset G$ $G^{y}=\{g\in G gy=yg\}$ $e^{tl(0)}\in G^{L(0)}$ [K2] (17) $G_{*}^{L(0)}=G^{L(0)}\cap\overline{N}HN$ $W_{\infty}(t)L(0)i/t_{\infty}^{r-1}(t)$ Kostant [K2] Theorem 24 $b=n\oplus h$ $B_{+}$ $b$ $G$ $X$ $X=G/B_{+}$ $S_{n}$ $n$ $X$ $X=u_{\sigma\in S},,\overline{N}s(\sigma)B_{+}/B_{+}$, $s(\sigma)$ $\sigma$ $X$ $\overline{n}b_{+}/b_{+}\circ-$ Kostant type $7l_{\infty}^{\Gamma}(t)L(0)iV_{\infty}^{-1}(t)$ $X$ $\sigma\neq 1$ $X$ $\overline{n}s(\sigma)b_{+}/b_{+}$ R-H (18) $W_{\infty}^{-1}(t)s(\sigma)\nu V$ $(t)=e^{tl(0)}$ $W_{\infty}(t),$ $W_{0}(t)$ (18) (19) $IV_{\infty}^{-1}(t)(s(\sigma)W_{0}(t)s^{-1}(\sigma))=e^{tL(0)}s^{-1}(\sigma)$ $(18),(19)$ R-H (110) $W_{\infty}^{-1}(t)W_{0}(t)=e^{t\xi}s(\sigma)$ $\xi$ $L(t)=\Lambda+$ $L(t)=W_{\infty}(t)\xi M_{\infty}^{r-1}(t)$ $\frac{dl(t)}{dt}=[l(t)_{+}, L(t)]$ $L(t)$ full Kostant-Toda lattice [S] $L(t)$ (110) $\overline{n}s(\sigma)b_{+}/b_{+}$ 74

4 $01$ $\cdot$ $\backslash$ $\overline{n}b_{+}/b_{+}$ Flaschka Haine [FH] $\sigma$ $L(t)$ $t=t_{0}$ Weyl $\exp(t_{0}l(0))modb_{+}$ $G/B_{+}$ $\sigma$ $\sigma$, Weyl $\sigma$ \S 2 $V$ $0$ $V=\{$ $01$ $0$ $L_{n-1n-1}$ 1 $\cdot$ $ L_{ij}\in\not\subset\}$ $L_{nn-1}$ $L_{nn}/$ $V$ $C$ $C=C[\mathcal{L}_{ij}, i\geq j]$ $\mathcal{l}_{ij}$ $\mathcal{l}$ $L\in V$ $\mathcal{l}_{ij}(l)=l_{ij}$ $\mathcal{l}_{ij}$ $V$ $i,$ $j$ (21) $\mathcal{l}=(\mathcal{l}_{n1}\mathcal{l}_{n-11}\mathcal{l}_{21}\mathcal{l}_{11}$ $\mathcal{l}_{n2}\mathcal{l}_{n-12}\mathcal{l}_{22}1$ $\mathcal{l}_{nn-1}1^{\cdot}\mathcal{l}_{nn}00)$ $\mathcal{l}_{n-1n-1}$ [K1] $C$ $C=A\otimes C^{\overline{N}}$ (22), $A$ A, $C$ $C^{\overline{N}}$ $\overline{n}$ $C$ adjoint $\mathcal{w}_{\infty}\in A\otimes\overline{N},$ $\chi 0\in C^{\overline{N}}\otimes Mat(n, C)$ = $\mathcal{l}=\mathcal{w}_{\infty}\chi_{0}\mathcal{w}_{\infty}^{-1}$ $01$ $\chi_{0}=(\cdot\varphi_{n}\varphi_{2}\varphi_{1}$ $001$ $\cdot000)$ 75

