ver.1, 1994 ver.2, 1996 ver.3.0.7, ver.3.1.0, ver.3.2.0, I HP ϕ

Size: px
Start display at page:

Download "ver.1, 1994 ver.2, 1996 ver.3.0.7, ver.3.1.0, ver.3.2.0, I HP ϕ"

Transcription

1 ver.1, 1994 ver., 1996 ver.3.0.7, ver.3.1.0, ver.3..0, I HP ϕ Mean Field Theory MF Block Spin Transformation (BST) BST i.i.d BST ϕ θ

2 scaling limit effective theory ϕ BST (Weak) ϕ 4 d- d Fractal KT-type? Coulomb Gas? A 43 A A ϕ 4 - d- Z d {x =(x 1,x,...,x d ):x j R} Z d site x ϕ x ρ({ϕ}) marginal distribution Z d Λ Λ L Periodic Boundary Condition, P.B.C. Λ {(x 1,x,..., x d ) x j Z, L <x j L} (1.1.1) x j = L x j = L x Λ ϕ x ρ Λ ρ Λ 1 1 universality

3 Λ ( F ({ϕ x }) ρλ dϕ x )ρ Λ ({ϕ x }) F ({ϕ x }) (1.1.) x Λ Φ {ϕ x } x Λ dφ x Λ dϕ x [ ρ Λ (Φ) 1 exp Z Λ J 4 x,y Λ x y =1 (ϕ x ϕ y ) + H ] ϕ x η(ϕ x ) (J, H 0) (1.1.3) x Λ x Λ δ(ϕ K ) K>0 (Ising model) η(ϕ) = exp [ µ ϕ λ 4! ϕ4] µ R, λ 0 (ϕ 4 model) Z Λ 1 ρλ =1 Remarks: 1. Ising Model ϕ 4 -model µ = λk 6 λ. ϕ 4 -model (J, µ, λ, H) ϕ trivial (1.1.4) ϕ ϕ aϕ (1.1.5) (J, µ, λ, H) (J,µ,λ,H ) (a J, a µ, a 4 λ, ah) (1.1.6) 3. ρ = exp( βh) H 4. J /(kt) H /(kt) 1.1. Λ Z d ρ lim Λ Z d ρλ (1.1.7) P.B.C. J >0 ρλ Λ- 3

4 1. Definition X 1, X,..., X n truncated expectation X 1 ; X ;...; X n [ n log exp h i X i] (1..1) h 1 h h n i=1 h1=h =...=h n=0 [ n ] exp h i X i X i i=1 X 1 X...X n = Xi1 ; X i ;...; X ip P p=(i 1,i,...,i p) P (1..) truncated expectation P 1,,...,n Definition 1... Definition 1..1 X i = ϕ xi function n- Ursell function connected correlation u n (x 1,x,...,x n )= ϕ x1 ; ϕ x ;...; ϕ xn (1..3) (J, µ, λ, H) G(x, y) ϕ 0 ; ϕ x ϕ 0 ϕ x ϕ 0 ϕ x two point function (1..4) M s lim ϕ 0 H 0 spontaneous magnetization (1..5) χ ϕ 0 ; ϕ x x susceptibility (1..6) 1 ξ lim log ϕ 0 ϕ ne1 n n ξ correlation length (1..7) (1..7) e 1 (1..7) reflection positivity [1] u 4 ϕ 0 ; ϕ x ; ϕ y ; ϕ z { ϕ 0 ϕ x ϕ y ϕ z ϕ 0 ϕ x ϕ y ϕ z ϕ 0 ϕ y ϕ x ϕ z ϕ 0 ϕ z ϕ x ϕ y } (1..8) x,y,z x,y,z H = λ =0I A ρ(φ) = 1 Z exp 1 ϕ x A x,y ϕ y + H ϕ x (1.3.1) x,y I x I 4

5 A ϕ x = H y I ( A 1 ) x,y (1.3.) ϕ x ; ϕ y ϕ x ϕ y ϕ x ϕ y = ( A 1) x,y (1.3.3) Wick Theorem (Wick ). ϕ u n 0 (n 3) (1.3.4) ϕ 4 - (1.1.3) (1.1.4) λ =0 A x,y =(µ +dj)δ x,y Jδ x y,1, ˆD(k) 1 d ϕ x ; ϕ y = ( A 1) x,y = µ>0,h =0 [ π,π) d d d k (π) d d cos k j (1.3.5) j=1 e ik (x y) µ +dj{1 ˆD(k)} [ π,π) d d d k (π) d eik (x y) Ĉ(k) (1.3.6) χ = 1 µ C(0,x) ϕ 0 ϕ x x (1.3.7) d d k e ikx (π) d µ + J k µ x e const. = ξ µ 1/ (1.3.8) µ = H =0 const C(0,x) x d (d>) (d ) (1.3.9) µ c =0, γ =1, ν = 1, η =0 (1.3.10) 1.3. ϕ 4 - ϕ 4 -model (1.1.3) (1.1.4) J>0,λ>0 µ Simon[] M s χ µ c ξ µ 5

6 Theorem d>1 J, λ µ c (J, λ) µ>µ c (J, λ) ϕ 3 G(0,x) Ce m x, ( C(µ, J, λ), m(µ, J, λ) > 0) (1.3.11) M s =0, χ <, ξ < (1.3.1) µ<µ c (J, λ) 4 G(x, y) ɛ(µ, J, λ) > 0 ( x, y Z d ) (1.3.13) χ =, ξ =, M s > 0, (1.3.14) χ, ξ as µ µ c (1.3.15) µ µ = µ c µ c µ c (critical phenomena, critical behaviour) critical exponents γ,ν,β,η,δ, 4 χ(µ) (µ µ c ) γ, ξ(µ) (µ µ c ) ν, u 4 (µ µ c ) ( 4+γ) (µ µ c ; H 0) (1.3.16) M s (µ) (µ c µ) β, (µ µ c ; H 0) (1.3.17) G(0,x) x d+ η ( x ; µ µ c,h 0) (1.3.18) ϕ 0 H H 1/δ (H 0; µ µ c ) (1.3.19) log f(x) x a f(x) g(x) lim x a log g(x) =1 ϕ 4 d ϕ 4 universality d >4 Mean Field Values γ =1, ν = β = 1, η =0, δ =3, 4 = 3 (1.3.0) ( η)ν = γ, γ +β = β(δ +1) (scaling law d ) (1.3.1) dν = 4 γ = γ +β (hyperscaling law d <4 ) (1.3.) 3 µ 1 a = 1/µ (J/µ, 1, λ/µ ) (0, 1, 0) ρ(φ) x exp( ϕ x/) product measure 4 a = µ/(λ) ( J µ λ, µ λ, µ 4λ ) Peierls argument 6