5 $C^{\overline{N}}$ $\varphi_{1},$ $\ldots,$ $\varphi_{n}$ $C^{\overline{N}}$ $\mathcal{l}=$ $\varphi_{1}=\mathcal{l}_{11}+\mathcal{l}_{22}+\mathcal{l}_{33}+\mathcal{l}_{44}$, $\varphi_{2}=\mathcal{l}_{21}-\mathcal{l}_{11}\mathcal{l}_{22}+\mathcal{l}_{32}-\mathcal{l}_{11}\mathcal{l}_{33}-\mathcal{l}_{22}\mathcal{l}_{33}+\mathcal{l}_{43}-\mathcal{l}_{11}\mathcal{l}_{44}-\mathcal{l}_{22}\mathcal{l}_{44}-\mathcal{l}_{33}\mathcal{l}_{44}$, $\varphi_{3}=\mathcal{l}_{31}-\mathcal{l}_{11}\mathcal{l}_{32}-\mathcal{l}_{21}\mathcal{l}_{33}+\mathcal{l}_{11}\mathcal{l}_{22}\mathcal{l}_{33}+\mathcal{l}_{42}-\mathcal{l}_{11}\mathcal{l}_{43}-\mathcal{l}_{42}\mathcal{l}_{43}-\mathcal{l}_{21}\mathcal{l}_{44}$ $+\mathcal{l}_{11}\mathcal{l}_{22}\mathcal{l}_{44}-\mathcal{l}_{32}\mathcal{l}_{44}+\mathcal{l}_{11}\mathcal{l}_{33}\mathcal{l}_{44}+\mathcal{l}_{22}\mathcal{l}_{33}\mathcal{l}_{44}$, $\varphi_{4}=\mathcal{l}_{41}-\mathcal{l}_{11}\mathcal{l}_{42}-\mathcal{l}_{21}\mathcal{l}_{43}+\mathcal{l}_{11}\mathcal{l}_{22}\mathcal{l}_{43}-\mathcal{l}_{31}\mathcal{l}_{44}+\mathcal{l}_{11}\mathcal{l}_{32}\mathcal{l}_{44}$ $+\mathcal{l}_{21}\mathcal{l}_{33}\mathcal{l}_{44}-\mathcal{l}_{11}\mathcal{l}_{22}\mathcal{l}_{33}\mathcal{l}_{44}$ $w_{\infty}$ $(w_{ij}^{\infty})_{i,j=1}^{4}$ $w_{21}^{\infty}=-\mathcal{l}_{22}-\mathcal{l}_{33}-\mathcal{l}_{44}$, $w_{31}^{\infty}=-\mathcal{l}_{32}-\mathcal{l}_{43}+\mathcal{l}_{22}\mathcal{l}_{33}+\mathcal{l}_{22}\mathcal{l}_{44}+\mathcal{l}_{33}\mathcal{l}_{44}$, $w_{41}^{\infty}=-\mathcal{l}_{42}+\mathcal{l}_{32}\mathcal{l}_{44}+\mathcal{l}_{22}\mathcal{l}_{43}-\mathcal{l}_{22}\mathcal{l}_{22}\mathcal{l}_{33}\mathcal{l}_{44}$, $w_{32}^{\infty}=-\mathcal{l}_{33}-\mathcal{l}_{44}$, $w_{42}^{\infty}=-l_{43}+\mathcal{l}_{33}\mathcal{l}_{44}$, $w_{43}^{\infty}=-\mathcal{l}_{44}$ Proposition 21 $\varphi_{1},$ $\ldots,$ $\varphi_{n}$ $\mathcal{l}$ $\varphi_{i}=(-1)^{i+1}\sum_{i\subset\{1,\ldots,n\}, I =i}\det((\mathcal{l})_{\mu\nu})_{\mu,\nu\in I},$ $i=1,$ $\ldots,$ $n$ $nxn$ $x=(x_{\mu\nu})$ $\det(\lambda-x)=\lambda^{n}+\sum_{k=1}^{n}\lambda^{n-k}(-1)^{k}\sum_{i\subset\{1,\ldots,n\}, I =k}\det(x_{\mu\nu})_{\mu,\nu\in I}$ $\det=\lambda^{n}-\varphi_{1}\lambda^{n-1}-\cdots-\varphi_{n}$ 76

6 $\mathcal{w}_{\infty}$ Remark 1 $\mathcal{w}_{\infty}^{-1}\in $C$ Poisson A\otimes\overline{N}$ (23) $\{\mathcal{l}_{ij}, \mathcal{l}_{k\ell}\}=\delta_{j,k}\mathcal{l}_{il}-\delta_{\ell,j}\mathcal{l}_{kj}$ $C$ derivation $\mathcal{x}$ $f\in C$ (24) $\mathcal{x}f=\{\frac{1}{2}tr\mathcal{l}^{2}, f\}$ (25) $\mathcal{x}\mathcal{l}=[\mathcal{l}_{+}, \mathcal{l}]$ section $C$ (25) $C$ Hamiltonian $C$ orbit $\mathcal{l}(t)$ $f\in C$ $f( \mathcal{l}(t- -\Delta t))=f(\mathcal{l}(t))+\{\frac{1}{2}tr\mathcal{l}^{2}(t), f(\mathcal{l}(t))\}\triangle t+o(\triangle t)$ $\mathcal{l}(t)$ orbit $\mathcal{x}(t)$ $\mathcal{x}(t)=\{\frac{1}{2}tr\mathcal{l}^{2}(t), *\}$ Lemma 22 (26) $\frac{d\mathcal{l}(t)}{dt}=\mathcal{x}(t)\mathcal{l}(t)$ $(C\otimes C[[t]])\otimes Mat(n, C)$ $\mathcal{l}(t)=\mathcal{l}+tb^{(1)}+t^{2}b^{(2)}+\cdots$ $B^{(1)}= \frac{d}{dt} _{t=0}\mathcal{l}(t)=\{\frac{1}{2}tr\mathcal{l}^{2}, \mathcal{l}\}$ $\frac{d}{dt}tr\mathcal{l}^{2}(t)=\{tr\mathcal{l}^{2}, tr\mathcal{l}^{2}\}=0$ $d^{2}$ /9) 1, $- \backslash$, 1 $B^{(2)}= \frac{l}{2}\frac{tl}{db^{2}} _{t=0}\mathcal{l}(t)=\{\frac{1}{2}tr\mathcal{l}^{2}, \{tr\mathcal{l}^{2}, \mathcal{l}\}\}$ $B^{(i)},$ $i=3,4,$ $\ldots$ = $C(t)$ $C\otimes C[[t]]$ Lemma 22 $(26)arrow$ orbit $t=0$ $\mathcal{l}(t)$ $\mathcal{l}$ = $\mathcal{l}(t)$ (26) orbit 77

7 $\mathcal{i}$ $i-j\geq Lemma 23 orbit Poisson (27) $\{\mathcal{l}_{ij}(t), \mathcal{l}_{k}i(t)\}=\delta_{jk}\mathcal{l}_{i\ell}(t)-\delta_{\ell i}\mathcal{l}_{kj}(t)$ Lemma 22 $\frac{df(b)}{dt}=\mathcal{x}(t)f(t)$ $C(t)$ = $F(t)=\{\mathcal{L}_{ij}(t), \mathcal{l}_{k\ell}(t)\}$ $G(t)=$ $\delta_{jk}\mathcal{l}_{i\ell}(t)-\delta_{\ell i}\mathcal{l}_{kj}(t)$ $\frac{d}{db}f(t)=\{\frac{d\mathcal{l}_{ij}(t)}{dt}, \mathcal{l}_{kl}(t)\}+\{\mathcal{l}_{ij}(t), \frac{d\mathcal{l}_{k\ell}(l)}{dt}\}$ $=\{\mathcal{x}(t)\mathcal{l}_{ij}(t), \mathcal{l}_{k\ell}(t)\}+\{\mathcal{l}_{ij}(t), \mathcal{x}(t)\mathcal{l}_{k\ell}(t)\}$ $=\mathcal{x}(t)\{\mathcal{l}_{ij}(t), \mathcal{l}_{k\ell}(t)\}=\mathcal{x}(t)f(t)$ = $\frac{d}{dt}g(t)=\mathcal{x}(t)g(t)$ $F(0)=G(0)$ = $F(t)=G(t)$ Proposition 24 (26) (28) $\frac{d\mathcal{l}(t)}{dt}=[\mathcal{l}_{+}(t), \mathcal{l}(t)]$ Lemma 23 $\mathcal{x}(t)\mathcal{l}_{ij}(t)=\{\frac{1}{2}tr\mathcal{l}^{2}(t), \mathcal{l}(t)\}=([\backslash \mathcal{l}(t)_{+}, \mathcal{l}_{\backslash }^{(}t)_{j}^{\rceil})_{ij}$ $\mathcal{i}$ $\mathcal{l}_{ij},$ 2$ $C$ Poisson Poisson $\{C, \mathcal{i}\}\subset \mathcal{i}$ $C/\mathcal{I}$ quotient algebra Poisson $\rho$ : $Carrow C/\mathcal{I}$ $\rho$ Poisson $P=(P_{ij})$ $\rho(p)$ $\rho(p)=(\rho(p_{ij}))$ (28) $\mathcal{l}(t)\daggerh$ $\mathcal{l}(t)=\mathcal{l}+tb^{(1)}+t^{2}b^{(2)}+\cdots$ $\rho(\mathcal{l}(t))=\rho(\mathcal{l})+t\rho(b^{(1)})+t^{2}\rho(b^{(2)})+\cdots$ 78

8 $C/\mathcal{I}$ Proposition 25 $i-j\geq 2$ orbit $\mathcal{l}(t)$ $C/\mathcal{I}$ $\rho(\mathcal{l}_{ij}(t))=0$ $\mathcal{l}(t)$ $\mathcal{l}(t)=\mathcal{l}+tb^{(1)}+t^{2}b^{(2)}+\cdots$, $B^{(i)}\in C\otimes\Lambda/Iat(n, C)$ (210) $B^{(k)}= \frac{1}{k!}\frac{d^{k}\mathcal{l}(t)}{dt^{k}} _{t=0}$ lemma $\frac{\mathfrak{u}l(\iota\prime}{*k},$ Lemma 26,, $k=1,2,$ $\ldots\downarrowh$ $(^{\underline{9}}11)$ $[\Pi_{1}(t)_{+}, [\Pi_{2}(t)_{+}, [\cdots[\pi_{\mu}(t)_{+}, \mathcal{l}(t)]\cdots]]]$ $1\leq\mu\leq k$ $(t)\in C(t)\otimes A- Iat(n, C)$ Proposition 24 $\mathcal{l}(t)$ (28) lemma $k$ $k=1$ (28) $\frac{d^{k}\mathcal{l}(t)}{dt^{k}}$ (211) $\frac{d^{k+1}\mathcal{l}(t)}{dt^{k+1}}$ $\frac{d}{dt}[\pi_{1}(t)_{+}, [\Pi_{2}(t)_{+}, [\cdots, [\Pi_{\mu}(t)_{+}, \mathcal{l}(t)]\cdots]]]$ $=[( \frac{d\pi_{1}(t)}{dt})_{+}, [\Pi_{2}(t)_{+}, [\cdots, [\Pi_{\mu}(t)_{+}, \mathcal{l}(t)]\cdots]]]$ $+ \cdots+[\pi_{1}(t)_{+}, [\Pi_{2}(t)_{+}, [\cdots, [(\frac{d\pi_{\mu}(t)}{dt})_{+}, \mathcal{l}(t)]\cdots]]]$ $+[\Pi_{1}(t)_{+}, [\Pi_{2}(t)_{+}, [\cdots, [\Pi_{\mu}(t)_{+}, [\mathcal{l}(t)_{+}, \mathcal{l}(t)]]\cdots]]]$ (211) Lemma 26 Lemma 26 (210) $\mathcal{b}^{(k)}$ (212) $[\Pi_{1}(0)_{+}, [\Pi_{2}(0)_{+}, [\cdots, [\Pi_{\mu}(0)_{+}, \mathcal{l}]\cdots]]]$ $i-j\geq 2$ $B^{(k)}$ $\mathcal{i}$ $i,$ $j$ 1 $C\otimes Mat(n, C)$ $[\Pi 1+ \mathcal{l}]$ $i,$ $j$ $[ \Pi_{1+},\sum_{k-\ell\geq 2}\mathcal{L}_{k\ell}E_{k\ell}]$ 79