7 .1 Mean Field Theory MF nearest neighbour model (1.1.) 1 ( J dη(ϕ x ) exp ϕ x ϕ y + H ) ϕ x ( ) (.1.1) Z 4 x x y =1 x η (.1.1) 0 Z d M ϕ 0 MF (.1.1) ϕ 0 ϕ 0 H eff = J ϕ y + H y: x y =1 ϕ y = ϕ 0 = M ϕ y M R ϕ y (.1.1) ( J ϕ 0 exp ϕ x ϕ y + H ) ϕ x dρ 0 (ϕ x ) x y =1 x x ( J = dρ 0 (ϕ y ) exp ϕ x ϕ y + H ) [ ( ] ϕ x dρ 0 (ϕ 0 ) exp ϕ 0 ϕ 0 Jϕ y + H )ϕ 0 y:y 0 x 0 x,y: x y =1 x,y 0 ( J dρ 0 (ϕ y ) exp ϕ x ϕ y + H ) [ ϕ x y:y 0 x 0 ϕ 0 = y:y 0 ( J dρ 0 (ϕ y ) exp x,y: x y =1 x,y 0 x,y: x y =1 x,y 0 ϕ x ϕ y + H x 0 ϕ x ) [ ( dρ 0 (ϕ 0 ) exp ϕ 0 ( dρ 0 (ϕ 0 ) exp ϕ 0 y: y =1 y: y =1 y: y =1 ] ϕ 0 Jϕ y + H )ϕ 0 (.1.) ) ] (.1.3) ϕ 0 Jϕ y + H ϕ 0 H eff J ϕ y + H y: x y =1 (.1.4) ϕ 0 ϕ y M Remark. 7

8 ϕ y M (.1.4) y: x y =1 ϕ y dm ϕ y M y: x y =1 ϕ y dm {ϕ y } y: y =1 {ϕ y } y: y =1 d...1 H = H 0 + V dφ e H F F H dφ e H (..1) V ρ 0 (Φ) = e H0(Φ) dρ0 (Φ) ( ), ρ0 (..) dρ0 (Φ) 1..1 truncated expectation X 1,X X 1 ; X 1 ; ; X }{{ 1 ; X } ; X ; ; X }{{ = m n } h m 1 h n log e h1x1+hx h1=h =0 m n log e h1x1+hx = h m 1 h n X 1 ; X 1 ; ; X 1 m! n! m,n 0 m+n 1 } {{ } m ; X ; X ; ; X }{{} n (..3) (..4) (..4) Fe V ρ F H = 0 e V = ρ0 h log e hf λv ρ 0 h=0,λ=1 = h m ( λ) n F ; F ; ; F ; V ; V ; ; V ( 1) n h m! n! }{{}}{{} ρ 0 = F ; V ; V ; ; V m,n=0 h=0,λ=1 n! }{{} ρ 0 m n n=0 n (..5) 8

9 / h m =1 log e V ρ 0 = ( 1) n V ; V ; ; V (..6) n! }{{} ρ 0 n=1 n.. ϕ 4 H 0 J x ϕ y ) 4 x y =1(ϕ, V x ( µ ϕ x + λ ) 4! ϕ4 (..7) ρ 0 = e H0 (..5) Wick ϕ ρ 0 C xy ϕ x ϕ y ρ0 ϕ 0 ϕ x = C 0x ( ) λ C 0y C yx C 00 + µ + O(λ ) (..8) y d 4 d > Block Spin Transformation (BST) Renormalization Group Transformation, RGT BST marginal distribution 5 RGT BST BST marginal distribution 6 marginal distribution 5 6 x, y ρ(x, y) y x ρ x marginal distribution ρ(x, y) y η(x) ρ(x, dy) marginal distribution 9

10 BST ρ ρ R L,θ Λ L N, N 1 sites L L>1 Lx { B x x Z d : x Lx < L } (3.1.1) Lx Λ L x L N 1 x } Λ {x Z d : x < LN 1 (3.1.) x' y' z' Lx' Ly' Lz' Λ L = 3 Λ' Λ {ϕ x } x Λ {ϕ x } x Λ ϕ x L θ (3.1.3) y B x ϕ y θ R {ϕ x } x Λ [ ρ ({ϕ }) (R L,θ ρ)({ϕ }) ρ({ϕ}) (ϕ x ) ][ ] L θ ϕ x dϕ x x Λ δ x B x x Λ ρ (3.1.4) δ δ-ρ ρ {ϕ} {ϕ } ρ (3.1.3) Remark. 1.. B x BST 10

11 (a) L θ+d (b) x L 1/L 3. θ θ = d θ = d/ θ BST 3.1. BST R L,θ R L1,θ = R LL 1,θ (3.1.5) ( { F ({ϕ } x Λ ) ρ ({ϕ }) F = L θ } ϕ y y B x x Λ ) ρ({ϕ}) (3.1.6) BST ρ ϕ 0 ϕ 0 ϕ 0 = 1 ϕ x (3.1.7) Λ x Λ BST [3, 4] BST BST BST n ρ (n) R n ρ L nd ρ (n) n BST BST fixed point flow flow

12 3.1.4 R L,θ ρ R L,θ (ρ )=ρ (3.1.8) RGT fixed point θ θ relevant, irrelevant, marginal operators ρ ρ = ρ + δρ ρ = ρ (1 + η) RGT 8 Definition ( ). ρ BST R H e H ρ, R(e H )=e H (3.1.9) R(e (H +ɛf) )=e (H +αɛf+o(ɛ )), α 0 (3.1.10) f BST R ρ f Φ α α L κ κ R Definition 3.1. ( ). ρ BST R R(ρ f)=αρ f (3.1.11) f BST R ρ f Φ ρ f Φ ρ (Φ)f(Φ) ρ f Remark. ɛ 9 R ρ (3.1.10) ɛ ( ) LHS of (3.1.10) = R e H ɛf e H + O(ɛ ) = R(e H ) ɛr(f e H )+O(ɛ ) (3.1.1) RHS of (3.1.10) = e [ H 1 αɛf + O(ɛ ) ] = e H αɛfe H + O(ɛ ) (3.1.13) ρ = e H (3.1.11) α α>1 κ>0 relevant α =1 κ =0 marginal 0 α<1 κ<0 irrelevant (3.1.14) ρ BST irrelevant 10 8 BST 9 η O(ɛ ) ρ f = F ρ Gaussian fixed point 10 irrelevant dangerously irrelevant operators

13 3. BST i.i.d Trivial i.i.d.- CLT i.i.d. identical independent distribution BST (1.1.3) J 0 ρ(φ) = x η(ϕ x ) (3..1) ϕ x BST ϕ x θ (ϕ x + ϕ x+1 ) (3.1.4) L = ρ (Φ )= η (ϕ x), η (ϕ )= θ dϕ η(ϕ) η( θ ϕ ϕ) (3..) x BST n- η η n+1 (ϕ )= θ dϕ η n (ϕ) η n ( θ ϕ ϕ) (3..3) Fourier CLT ˆη n+1 (k) = [ˆη n ( θ k) ] ], [ˆη(k) dϕ e ikϕ η(ϕ) (3..4) g n+1 (k) =g n ( θ k), [g n (k) log ˆη n (k)] (3..5) g n (k) = n g 0 ( nθ k) (3..6) CLT η θ =1/ g n (k) g 0 (0) σ k CLT σ ϕ; ϕ (3..7) BST 3.. CLT [5] Section II BST CLT fixed point fixed point 3..3 BST BST 13

14 (3.1.6) BST Φ BST BST Wick mean covariance ϕ 0; ϕ x = L θ ϕ y ; ϕ z y, z Lx < L = L (θ+d) [ πl,πl] d n- ϕ (n) 0 ; ϕ(n) x = L (θ+d)n d d k (π) d [ πl n,πl n ] d e ik x µ +dj{1 ˆD(kL 1 )} d d k (π) d e ik x d j=1 µ +dj{1 ˆD(kL n )} [ ] k sin j (3..8) sin kj L d j=1 [ ] k sin j (3..9) sin kj L n n- BST mean, covariance 11 [ ρ (n) (Φ (n) )= 1 Z exp 1 ( ϕ (n) x A (n)) x,y ϕ(n) y + HL ] θ ϕ (n) x (3..10) x,y x [(A (n))] 1 = ϕ (n) 0 ; x,y ϕ(n) x of (3..9) (3..11) θ ρ (n) ρ θ H =0 A (n) ϕ (n) covariance (3..9) n θ (3..9) x = O(1) k O(1) n ϕ (n) 0 ; ϕ(n) x L (θ d)n R d d d k (π) d Case (1) µ>0 θ = d ϕ (n) 0 ; ϕ(n) x 1 d d k eik x µ R (π) d d d j=1 e ik x µ + J k L n d j=1 [ ] k sin j (3..1) k j [ ] k sin j (3..13) k j BST i.i.d Case ( ) µ =0 θ = d+ ϕ (n) 0 ; d d k e ik x ϕ(n) x R (π) d J k d d j=1 [ ] k sin j (3..14) k j covariance d d k e ik x C cont (0,x)= (π) d J k R d 11 H (3.4.8) (3..15) 14

15 0, x 1 µ >0 θ = d+ BST ϕ (n) 0 ; ϕ(n) x R d d d k (π) d e ik x µl n + J k d j=1 [ ] k sin j (3..16) k j µ µl n µ ρ* θ = d +, κ = (3..17) BST ϕ 4 - ϕ 4 - BST ϕ 4 - ϕ 4 - BST 3.3. ϕ 4-1 d ϕ ϕ 4 - flow 15

16 λ (n) λ (n) λ 0 µ (n) 0 µ µ (n) 1: ϕ 4 flow d<4 d>4 1.. ϕ θ θ θ Rρ = ρ (3.4.1). ρ relevant R(ρ f 1 )=L κ ρ f 1 (3.4.) ϕ (3.1.11) α α L κ κ marginal irrelevant ρ µ µ µ µ = µ ρ crit BST n- ρ (n) crit ρ(n) n crit ρ 16

17 . µ µ ρ (n) ρ (n) relevant operator (µ µ )L κn ϕ 4 - relevant ϕ θ η µ = µ µ = µ c crit ϕ ϕ (n) ϕ (n) x (n) L nθ x: x L n x (n) < L ϕ x (3.4.3) (3.1.6) ϕ (n) 0 ϕ(n) y = L nθ ρ (n) crit x: x < Ln ϕ x ϕ z ρcrit (3.4.4) z: z L n y < Ln ϕ x ϕ z ρcrit y, z ϕ x ϕ z ρcrit ϕ 0 ϕ Ln y ϕ 0 ϕ L n y ρcrit L n(d θ) ϕ (n) 0 ϕ(n) y (3.4.5) ρ (n) crit ρ (n) crit ρ y n (3.4.5) ϕ (n) 0 ϕ(n) y ϕ 0ϕ y ρ ρ (n) crit (3.4.6) ρ (n) crit ρ reasonable 0 < ϕ 0 ϕ y < ρ (3.4.7) ϕ 0 ϕ Ln y ρcrit L n(d θ) O(1) (3.4.8) x = L n y x ϕ 0 ϕ x ρcrit x (d θ) as x (3.4.9) η η =θ d (3.4.10) l = L N 1 17

18 3.4. γ ν I off-critical t µ µ µ = µ + t ρ ρ t [ ρ t ρ crit exp t ] ϕ x (3.4.11) x ρ t t 1 BST n- n 1 tl nκ O(1) ρ (n) t ρ exp [ tlnκ ( ) ] ϕ (n) x x (3.4.1) n = n(t) tl nκ = O(1) nκ log L t (3.4.13) n- BST [ ρ (n) t ρ exp O(1) ( ) ] ϕ (n) x (3.4.14) x ρ (n) t critical ϕ O(1) ξ (n) ξ (n) = O(1) (3.4.15) ξ t = L n ξ (n) = O(L n ) O(t 1/κ ) (3.4.16) ν = 1 κ (3.4.17) γ θ ϕ (n) ρ (n) t ρ ρ (n) t O(1) ϕ (n) χ (n) ϕ (n) 0 ϕ(n) = O(1) (3.4.18) x ρ (n) (n) x (n) (3.1.6) χ = L n(θ d) χ (n) = O(L n(θ d) )=O(t (θ d)/κ ) (3.4.19) γ = θ d κ (3.4.0) 18

19 3.4.3 II renormalized coupling g ren u 4 χ ξ d (3.4.1) BST g (n) ren = g ren. n- BST u (n) 4 ( ϕ (n)) 4 λ (n) Case (1): λ (n) λ > 0 γ, ν n- BST (n) u 4 λ = O(1). (3.1.6) u 4 = L (4θ d)n u (n) = O(L (4θ d)n )=O(t 4θ d κ ) (3.4.) 4 + γ = 4θ d κ 4 4 = θ κ (3.4.3) Case (): λ (n) 0 ϕ 4 irrelevant ρ (n) ρ gauss θ, κ θ = d +, κ = λ (n) gaussian fixed point perturbation (3.4.4) λ (n) λ (n 1) L 4(θ d)+d λ (n 1) L 4 d O(L (4 d)n ) (3.4.5) u (n) 4 λ(n) = O(L (4 d)n ) (3.1.6) u 4 = L (4θ d)n (n) u O(L 8n ) O(t 4 ) (3.4.6) γ =4, 4 = 3 (3.4.7) δ µ = µ c ϕ x = L θ ϕ x H ϕ x = HL θ ϕ x (3.4.8) x: x Lx <L/ x x n- BST HL nθ [ ρ (n) ρ (n) crit exp HL ] nθ ϕ (n) x (3.4.9) x Case (1): λ (n) λ > 0 n H (n) = HL nθ = O(1) (3.4.30) 19