9 $i,j$ $E_{k\ell}$ $(k, \ell)$ $([\Pi_{1+}, \mathcal{l}])_{ij}\in \mathcal{i}$ 1,, $\Pi_{\mu}\in C\otimes Mat(n, C)$ $i-j\geq 2$ ([ $\Pi_{1+},$ [ $\Pi_{2+},$ $[\cdots, [\Pi_{\mu}+ \mathcal{l}]$ j $\in \mathcal{i}$ $\Pi_{\mu+1}\in C\otimes Mat(n, C)$ (213) $([\Pi_{1+}, [\Pi_{2+}, [\cdots, [\Pi_{\mu+1}\mathcal{L}]+ ]\cdots]]])_{ij}$ $=([ \Pi_{1+},\sum_{k-p\geq i-j}([\pi_{2+}, [\cdot\cdot, [\square _{\mu+1}\mathcal{l}]+ \cdots]])_{k\ell}e_{k\ell}])_{ij}$ $i-j\geq 2$ $k-\ell\geq 2$ $([\Pi_{2+}, [\cdots, [\Pi_{\mu+1}\mathcal{L}]+ \cdots]])_{k\ell}\in \mathcal{i}$ $\mathcal{i}$ (213) $\mathcal{l}_{ij}(t)=\mathcal{l}_{ij}+\sum_{k=1}^{\infty}t^{k}b_{ij}^{(k)}$ $i-j\geq 2$ $\mathcal{l}_{ij}(t)\in \mathcal{i}$ $\rho(\mathcal{l}_{ij}(t))=0$ Proposition27 $\mathcal{l}(t)$ $\rho(\mathcal{l}(t))$ $C$ (26) (214) $\frac{d\rho(\mathcal{l}(t))}{dt}=[\rho(\mathcal{l}(t))_{+}, \rho(\mathcal{l}(t))]$ (214) $\frac{1}{2}tr\rho(\mathcal{l}(t))^{2}$ $\rho$ $\rho(\frac{d\mathcal{l}(t)}{dt})=\frac{d\rho(\mathcal{l}(t))}{dt}$ $\rho$ $\frac{d\rho(\mathcal{l}(t))}{dt}=\rho(\frac{d\mathcal{l}(t)}{dt})=\rho([\mathcal{l}(t)_{+}, \mathcal{l}(t)])$ $=[\rho(\mathcal{l}(t))_{+,\rho}(\mathcal{l}(t))]$ $\rho$ Poisson $\frac{d\rho(\mathcal{l}(t))}{dt}=\rho(\frac{d\mathcal{l}(t)}{dt})=\rho(\{\frac{1}{2}tr\mathcal{l}^{2}(t), \mathcal{l}(t)\})$ $= \{\frac{1}{2}tr\rho(\mathcal{l}(t))^{2}, \rho(\mathcal{l}(t))\}$ \S 3 80

10 $\mathcal{l}$ $C^{\overline{N}}$ (21) \S 2 $\mathcal{l}=\mathcal{w}_{\infty}\chi $A\otimes\overline{N}$ $\chi_{0}$ 1 $\sigma\in S_{n}$ R-H 0\mathcal{W}_{\infty}^{-1}$ $\mathcal{w}_{\infty}\in$ $0$ (31) $\mathcal{w}_{\infty}^{-1}(t)\mathcal{w}_{0}(t)=\exp((t-t_{0})\chi_{0})_{-}^{-}-s(\sigma)$ $=\mathcal{w}_{\infty}^{-1}(0)$ $\mathcal{w}_{\infty}(t)$ $\overline{n}$ $\mathcal{w}_{0}(t)$ $0$ $\mathcal{l}(t)=\mathcal{w}_{\infty}(t)\chi 0\mathcal{W}_{\infty}^{-1}(t)$ $\mathcal{l}(t)=\lambda+$ $\frac{d\mathcal{l}(t)}{dt}=[\mathcal{l}(t)_{+}, \mathcal{l}(t)]$ $\mathcal{w}_{\infty}(t)=(w_{ij}^{\infty}(t))_{ij}$ $i\leq j$ $w_{ij}^{\infty}(t)=\delta_{ij}$ (31) (32) $(\mathcal{w}_{\infty}(t)\exp((t-t_{0})\chi_{0})_{-}^{\neg}-s(\sigma))_{-}=0$ $m(t)=\exp((t-to)\chi 0)_{-}^{-}-s(\sigma)$ (32) (33) $(w_{j1}^{\infty}(t), \ldots, w_{jj-1}^{\infty}(t))$ $=-(m_{j1}(t), \ldots, m_{jj-1}(t)),j=2,$ $\ldots,$ $m_{ij}(t)$ $m(t)$ $i,j$ $n$ (34) $\tau_{j}(t)=\det$ $\cdot m_{1j}(t)m_{jj}(t)),$ $j=1,$ $\ldots,$ $n-1$ $w_{jk}^{\infty}(t)= \frac{-\tau_{j-1,k}(t)}{\tau_{j-1}(t)},$ $k=1,$ $\ldots,j-1$ $\tau_{j-1,k}(t)=\det$ $\cdot m_{1j-1}(t)rn_{jj-1}(t)k- thm_{j-1j-1(t)}$ $row)$ 81