20 ϕ (n) effective potential λ (n) ( ϕ (n)) 4 H (n) ϕ (n) (3.4.31) ϕ (n) 0 ρ (n) ( H (n) λ(n) )1/3 = O(1) (3.4.3) (3.1.6) ( ϕ 0 ρ = L (d θ)n ϕ (n) 0 = O L (d θ)n) ( = O H (d θ)/θ) (3.4.33) ρ (n) δ = θ d θ (3.4.34) Case (): λ (n) 0 (3.4.4) H (n) = O(1) BST ϕ (n) effective potential ( ) H ϕ (n) (n) 1/3 λ(n) ( ) 1/3 1 (3.4.35) λ(n) Large Field Problem ϕ ϕ 6, ϕ 8 ϕ 4 - ϕ (n) = O(1) n H (n) λ (n) = HL nθ λl (4 d)n = L (d 4+θ)n λ/h (3.4.36) n (3.4.4) ϕ 0 ρ L (d θ)n ϕ (n) ρ(n) 0 (L = O d n) ( = O H 1/3) (3.4.37) δ = β ν, γ t L nκ = O(1) (3.4.38) n- BST χ (n) = O(1), ξ (n) = O(1) (3.4.39) ν = 1 κ, γ = θ d κ (3.4.40) β 0

21 Case (1): λ (n) λ > 0 n ( t)l nκ = O(1) (3.4.41) ϕ (n) effective potential λ (n) ( ϕ (n)) 4 + tl nκ ( ϕ (n)) (3.4.4) ϕ (n) 0 ρ (n) ( ) ( t)l nκ 1/ = O(1) (3.4.43) λ(n) ( ϕ 0 ρ = L (d θ)n ϕ (n) ρ(n) 0 = O L (d θ)n) ( = O t (d θ)/κ) (3.4.44) β = d θ κ (3.4.45) Case (): λ (n) 0 (3.4.4) ( µ n /λ n ) 1/3 = O(1) BST ϕ (n) effective potential ( ) ϕ (n) ( t)l nκ 1/ ( ) 1/ 1 0 (3.4.46) ρ (n) λ(n) λ(n) ϕ (n) = O(1) n ( t)l nκ λ (n) = ( t)l nκ λl (4 d)n = L (d )n λ t (3.4.47) n θ = d+ ϕ 0 ρ L (d θ)n ϕ (n) 0 = O (L d n) ( = O t 1/) (3.4.48) β =1/. ρ (n) Universality, Scaling, Hyperscaling θ, κ ρ ρ ρ ρ universality θ, κ ( η)ν = γ (3.4.49) βδ = 4 = β + γ (3.4.50) γ +β = β(δ +1)= 4 γ = 4 + β (3.4.51) scaling laws d <4 dν =δ 4 γ = γ +β (3.4.5) hyperscaling law

22 3.4.7 Tricritical Behaviour Relevant 3.5 θ {ϕ x } x Φ Φ Ω Φ ρ A Ω Prob(Φ A) T :Ω Ω A ρ(φ)dφ (3.5.1) T T L,γ : {ϕ x } x {L γ ϕ x } x {ϕ T x } x (3.5.) L γ Φ Φ T Prob(Φ T TA)=Prob(T Φ TA)=Prob(Φ A) (3.5.3) Ω A Φ T ρ T (Φ T ) Prob(Φ T A) ρ T (Φ T )dφ T (3.5.4) A ρ T ρ T (Φ T )dφ T = Prob(Φ T TA)=Prob(T Φ TA)=Prob(Φ A) = TA A ρ(φ)dφ (3.5.5) LHS Φ T = T Φ Φ LHS = ρ T (T Φ) ΦT dφ = ρ T (T Φ) (det T ) dφ (3.5.6) Φ A ΦT =T Φ A (det T ) ρ T (T Φ) = ρ(φ) (3.5.7) ρ T (Φ T )= 1 det T ρ(t 1 Φ T )=L γ Λ ρ(l γ Φ T ) (3.5.8) ρ T (Φ T )= ρ(φ)δ(φ T L γ Φ)dΦ (3.5.9) ad hoc

23 L>0, γ R T L,γ T L,γ : ϕ x L γ ϕ x ( x Λ) (3.5.10) ρ T L,γ Φ T (Φ )=(T L,γ ρ)(φ )= ρ(φ)δ(φ L γ Φ)dΦ =L γ Λ ρ(l γ Φ ) (3.5.11) ρ 1 ρ L, γ T L,γ ρ 1 = ρ (3.5.1) ρ 1 ρ ρ 1 ρ (3.5.13) H = J x ϕ y ) 4 x y =1(ϕ + [ µ ϕ x + λ ] 4! ϕ4 x x (3.5.14) J, µ, λ µ/j, λ/j J ρ 1, ρ T L,γ T L,γ (ρ 1 ρ )=L γ Λ T L,γ (ρ 1 ) T L,γ (ρ ) (3.5.15) 3.5. BST θ BST T L,γ ρ R L,θ T L,γ = R L,θ+γ = T L,γ R L,θ (3.5.16) Proof. (ŜΦ) x y B x ϕ y (R L,θ T L,γ ρ)(φ )=(R L,θ (T L,γ ρ)) (Φ )= (dφ )(T L,γ ρ)(φ ) δ(φ L θ ŜΦ ) [ ] ( ) = (dφ ) (dφ)δ(φ L γ Φ)ρ(Φ) δ(φ L θ ŜΦ )= (dφ)δ Φ L θ Ŝ(L γ Φ) ρ(φ) ( ) = (dφ)δ Φ L θ γ Ŝ(Φ) ρ(φ) = (R L,θ+γ ρ)(φ ) (3.5.17) 3

24 ρ = T L,γ ρ 1 (3.5.18) R L,θ (ρ )=T L,γ (R L,θ ρ 1 ) (3.5.19) ρ 1 ρ Rρ 1 Rρ. BST R L,θ1 (ρ) R L,θ (ρ) (3.5.0) R L,θ ρ = T L,(θ θ 1) (R L,θ1 ρ) (3.5.1) θ BST ρ Proof. Prop R L,θ ρ = R L,θ (T L,γ ρ 1 )=T L,γ R L,θ ρ 1 Prop ρ ρ BST R L R L ( ρ) R L,θ (ρ) R L,θ (ρ) (3.5.) θ BST ρ ρ R L ( ρ) = ρ (3.5.3) R L θ L J 1 1. ρ J = 1 θ BST ρ. ϕ J 1 ρ 3. ρ ρ θ ρ ρ θ 4

25 3.5.3 flow ρ R L,θ R L,θ (ρ )=ρ (3.5.4) 1. ρ ρ ρ θ R L,θ (T L,γ ρ )=T L,γ (R L,θ ρ )=(T L,γ ρ ) (3.5.5). θ θ BST ρ R L,θ ρ = T L,θ θ R L,θ ρ = T L,θ θ ρ (3.5.6) ρ θ Proof. Prop R R( ρ )= ρ θ,ρ ρ ρ R L,θ ρ = ρ (3.5.7) Proof. ρ ρ θ ρ ρ θ R L,θ ρ = ρ θ (3.5.8) ρ ρ θ γ(θ), s.t. ρ θ = T L,γ ρ (3.5.9) R L,θ ρ = T L,γ ρ (3.5.30) Prop T L,γ R L,θ γ ρ = T L,γ ρ = R L,θ γ ρ = ρ (3.5.31) θ = θ γ θ Prop ρ R L ( ρ )= ρ (3.5.3) Relevant, Irrelevant 5