11 $\exp((t-t_{0})\chi_{0})=(e_{ij}(t))$ $\exp((t-t_{0})\chi_{0}) _{t=t}$ $=1$ (36) $e_{ii}(t)=1+(t-t_{0})g_{ii}(t),$ $i=1,$ $\ldots,$ $n$ (37) $e_{ij}(t)=(t-t_{0})g_{ij}(t),$ $i\neq j$ $gij(t)\in C[\varphi_{1}, \ldots, \varphi_{n}]\otimes C[[t]]$ $\sigma\in S_{n}$ $_{\sigma}$ $\Theta_{\sigma}=$ { $1\leq j\leq n-1 1\leq\exists i\leq j$ such that $\sigma(i)>j$ } Proposition 31 (34) $(t)$ t=t $0$ $j\in\theta_{\sigma}$ $(36),(37)$ $\exp((t-t_{0})\chi_{0})\equiv$ $mod (t-t_{0})$ $\tilde{a}$ $w_{ij}^{\infty}(0),$ $i>j$ $w_{ij}^{\infty}(0)$ w $\in\tilde{a}\otimes\overline{n}$ $01$ $\exp((t-t_{0})\chi_{0})_{-}^{-}-\equiv(\cdot001$ $\cdot$ $\cdot\cdot 001)mod (t-t_{0})$ $\exp((t-t_{0})\chi_{0})_{-}^{-}-s(\sigma)\equiv(e_{\sigma(1)}, \ldots, e_{\sigma(n)})mod (t - t_{0})$ $e_{j}$ $j$ $t---j=$ 82

12 $i-j\geq $\tilde{c}$ $i\geq : $\tau_{j}(t)=\det(t---j\exp((t-t_{0})\chi 0)_{-}^{-}-s(\sigma)_{-j}^{-}-)$ $\equiv\det(^{t-}--j(e_{\sigma(1)}, \ldots, e_{\sigma(j)}))1nod(t-t_{0})$ $\det(^{t-_{j}}-- (e_{\sigma(1)},, e_{\sigma(j)}))\neq 0$ $\sigma _{\{1,\ldots,j\}}\in S_{j}$ $\tau_{j}(t_{0})\neq 0\Leftrightarrow j\not\in\theta_{\sigma}$ $j\in\theta_{\sigma}$ $\tau_{j}(t)=(t-t_{0})^{\ell(\sigma,j)}(c+\cdots)$ $c$ $\ell(\sigma, j)=\#\{i 1\leq i\leq j, \sigma(i)>j\}$ $c=0$ $c\neq 0$ = $c=0$ $(t_{0})=0$ $k=j-1$ $\tau$ [UT] $w_{jj-1}^{\infty}(t)= \frac{-d\tau_{j-1}(t)}{dt}/\tau_{j-1}(t)=\frac{-d\log\tau_{j-1}(t)}{dt}$ $j-1\in_{\sigma}$ $c\neq 0$ $w_{jj-1}^{\infty}(t)= \frac{-\ell(\sigma,j-1)}{t-t_{0}}+$ regular part $\sigma\neq 1$ $_{\sigma}\neq\phi$ $\sigma\neq 0$ ( $c\neq 0$ $c=0$ ) $\mathcal{w}_{\infty}(t)$ $\tilde{\mathcal{l}}(t)=\mathcal{w}_{\infty}(t)\chi_{0}\mathcal{w}_{\infty}^{-1}(t)$ $\tilde{\mathcal{l}}(t)$ $\Lambda+$ $\tilde{\mathcal{l}}(0)$ $\tilde{\mathcal{l}}$ $\tilde{\mathcal{l}}_{ij},$ j$ $\mathcal{w}_{\infty}^{-1}(0)\tilde{\mathcal{l}}\mathcal{w}_{\infty}(0)=\chi 0$ $C[\varphi_{1}, \ldots, \varphi_{n}]$ $\tilde{c}\sigma$) $C[\varphi_{1}, \ldots, \varphi_{n}]=\tilde{c}^{\overline{n}}$ (39) $\tilde{c}=\tilde{a}\otimes\tilde{c}^{\overline{n}}$ (39) $w_{ij}^{\infty},$ $\tilde{\mathcal{i}}$ $\tilde{\mathcal{l}}_{ij},$ $i>j$ $\varphi_{i},$ $i=1,$ $n$ $\ldots,$ $\rho(w_{ij}^{\infty}),$ $\tilde{\mathcal{l}}_{ij},$ 2$ $\rho$ (t) $=\mathcal{w}_{\infty}(t)\chi 0\mathcal{W}_{\infty}^{-1}(t)$ $\mathcal{l}(t)$ $\tilde{\mathcal{l}}_{ij}(t)\in\tilde{c}\otimes C[[t]]$ $\mathcal{w}_{\infty}(t)$ $i\geq j$ $\tilde{c}arrow\tilde{c}/\tilde{\mathcal{i}}$ $i>j$ $\rho(\varphi_{i}),$ $i=1,$ $\ldots,$ $7\iota$ (32) $\mathcal{w}_{\infty}(t)$ $t=0$ $\tilde{\mathcal{l}}(t)=\mathcal{w}_{\infty}(t)\chi 0\mathcal{W}_{\infty}(t)^{-1}$ $t=0$ $t$ $\tilde{\mathcal{l}}(t)=\mathcal{e}_{0}+t\mathcal{e}_{1}+t^{2}\mathcal{e}_{2}+\cdots$ 83