26 ρ η R L,θ (ρ )=ρ, R L,θ (ρ η)=α(ρ η) (3.5.33) ρ 1 T L,γρ, η 1 T L,γ η (3.5.34) R L,θ (ρ 1 )=ρ 1, R L,θ (ρ 1 η 1)=α(ρ 1 η 1) (3.5.35) T L,γ ρ T L,γ Proof. (3.5.15) ρ 1 η 1 = T (ρ 1 )T (η 1)=L γ Λ T (ρ 1 η 1) (3.5.36) R(ρ 1 η 1)=R(L γ Λ T (ρ 1 η 1)) = L γ Λ RT (ρ 1 η 1)=L γ Λ T R(ρ 1 η 1) = L γ Λ Tα(ρ 1η 1 )=αl γ Λ T (ρ 1η 1 )=αρ 1η 1 (3.5.37) R L,θ φ = αφ R L φ = α φ (3.5.38) θ θ φ = ρ η Proof. φ φ 1, φ θ R L,θ (φ 1 ) αφ = γ, R L,θ (φ 1 )=T L,γ (αφ ) (3.5.39) φ φ 1, φ γ 1 φ = T L,γ1 (φ 1 ) (3.5.40) R L,θ (φ 1 )=T L,γ (αt L,γ1 (φ 1 )) = αt L,γ1+γ (φ 1 ) (3.5.41) Prop R L,θ γ1 γ (T L,γ1+γ φ 1 )=αt L,γ1+γ (φ 1 ) (3.5.4) φ T L,γ1+γ (φ 1 ), θ = θ γ 1 γ θ 6

27 4 4.1 Here we concentrate on three axioms of QFT, which will be relevant for our later studies. A general reference is [6] Mathematical Definitions Minkowski space: A space R d = {(x 0,x 1,..., x d 1 )}, with a special inner product (x, y) =x 0 y 0 d 1 i=1 xi y i. Note that this is not a proper mathematical inner product (indefinite metric). Lorentz transformation: A linear transformation Λ:x =(x 0,x 1,..., x d 1 ) R d x, x i =Λ i j x j on a Minkowski space, which leaves the Minkowski inner product invariant. The set of all Lorentz transformations (on a given Minkowski space) is called the full Lorentz group. Proper Lorentz group A subset of the full Lorentz group. Its elements are those Lorentz transformations Λ which satisfy Λ and det Λ = 1. This is written as L + Proper Poincare group: The set of all transformations (a, Λ) where a R d and Λ L +, defined by (a, Λ)x = λx + a. The set is written as P Wightman-Garding Axioms This is a very natural starting point for Axiomatic QFT. In essence, it proposes a framework of QFT in a usual Hilbert space, operator language. Axiom GW A quantum field theory (of neutral scalar field) consists of the following four: (1) H, aseparable Hilbert space, () Ω H,aunit vector (vacuum), (3) φ, amapping from S(R d )tothe set of linear operators on H (field operators), (4) U, astrongly continuous unitary representation of P + on H. Moreover, these four should satisfy the following axioms (GW1 GW5). (GW1) [This part lays foundation of QFT as a usual quantum mechanics.] There exists D 0 H, dense in H. And (we denote the inner product in H by <, >) (a) For each f S(R d ), the domain of φ(f) [as an operator on H] includes D 0. Ψ 1, Ψ D 0, Ψ 1,φ( )Ψ is a tempered distribution. (b) For real f S(R d ), φ(f) isasymmetric operator on D 0. I.e. Moreover, for any Ψ 1,φ(f)Ψ = φ(f)ψ 1, Ψ. (c) D 0 is an invariant subspace of H for each f S(R d ). I.e. Ψ D 0 implies φ(f)ψ D 0. (d) Ω D 0. Moreover, D 0 is a linear span of {Ω,φ(f 1 )Ω,φ(f 1 )φ(f )Ω,... f i S(R d )} 7

28 (GW) [This takes care of Poincare invariance.] (a) D 0 is an invariant subspace of U(a, Λ) for each (a, Λ) P +. I.e. U(a, Λ)Ψ D 0 if Ψ D 0. (b) U(a, Λ)Ω = Ω for all (a, Λ) P +. (c) The following identity holds as operators on D 0 :Forall (a, Λ) P + and for all f S(Rd ), U(a, Λ)φ(f)U(a, Λ) 1 = φ(f a,λ ) In the above, f a,λ f(λ 1 (x a)). (GW3) [Spectral Condition] Consider the set of all translations {U(a, I) a R d } P +. The joint spectrum of the generators of these translations is contained in the closure of the forward light cone: V + {p R d p 0 > 0, (p, p) > 0}. (GW4) [Locality or causality] If f,g S(R d ) are space-like separated, i.e. (x y, x y) < 0 for all x suppf and y suppg, then (as operators on D 0 ) [φ(f),φ(g)] φ(f)φ(g) φ(g)φ(f) =0. (GW5) [Uniqueness of the vacuum] Ωisthe unique translation invariant vector. I.e. it is the only vector which satisfies Ω = U(a, I)Ω Wightman s Axioms for Wightman Functionals (Green s functions) and Wightman Reconstruction Theorem In 1956, Wightman gave an another set of axioms, which he proved to be equivalent to the above one. It is written in terms of Green s functions of the field theory [called Wightman function(al)s]. It is stated as follows: Axioms for Wightman functions: A QFT (of neutral scalar fields) is a set of tempered distributions {W n S (R nd )} n=0, which satisfy the following (W1 W6). By convention, we always understand W 0 1. In the following, W n (x 1,x,..., x n ) represents the value of W n at (x 1,..., x n )asatempered distribution. I.e. W n (f) = W n (x 1,x,..., x n )f(x 1,x,..., x n )dx 1 dx dx n. We denote the complex conjugate of z by z. (W1) [neutrality] For any f S(R dn ), W n (f) =W n (f ) where f (x 1,x,..., x n ) f(x n,x n 1,..., x 1 ). (W) [Poincare covariance] For any (a, Λ) P + and for any f S(Rdn ), W n (f) =W n (f a,λ ) 8