13 $\tilde{\mathcal{l}}(0)=\mathcal{w}_{\infty}(0)\chi_{0}\mathcal{w}_{\infty}^{-1}(0)=\tilde{\mathcal{l}}$ $\mathcal{e}_{0}\in\tilde{c}\otimes Mat(n, C)$ $\tilde{\mathcal{l}}(t)$ Lemma 22 $\in\tilde{c}\otimes Mat(n, C),j=1,2,$ $\ldots$ $\mathcal{w}_{\infty}(t)\tilde{\mathcal{l}}(t)\mathcal{w}_{\infty}^{-1}(t)=\chi 0$ $w_{ij}^{\infty}(t)\in\tilde{c}(t)$ $\rho(w_{ij}^{\infty}(t))$ $\rho$ (310) $\rho(\tilde{\mathcal{l}}(t))=\rho(\mathcal{w}_{\infty}(t))\rho(\chi 0)\rho(\mathcal{W}_{\infty}(t))^{-1}$ (311) $\frac{d\rho(\tilde{\mathcal{l}}(t))}{dt}=[\rho(\tilde{\mathcal{l}}(t))_{+,\rho}(\tilde{\mathcal{l}}(t))]$ $\rho(\mathcal{w}_{\infty}(t))$ (312) $(\rho(\mathcal{w}_{\infty}(t))\exp((t-t_{0})\rho(\chi_{0}))\rho(_{-}^{-}-)s(\sigma))_{-}=0$ $\rho(\tilde{\mathcal{l}}(t))$, (310) $\rho(\mathcal{w}_{\infty}(t))\in\tilde{c}/\tilde{\mathcal{i}}(t)\otimes\overline{n}$ $\rho(\tilde{\mathcal{l}}(t))$ dressing operator, (312) (310) $\tau$ $\tilde{c}/\tilde{\mathcal{i}}(t)$ $\tilde{c}/\tilde{\mathcal{i}}(t)=\tilde{c}/\tilde{\mathcal{i}}\otimes C[[t]]$ \S 4 $V$ $V=\{$ $ L_{ij}\in C\}$ $Z$ $V$ $Z=$ $\{(\cdot0l_{21}l_{11} L_{22}1 0L_{nn-1}1 \cdotl_{nn}^{\cdot}\cdot) L_{ij}\in C\}$ $\gamma={}^{t}(\gamma_{1}, \ldots, \gamma_{n})\in C^{n}$ $Z(\gamma)\subset Z$ (41) $Z(\gamma)=\{L\in Z \varphi_{j}(l)=\gamma_{j}, j=1, \ldots, n\}$ section 3 $\mathcal{w}_{\infty}(t)$ (32), $\tilde{\mathcal{l}}(t)=$ $\mathcal{w}_{\infty}(t)\chi_{0}\mathcal{w}_{\infty}^{-1}(t)$, $\tilde{\mathcal{l}}_{ij}(t)\in\tilde{c}(t),$ $\mathcal{w}_{\infty}(t)\in\tilde{c}(t)\otimes\overline{n}$ 84

14 $0^{\cdot}L_{32}L_{22}1$ : $L\in V$ $\mu_{l}$ : $\mu_{l}(\tilde{l}_{ij}):=\tilde{\mathcal{l}}_{ij}(l)=l_{ij}$ $\tilde{c}arrow C$ $\mu_{l}$ $L$ (42) $Z(\gamma)=\{L\in Z \mu_{l}(\varphi_{i})=\gamma_{i}, i=1, \ldots, n\}$ $\tilde{\mathcal{l}}_{ij}(t)\in\tilde{c}\otimes C[[t]]$ $L\in V$ $\mu_{l}(\tilde{\mathcal{l}}_{ij}(t))\in C[[t]]$ $\mu_{l}(\tilde{\mathcal{l}}(t))=l(t)$ $\mu_{l}$ (28) $\mu_{l}(\frac{d\mathcal{l}(t)}{dt})=\mu_{l}([\tilde{\mathcal{l}}(t)_{+},\tilde{\mathcal{l}}(t)]$, $\mu_{l}$ $\mu_{l}$ $t$ (43) $\frac{dl(t)}{dt}=[l(t)_{+}, L(t)]$ $\tilde{c}/\tilde{\mathcal{i}}$ $\tilde{\mu}_{l}$ $\tilde{c}/\tilde{\mathcal{i}}arrow C$ $L\in V$ $0L_{33}1$ $\tilde{\mu}_{l}(\rho(\tilde{\mathcal{l}}))=(\cdot 00L_{21}L_{11}$ $\cdot000l_{nn})$ $L_{nn-1}$ $L\in Z$ (44) $\tilde{\mu}_{l}(\rho(\tilde{\mathcal{l}}))=l$ $\mathcal{w}_{\infty}(t)$ $\tilde{\mathcal{l}}(t)=\mathcal{w}_{\infty}(t)\chi_{0}\mathcal{w}_{\infty}^{-1}(t)$ (32) $\mathcal{w}_{\infty}(t)\in\tilde{c}(t)\otimes\overline{n},$ $i=1,$ $\varphi_{i}\in\tilde{c}^{\overline{n}},$ $n$ $\ldots,$ $\tau_{j}(t),$ $\tau_{j,k}(t)\in\overline{c}(t)$ $\tilde{\mu}_{l}(\rho(\mathcal{w}_{\infty}(t)),\tilde{\mu}_{l}(\rho(\tau_{j}(t))),\tilde{\mu}_{l}(\rho(\tau_{j,k}(t)))$ $L\in Z(\gamma)$ $L(t)$ $:=\mu_{l}(\rho(\tilde{\mathcal{l}}(t))),$ $W(t):=\tilde{\mu}_{L}(\rho(\mathcal{W}_{\infty}(t))),$ $\chi_{0}(\gamma):=\tilde{\mu}_{l}(\rho(\chi_{0}))$ $\chi 0(\gamma)$ $\chi 0(\gamma)=$ 85

15 $\tau$ section Theorem $L\in Z(\gamma)$ $L(t)=\tilde{\mu}_{L}(\rho(\tilde{\mathcal{L}}(t))),$ $W(t)=\tilde{\mu}_{L}(\rho(\mathcal{W}\infty(t)))$ $L(t)$ $Z(\gamma)$ orbit $L(t)\in Z(\gamma)$ $\frac{dl(t)}{dt}=[l(t)_{+}, L(t)]$ $W(t)$ $L(t)$ dressing operator $L(t)=W(t)\chi_{0}(\gamma)W(t)^{-1}$ $W(t)$ $t=t_{0}$ $G$ $\sigma\in S_{n}$ Bruhat $\overline{n}\sigma HN$ R-H $W(\theta)$ ( $j$, k)- $\tilde{\mu}_{l}(\rho(\tau_{j-1}(t)))\in C_{L}[[t]]$ $C_{L}$ $C$ $L\in Z(\gamma)$ [FH] Theorem $X=$ $G/B_{+}$ $\overline{n}s(\sigma)/b_{+}$ $W(t)$ R-H $W(t)^{-1}U(t)=\exp((t-t_{0})\chi_{0}(\gamma))_{-}^{-}-(L)s(\sigma)$ $U(t)=\tilde{\mu}_{L}(\rho(\mathcal{W}o(t)))$ $---(L)=\tilde{\mu}_{L}$ (\rho ()) $W(t)_{-}^{-}-(L)s(\sigma)U(t)^{-1}=W(t)\exp((t_{0}-t)\chi_{0}(\gamma))W(t)^{-1}$ $=\exp((t_{0}-t)l(t))$ $tv(t)_{-}^{-}-(l)s(\sigma)/b_{+}=\exp((t_{0}-t)l(t))/b_{+}$ $W(0)=_{-}--(L)^{-1}$ $s(\sigma)/b_{+}=\exp t_{0}l(0)/b_{+}$ [A] Audin,M, Spining tops, A course on integrable systems Cambridge University Press 1996 [FH] Flascka,H, Haine,L, Vari\ et\ es de drapeaux et r\ eseavx de Toda Math $Z,$ $208$, (1991) 86

16 [I] [K1] [K2] Ikeda,K, The solutions of the Toda lattice with poles for arbitrary cells of the fiag va $7\dot{v}eties$ preprint Kostant,B, On Whittaker vectors and representation theory InventMath 48, (1978) Kostant,B, The solution to a generalized Toda lattice and representation theory AdvMath 34, (1979) [OP] Ol shanetsky, MA, Perelmov, AM, Explicit solutions of the classical generalized Toda models InventMath 54, (1979) [S] [UT] Shipman,B, A symmetry of order two in the full Kostant- Toda lattice J of Algebra 215, (1999) Ueno,K, Takasaki,K Toda lattice hierarchy, Adv Studies in Pure Math 4, 1-95(1984) 87

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292 1130 2000 13-28 13 USJC (Yasukuni Shimoura I. [ ]. ( 56 1. 78 $0753$ [ ( 1 352[ 2. 78 $0754$ [ ( 1 348 3. 88 $0880$ F ( 3 422 4. 93 $0942$ 1 ( ( 1 5. $P121$ 1281 F ( 1 278 [ 14 6. $P179$ 1984 r ( 2 $arrow$

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

可約概均質ベクトル空間の$b$-関数と一般Verma加群

可約概均質ベクトル空間の$b$-関数と一般Verma加群 1825 2013 35-55 35 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli 6 1 2009 6 [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

main.dvi

main.dvi Nim naito@math.nagoya-u.ac.jp,.,.,,,.,,,,,,, Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:. August 10-11, 1999 2 1 Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

情報教育と数学の関わり

情報教育と数学の関わり 1801 2012 68-79 68 (Hideki Yamasaki) Hitotsubashi University $*$ 1 3 [1]. 1. How To 2. 3. [2]. [3]. $*E-$ -mail:yamasaki.hideki@r.hit-u.ac.jp 2 1, ( ) AND $(\wedge)$, $OR$ $()$, NOT $(\neg)$ ( ) [4] (

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot 外力項付常微分方程式の周期解および漸近周期解の初期 Title値問題について ( 力学系 : 理論から応用へ 応用から理論へ ) Author(s) 野原, 勉 ; 有本, 彰雄 Citation 数理解析研究所講究録 (2011), 1742: 108-118 Issue Date 2011-05 URL http://hdl.handle.net/2433/170924 Right Type Departmental

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2 Hubbard 2 1 1 Pauli 0 3 Pauli 4 1 Vol. 51, No. 10, 1996, pp. 741 747. 2 http://www.gakushuin.ac.jp/ 881791/ 3 8 4 1 1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r