29 (W3) [Positivity] We define a tensor product f g for f S(R dm ) and g S(R dn )as (f g)(x 1,..., x m+n )=f(x 1,..., x m )g(x m+1,..., x m+n ). Then, for any f 0 C,f 1 S(R d ),..., wehave N m,n=0 for N =0, 1,,... W m+n (f m f n ) 0 (W4) [Spectral Condition] The support of the Fourier transform F of W, defined by n 1 W n (x 1,..., x n )= F n 1 (p 1,..., p n 1 ) exp{i (p j,x j+1 x j )}dp 1 dp n 1 j=1 is contained in (a tensor product of) forward light cone. (W5) [Locality] For any n and for any x j,x j+1 such that (x j x j+1,x j x j+1 ) < 0, we have W n (x 1,..., x j,x j+1,...x n )=W n (x 1,..., x j+1,x j,...x n ) (W6) [Clustering Property] For any spacelike vector a R, we have lim λ W n(x 1,..., x j,x j+1 + λa,..., x n + λa) =W j (x 1,..., x j )W n j (x j+1,...x n ) Osterwalder-Schrader Axioms This is the set of axioms which will be directly relevant for our later studies. Euclidean Green s functions (called Schwinger functions). We begin with some definitions. It is a set of axioms about S (R dn ) {f S(R dn ) f and all its partial derivatives are zero on a hyperplane y i = y j } (4.1.1) S (Rdn ) {linear functionals on S (R dn )} (4.1.) S + (R dn ) { f S (R dn ) suppf {((t 1, x 1 ),..., (t n, x n )) R nd, 0 <t 1 <... < t n } } (4.1.3) Osterwalder-Schrader Axioms: Schwinger functions {S n } n=1 should satisfy: (OS1) [Temperedness] Each S n S (Rdn ). And S n (f) =S n (Θf ) for any f S (R dn ). Here (Θf)((t 1, x 1 ),..., (t n, x n )) = f(( t 1, x 1 ),..., ( t n, x n )) means time reversal. (OS) [Euclidean Invariance] Forany Λ, a rotation of R d, and for any a R d, S n (f) =S n (f (a,λ) ), f S (R dn ). (OS3) [Positivity] For any f 0 C, f j S + (R dj ), N S m+n (Θfn f m ) 0. m,n=0 9

30 (OS4) [Symmetry] S n is symmetric. I.e. S n (f) =S n (f π ) for any f π, which is obtained from f by changing the order of its arguments. (OS5) [Clustering Property] lim S m+n(f T t g)=s n (f)s m (g) t for f S (R dn ) C 0 (R dn ), g S (R dm ) C 0 (R dm ). Here (T t g)((t 1, x 1 ),..., (t n, x n )) g((t 1 t, x 1 ),..., (t n t, x n )) is a time translation. Important!! The above three axioms are equivalent!! 4. scaling limit OS Schwinger- Schwinger- 14 [6] 4..1 R d ɛz d Z d d- Z d {x =(x 1,x,..., x d ) R d x µ Z, 1 µ d} d- ɛ d- ɛ >0 ɛz d { } ɛz d x =( x 1, x,..., x d ) R d x µ ɛ Z, 1 µ d Z d x, y,... ɛz d R d x, ỹ,... x Z d ɛx µ- ɛx µ ɛz d ɛ ɛ 0 x R d x µ x µ /ɛ x Z d ɛx ɛz d ɛ 0 R d ɛz d 15 (a) 4.. ɛz d Schwinger- R d Schwinger- ɛz d ɛ >0 ɛ 0 Schwinger- Schwinger- OS ɛz d Schwinger- OS R d

31 ε = 1 cm ε = 1/ cm ε = 1/4 cm ε =0 cm (a) 1 cm 1 cm 1 cm 1 cm (b) 1 cm 1 cm 1 cm 1 cm (c) : (a) (b) I: (c) II: ɛ 31

32 Minkowski- Ṽ n- { W n ( x 1, x,..., x n ) [Dϕ]ϕ( x 1 )ϕ( x ) ϕ( x n ) exp i d d x ( ) } µ ϕ( x) µ ϕ( x) Ṽ (ϕ( x)) (4..1) [ ( d )] S n ( x 1, x,..., x n ) [Dϕ]ϕ( x 1 )ϕ( x ) ϕ( x n ) exp d d x { µ ϕ( x)} + Ṽ (ϕ( x)) µ=1 (4..) R d ɛz d S n ( x 1, x,..., x n ) [Dϕ]ϕ x1 ϕ x ϕ xn exp ɛ ( d ) d {ϕ x+ɛeµ ϕ x } + Ṽ (ϕ( x)) (4..3) ɛ 0 Schwinger N ɛ x ɛz d S n ( x 1, x,..., x n )=lim ɛ 0 N N ɛ ϕ x1,...,ϕ xn ρɛ (4..4) (4..3) ɛz d ϕ x (4..3) 17 (4..) (4..1) OS 18 ɛ 0 (4..3) (4..) n (b) (c) ɛ ɛ 0 µ=1 ɛ 4..4 (4..3) Schwinger m phys S (0, x) C exp ( m phys x ) (4..5) ɛz d x ɛz d x x ɛ Zd (4..6) 16 OS Schwinger- OS Schwinger- 17 Z d OS 3

33 x Z d x (4..5) ϕ 0 ϕ x ɛ C exp ( m phys x ) C exp ( m phys ɛ x ) (4..7) Z d ξ ξ = 1 m phys ɛ (4..8) ɛ 0 m phys (4..8) ξ Ṽ ɛ Zd - ϕ 4 - ɛ (4..) ϕ (4..8) Schwinger ϕ ϕ 0 ϕ x ɛ ɛ α exp ( m phys x ) (4..9) α >0 ϕ x ϕ x ɛ α ϕ x (4..10) S (ɛ) (0,x) ɛ α ϕ 0 ϕ x ɛ (4..11) ɛ α (4..4) N ɛ = ɛ α n- ɛ 4..6 Trivial 33

34 nontrivial Step 1 ɛ ɛz d ɛ dρ ɛ ({ϕ})( ) (4..1) Step ρ ɛ ɛ ɛ 0 Step 3 OS, Wightman Minkowski ρ ɛ 4.3 effective theory ρ ɛ effective theory ρ ɛ ρ ɛ ɛ 0 ɛ 1 ρ ɛ (4..4) Z d l ρ ɛ l/ɛ = ɛ l l cont ɛ lattice (4.3.1) ρ ɛ L n n >0 ρ (n) ɛ R n ρ ɛ (4.3.) ρ (n) ɛ n- = L n = ɛl n (4.3.3) (4.3.1) n- BST l l n-lattice cont ɛl n (4.3.4) 34

35 ε = 1 cm ε = 1/ cm ε = 1/4 cm ε =0 cm (a) 1 cm 1 cm 1 cm 1 cm 1 BST BST's BST's (b) 3: (a) (b) ɛl N 1 N L = BSR 3 ɛ 0 (4.3.3) BST ɛl n ρ (n) ɛ ɛl n effective theory 4.3. effective theory O(1) m ɛ 0 l ρ ɛ ɛl N 1 N log L ɛ (4.3.5) N N- BST (4.3.3) N- ɛl N 1 ρ (N) ɛ O(1) effective theory Schwinger (N) S (ɛ) ( x 1,..., x n ) ϕ (N) x 1,...,ϕ (N) x n (4.3.6) ɛ 19 x j O(1) (4.3.6) ρ (N) ɛ ρ ɛ ρ (N) ɛ 19 n- x j /(ɛl n ) ɛl N 1 x j (4..4) N ɛ N ɛ (4.3.6) N ɛ = L N(d θ) = ɛ θ d 35