More information

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2 Title ヘビサイドケーブル, トムソンケーブルと関連するソボレフ型不等式の最良定数 ( 可積分数理の新潮流 ) Author(s) 亀高, 惟倫 ; 武村, 一雄 ; 山岸, 弘幸 ; 永井, 敦 ; 渡辺, Citation 数理解析研究所講究録 (2009), 1650: 136-153 Issue Date 2009-05 URL http://hdlhandlenet/2433/140769

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

Abstract Gale-Shapley 2 (1) 2 (2) (1)

Abstract Gale-Shapley 2 (1) 2 (2) (1) ( ) 2011 3 Abstract Gale-Shapley 2 (1) 2 (2) (1) 1 1 1.1........................................... 1 1.2......................................... 2 2 4 2.1................................... 4 2.1.1 Gale-Shapley..........................

More information

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田 浩一 Citation 数理解析研究所講究録 (2009) 1665: 175-184 Issue Date 2009-10 URL http://hdlhandlenet/2433/141041 Right Type Departmental Bulletin Paper Textversion

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec $\mathrm{n}$ 1381 2004 168-181 190 Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Technology Kobe University 1 Introduction 2 (i) (ii) (i)

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

36

36 36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ

More information

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c Title Connection problem for Birkhoff-Oku systems and hypergeometric systems) Author(s) 原岡 喜重 Citation 数理解析研究所講究録 (2001) 1239: 1-10 Issue Date 2001-11 URL http://hdl.handle.net/2433/41585 Right Type Departmental

More information

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half Wess-Zumino-Witten 1999 3 18 Wess-Zumino-Witten., Knizhnik-Zamolodchikov-Bernard,,. 1 Affine Lie 2 1.1 Affine Lie.............................. 2 1.2..................................... 3 2 WZW 4 3 Knizhnik-Zamolodchikov-Bernard

More information

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$

More information

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,, 併殺を考慮したマルコフ連鎖に基づく投手評価指標とそ Titleの 1997 年度日本プロ野球シーズンでの考察 ( 最適化のための連続と離散数理 ) Author(s) 穴太, 克則 Citation 数理解析研究所講究録 (1999), 1114: 114-125 Issue Date 1999-11 URL http://hdlhandlenet/2433/63391 Right Type Departmental

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 : Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx Title 2 元 2 次不定方程式の整数解の OSTROWSKI 表現について ( 代数的整数論とその周辺 ) Author(s) 橋本 竜太 Citation 数理解析研究所講究録 (2000) 1154 155-164 Issue Date 2000-05 URL http//hdlhandlenet/2433/64118 Right Type Departmental Bulletin Paper

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{

SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{ 1114 1999 149-159 149 SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ $\mathrm{m}\mathrm{a}\mathrm{s}^{\urcorner}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{z}\mathrm{l}\mathrm{l}$

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_ $\ovalbox{\tt\small REJECT}$ 1032 1998 46-61 46 SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $dx_{t}=a(t, X_{t}, u)dt+b(t, x_{t}, u)dwt$, $X_{0}=\xi(\omega)$

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1: 得点圏打率 盗塁 併殺を考慮した最適打順決定モデル Titleについて : FA 打者トレード戦略の検討 ( 不確実性の下での数理モデルとその周辺 ) Author(s) 穴太, 克則 ; 高野, 健大 Citation 数理解析研究所講究録 (2015), 1939: 133-142 Issue Date 2015-04 URL http://hdl.handle.net/2433/223766

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

サイバネットニュース No.121

サイバネットニュース No.121 2007 Spring No.121 01 02 03 04 05 06 07 08 09 10 12 13 14 18 01 02 03 04 05 06 07 L R L R L R I x C G C G C G x 08 09 σ () t σ () t = Sx() t Q σ=0 P y O S x= y y & T S= 1 1 x& () t = Ax() t + Bu() t +

More information

都道府県別経済財政モデル(平成27年度版)_02

都道府県別経済財政モデル(平成27年度版)_02 -1 (--- 10-2 ---- 4.- 5-3 () 10 13 3 5-4 () 13 16 14-5 () 11 30-1 10 1. 1() Cw j C SNA 47 47 Chi LikL i k1 47 Chi k1 ij Cw j Ch i C SNA L ij j i SNA i j - 2 - -2 5-5 19-3 4 3 4-5 - 3 - 茨 - 4 - -1 (---

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

On moments of the noncentral Wishart distributions and weighted generating functions of matchings (Combinatorial Representation Theory and its Applica

On moments of the noncentral Wishart distributions and weighted generating functions of matchings (Combinatorial Representation Theory and its Applica $\triangle$ 1738 2011 142-154 142 On moments of the noncentral Wishart distributions and weighted generating functions of matchings ( JST CREST) Wishart ( )Wishart determinant Hafnian analogue ( $)$Wishart

More information

A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)

A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory) $\bullet$ $\bullet$ $\bullet$ $\prime \mathcal{h}$ 1795 2012 117-134 117 A generalized Cartan decomposition for connected compact Lie groups and its application Graguate School of Mathematical Sciences,

More information

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究) 1780 2012 119-129 119 Wolfram Alpha CDF (Shinya OHASHI) Chiba prefectural Funabashi-Keimei Highschool 1 RIMS Wolfram Alpha Wolfram Alpha Wolfram Alpha Wolfram Alpha CDF 2 Wolfram Alpha 21 Wolfram Alpha

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information