36 λ ε=l ε=l 1 ρ eff 14 µ 4: ρ ɛ n =3, 4,... ρ L n ρ ɛ ρ ɛ 1. effective theory ρ eff. ɛ>0 ρ ɛ ρ (N) ɛ ρ eff N (4.3.5) 3. ɛ 0 ρ eff flow ρ ɛ ϕ nontrivial lim ɛ = ρ eff ɛl N 1 ɛ 0 ρ (N) (4.3.7) {ρ ɛ } ɛ>0 ɛ 0 N ρ eff BST ρ eff (4.3.7) flow ρ ρ flow Remark. ρ flow ρ 1 flow ρ ρ 1 flow 0 36

37 WF λ λ G µ G µ (a) (b) 5: ρ eff (a) ϕ 4 3 flow Gaussian fixed point ρ eff n =0, 1,,... 0 ρ eff ɛ = L n ρ ɛ (b) ϕ 4 5 flow Gaussian fixed point λ- ρ eff Gaussian fixed point µ- λ ϕ ϕ 4 d 5 ϕ 4 3 flow Gaussian fixed point ρ eff 5 (a)uv IR ρ ɛ ρ WF ρ WF ρ G ρ WF ρ G ρ ɛ IR ρ WF ɛ 0 ρ WF ρ ɛ 0, 1,,... IR ρ eff UV gaussian fixed point G UV asymptotic free ρ G ρ WF ρ ɛ ɛ 0 ρ G IR ρ WF UV ρ G UV asymptotic free ϕ 4 5 flow Gaussian fixed point λ- ρ eff Gaussian fixed point µ- 5 (b) remark λ ϕ 4 - d- ϕ 4 37

38 4.4.1 ϕ µ ɛ,λ ɛ 5 (a) ρ ɛ recursion ϕ µ + O(λ) Wick ordering recursion λ = Lλ{1+O(λ)}, µ = L µ c 1 λ c µλ + O(λ 3,µ 3 ) (4.4.1) c 1,c n n ɛ λ ɛ,µ ɛ N effective couplings N log L ɛ µ (N) ɛ µ eff [ 0.1], λ (N) ɛ λ eff [ ] (4.4.) (4.4.1) 1 (4.4.) λ (N) (4.4.1) k λ (k) 1 λ (k) = L 1 λ (k+1) {1+O(λ (k) )} = L 1 λ (k+1) {1+O(λ (k+1) )} (4.4.3) λ (N) = λ eff λ (k) λ (N) L (N k) N l=k+1 {1+O(λ (l) )} (4.4.4) λ (k) λ (N) (L/) (N k) (4.4.4) λ (k) λ eff L (N k) {1+O(λ eff )} (4.4.5) λ ɛ = λ (0) λ eff L N {1+O(λ eff )} ɛλ eff {1+O(λ eff )} (4.4.6) µ µ (k) = µ(k+1) + c 1 ( λ (k) ) + O(λ 3,µ 3 ) L c λ (k) 1 L µ(k+1) + c 1 L λ eff L (N k) + c λ eff {1+O(λ eff )}L (N k) µ (k+1) + O(λ 3,µ 3 ) (4.4.7) (4.4.5) ζ (k) µ (k) L (N k) ζ (k) = ζ (k+1)[ 1+c λ eff {1+O(λ eff )}L (N k)] + c 1 L (λ eff) + O(L (N k) ) (4.4.8) N 1 [ ζ (k) = ζ (N) + ζ (l+1) c λ eff {1+O(λ eff )}L (N k) + c ] 1 L (λ eff) l=k (4.4.9) ζ (N) = µ (N) = µ eff ζ (k) µ eff + O(λ eff (N k)) N,k ζ (k) = µ eff + O(λ eff )+ c 1 (N k) (4.4.10) L λ eff 1 ϕ 6 38

39 O(λ eff ) O(µ eff λ eff + λ eff ) µ ɛ = µ (0) = L N ζ (0) = L N µ eff + L N O(µ eff λ eff + λ eff)+l N c 1 λ effn = ɛ [ µ eff + O(µ eff λ eff + λ eff )+c 1L λ eff log L ɛ ] (4.4.11) µ ɛ,λ ɛ λ ɛ = ɛλ eff {1+O(λ eff )} (4.4.1) µ ɛ = ɛ [ µ eff + O(µ eff λ eff + λ eff )+c 1L λ eff log L ɛ ] (4.4.13) 4.4. ϕ φ 4 3 ϕ 4 Wick ordering ρ ɛ H ɛ H ɛ = 1 x ϕ y ) 4 x y =1(ϕ + x [ µ ɛ ϕ x + λ ɛ 4! : ϕ4 x :] (4.4.14) (4.4.1) (4..4) N ɛ S ɛ (0, x) N ɛ ϕ 0ϕ x ρɛ (4.4.15) ϕ( x) N ɛ ϕ x ϕ( x) N ɛ ρ eff S ɛ (0, x) ϕ (N) 0 ϕ (N) x (4.4.16) ρ (N) ɛ (4.3.6) ϕ (N) 0 ϕ (N) x L (d θ)n ϕ 0 ϕ x ρɛ (4.4.17) ρ (M) ɛ (4.4.15) (4.4.17) N ɛ = L (d θ)n = L N/ = ɛ 1/ (4.4.18) d =3,θ =(d +)/ ρ ɛ ϕ ϕ ϕ( x) ɛ 1/ ϕ x (4.4.19) x = ɛx 39

40 (4.4.1) (4.4.19) = ɛ d x (4.4.14) Z B Nɛ ɛ d =1 µ B Nɛ ɛ d µ ɛ = ɛ µ ɛ = µ eff + O(µ eff λ eff + λ eff)+c 1 L λ eff log L ɛ λ B Nɛ 4 ɛ d λ ɛ = ɛ 1 λ ɛ = λ eff (4.4.0) H ɛ d 3 x [ ZB { ϕ( x) } µ B + ϕ( x) + λ B 4! ] : ϕ( x) 4 : (4.4.1) wave function ϕ 4 4- triviality ϕ 4 4- trivial 5 BST 5.1 (Weak) ϕ 4 d- d Λ Λ 1 L 1 Λ Z d BST Λ Λ\LΛ 1. Λ x, y Λ 1 x 1,y 1 A, G site Φ (Aφ) x y Λ A x,yϕ y (Φ,AΦ) x,y Λ ϕ xa x,y ϕ y. Covariance G x,y N [ dµ G (Φ) N(dΦ) exp 1 ( ϕ x G 1 ) ] ϕ x,y y x,y (5.1.1) mean zero Λ 1 Λ Ĉ { Ĉ x1,y L (d+)/ 0 otherwise ( y Lx 1 <L/) (5.1.) covariance G 0 L, θ =(d +)/ BST 40

41 BST Φ (1) = ĈΦ covariance G 1 = ĈT G 0 Ĉ (5.1.3) Φ ϕ x = ψ x + Z x (5.1.4) ψ x Φ (1) Z x fluctuation 5.1. ψ ψ Φ (1) dµ G (Φ)/dΦ Φ Λ Λ 1 A A G 0 Ĉ T G 1 1 ψ x (Aϕ) x = A x,y1 ϕ (1) y 1 y 1 Λ 1 (5.1.5) (5.1.6) Ψ Ψ covariance AG 1 A T = G 0 Ĉ T G 1 1 G 1G 1 1 ĈG 0 = G 0 Ĉ T G 1 1 ĈG 0 (5.1.7) {Z} {Z} covariance Γ G 0 G 0 Ĉ T G 1 1 ĈG 0 Λ normal variables {z u } u Λ Λ Λ δ x,u (x LZ d ) Q x,u 1 (x LZ d, u Lx <L/) 0 (otherwise) Γ Λ Λ ( Q x,v Γ 1/) v,u M x,u v Λ (5.1.8) (5.1.9) (5.1.10) Γ Γ Λ Λ Z Z x = u Λ M x,u z u (5.1.11) 41

42 A L (d )/ A = L (d )/ GĈT G 1 1 (5.1.1) ψ Aϕ (1) = L (d )/ ψ (5.1.13) ϕ = L (d )/ ψ + Mz (5.1.14) Kernel A, M L d A x,y1 = δ x1,y 1, x B x1 L d x B x1 M x,y =0 (5.1.15) z 1 Λ 1 A x,z1 =1 (5.1.16) A, M β A = O(1), β Γ = O(L 1 ), C A = O(1), C Γ = O(L d+ ) A x,y1 C A exp [ β A L 1 x y 1 ] (5.1.17) C Γ exp [ β Γ u v ] (5.1.18) Γ 1/ u,v (5.1.15) ψ ϕ (1) ϕ x L (d )/ ϕ (1) x 1 + Z x (5.1.19) x B x Fractal 5.4 KT-type? Coulomb Gas? Non-gaussian fixed points 5.5. Non-perturbative Analysis (Global picture) Hierarchical Model Koch-Wittwer ϕ 4 3 ϕ 4 4 4

43 A A Feynman, Schwinger, Dyson 1950 Bogoliubov, Stuckelberg 1970 Kadanoff, Wilson, Fisher [7, 8] Wilson [9, 10, 11] 1980 [3, 4, 1] [13] 1980 [14, 15] [16, 17, 18, 19] A. [7] [0] [8, 1] 43

44 [15, ] [3] [3, 4, 1] [3, 4] [1] [1] J. Fröhlich, R. Israel, E.H. Lieb, and B. Simon. Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys., 6:1 34, (1978). [] B. Simon. The Statistical Mechanics of Lattice Gases, I. Princeton University Press, Princeton, (1993). [3] K. Gawȩdzki and A. Kupiainen. Massless lattice ϕ 4 4 theory: Rigorous control of a remormalizable asymptotically free model. Commun. Math. Phys., 99:199 5, (1985). [4] K. Gawȩdzki and A. Kupiainen. Asymptotic freedom beyond perturbation theory. In K. Osterwalder and R. Stora, editors, Critical Phenomena, Random Systems, Gauge Theories, Amsterdam, (1986). North- Holland. Les Houches [5] G. Jona-Lasinio. Renormalization group and probability theory. RG 000, Taxco, Mexico, preprint, archived as... [6] R. Fernández, J. Fröhlich, and A.D. Sokal. Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin, (199). [7] K. Wilson and J. Kogut. The renormalization group and the ɛ expansion. Phys. Rep., 1:75 00, (1974). [8] E. Brezin, J.C. Le Guillou, and J. Zinn-Justin. Field theoretical approach to critical phenomena. In C. Domb and M.S. Green, editors, Phase Transitions and Critical Phenomena. Academic Press, New York, London, (1976). [9] D.J. Gross and F. Wilczek. Phys. Rev. Lett., 30: , (1973). [10] H.D. Politzer. Phys. Rev. Lett., 30:1346, (1973). [11] D.J. Gross. Applications of the renormalization group to high-energy physics. In R. Balian and J. Zinn- Justin, editors, Methods in Field Theory, (1976). Proceedings of the Les Houches Summer School [1] V. Rivasseau. From Perturbative to Constructive Renormalization. Princeton University Press, Princeton, (1991). [13] J. Bricmont and A. Kupiainen. Random walks in asymmetric random environments. Commun. Math. Phys., 14:345 40, (1991). [14] N.D. Goldenfeld, O. Martin, Y. Oono, and F. Liu. Phys. Rev. Lett., 64: , (1990). [15] N.D. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley, (199). [16] J. Bricmont, A. Kupiainen, and G. Lin. Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Comm. Pure Appl. Math., XLVII:893, [17] J. Bricmont and A. Kupiainen. Renormalization group and Ginzburg-Landau equations. Commun. Math. Phys., 150:193, (199). 44

45 [18] J. Bricmont and A. Kupiainen. Stable non-gaussian diffusive profiles. Preprint, (199). [19] J. Bricmont and A. Kupiainen. Universality in blow-up for nonlinear heat equations. Preprint, (199). [0] S. Ma. Modern Theory of Critical Phenomena. Benjamin, Reading, (1976). [1] D.J. Amit. Field Theory, the Renormalization Group, and Critical Phenomena. World Scientific, Singapore, nd edition, (1984). [] H. Ezawa, M. Suzuki, H. Tasaki, and Watanabe..,, (1994). 13. [3] Y. Oono, K. Higashijima, and H. Tasaki. In, , (1997). 45

untitled

untitled 1 Constructive field theory and renormalization group Hiroshi WATANABE 1 2001 7,. 1 2 2 Euclidean field theory 3 2.1...................................... 4 2.2..................................... 6 3

More information

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê .. 1 10-11 Nov., 2016 1 email:keiichi.r.ito@gmail.com, ito@kurims.kyoto-u.ac.jp ( ) 10-11 Nov., 2016 1 / 45 Clay Institute.1 Construction of 4D YM Field Theory (Jaffe, Witten) Jaffe, Balaban (1980).2 Solution

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

( ) I( ) TA: ( M2)

( ) I( ) TA: ( M2) ( ) I( ) TA: ( M) 015 7 17 , 7 ( ) I( ).., M. (hatomura@spin.phys.s.u-tokyo.ac.jp).,,.. Keywords: 1. (gas-liquid phase transition). (critical point) 3. (lattice gas model) (Ising model) H = ϕ 0 i,j n i

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information