untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 1 Constructive field theory and renormalization group Hiroshi WATANABE , Euclidean field theory φ 4 model φ 4 model Regularization Counterterms Block spin dynamics Hierarchical model Characteristic function Lee Yang property Triviality Department of Mathematics, Nippon Medical School 1

2 spin. ( 0 ) macroscopic. 0 spin. (renormalization).,. ( ) (functional integral).. formulation. complex phase., Euclidean field theory. Euclidean field theory, formal, t ix(x R), Minkowski Euclid. Euclid,. framework. 1 Euclidean quantum field theory 2. 2

3 .. parameter.. 4 model,. 4,,. Euclidean field theory, [Section 2], φ 4 [Section 3], [Section 4]. (hierarchical model), [Section 5]. [16]. 2 Euclidean field theory Euclidean field theory, R d x random variable φ(x), F (φ) = 1 F (φ)e V (φ) dµ(φ) (2.1) Z Z = e V (φ) dµ(φ) (2.2) formal., dµ(φ) Gaussian probability measure, V (φ) φ( ) functional potential. Gauss potential. Gauss dµ(φ) spin potential V (φ) spin V =0 3, (2.1) Gauss, ( ). 3 φ bilinear form 3

4 2.1 (2.1)(2.2). Regularization Gaussian measure µ sample field φ regularity, φ V. Gaussian measure regularization. µ = µ ɛ (2.3) ɛ>0, measure µ ɛ 1, sample field φ regularity, V (φ) well-defined, ɛ 0, µ ɛ µ. regularization sample field cutoff. R d bounded region regularization. cutoff potential V. (UV) : x R d y R d (IR) : x R d y R d, cutoff. Renormalization regularization, ɛ 0,., ɛ (counterterm) U,ɛ (φ), V,ɛ (φ) =V (φ)+u,ɛ (φ) (2.4), V (φ) V,ɛ (φ). (renormalization). counterterm U,ɛ V. counterterm. Ω={a + bi a, b Z} 2 pole P (z) = ω Ω 1 (z ω) 2 (2.5). (2.5) well-defined (cutoff) P ɛ (z) = ω Ω ω <1/ɛ 1 (z ω) 2 (2.6) 4

5 . ɛ 0 ( Pɛ ren (z) = ω Ω 0< ω <1/ɛ 1 (z ω) 2 1 ω 2 ) + 1 z 2 (2.7). P ren ɛ well-defined (z) = lim ɛ 0 P ren ɛ (z) (2.8). P ɛ (z) Pɛ ren (z) = 1 ω 2 (2.9) ω Ω 0< ω <1/ɛ ɛ 0 (2.5) well-defined. (2.9) counterterm. counterterm. counterterm., regularization renormalization 1 F (φ),ɛ = F (φ)e V,ɛ(φ) dµ ɛ (φ) (2.10) Z,ɛ Z,ɛ = e V,ɛ(φ) dµ ɛ (φ) (2.11),. lim R d lim F (φ),ɛ (2.12) ɛ 0 (1) Limit, limit ( 0 ) (2) Gaussian measure (triviality) (3) Non-Gaussian measure (nontriviality) Counterterm, (1). counterterm (2) Gauss., (3). Minkowski x R d 1 x 1 Re x 1 > 0 Euclid Euclidean field theory Minkowski x 1.. Euclidean field theory Osterwalder- Schrader axioms [16, P.10]. 5

6 2.2 Well-defined (2.10)(2.11), ɛ 0( R d ) non-trivial (non-gaussian) Osterwalder-Schrader axioms,., 2 3 model, 4 nontrivial field theory,. φ 4 model model 4 Gauss (triviality). Triviality counterterm model. ρ N R N ρ N L N L/N ρ N (Ω) N +1 ( ) R N (Ω). N 0 ρ N,R N N a>0 f(a) = e ax2 dx (2.13) a = ib, b R,. 3 φ 4 model φ 4 model regularization renormalization. 6

7 3.1 φ 4 model d φ 4 model formal 4. F (φ) = 1 Z F (φ)e V (φ) dµ C (φ) (3.1) Z = e V (φ) dµ C (φ) (3.2) V (φ) = λ φ(x) 4 dx R d (3.3) λ>0, φ( ) Gaussian random field, µ C mean : φ(x)dµ C (φ) =0, x R d (3.4) covariance : φ(x)φ(y)dµ C (φ) =( + m 2 ) 1 (x, y) =C(x, y), x, y R d,m >0 (3.5). Gaussian covariance C, { C(x, y) const. log x y, d =2, const. x y d+2, d > 2, x y 0 (3.6) C(x, y) const. x y (d 1)/2 e m x y, x y (3.7), formal [2]. m mass. C(x, y) = Rd e ip(x y) p 2 dp (3.8) + m2, F (φ) = 1 Z dφf (φ)e A(φ) (3.9) A(φ) = 1 2 (φ, ( + m2 )φ)+ λφ(x) 4 dx (3.10) R d = ( 1 R d 2 φ(x) m2 φ(x) 2 + λφ(x) 4 )dx (3.11). A (action) A 0 φ 5. ( + m 2 )φ(x)+4λφ(x) 3 = 0 (3.12) 4 potential V φ 4, 2, (P (φ) 2 [8]). potential, Euclidean classical field theory 7

8 Feynman-Kac formula d =1, x s (3.9), ( 1 dφf (φ) exp ( 1 ) Z R 2 φ(s) 2 + m2 2 φ(s)2 + λφ(s) 4 )ds Feynman-Kac formula. Feyman-Kac formula (3.13) H = + U (3.14) Wiener process b(t) E ( t ) e th f(x) = E f(x + b(t)) exp( U(x + b(s))ds) formal =. 6 Schwinger function 1 f(b(t)) exp( Z b(0)=x 0 t (3.1) (3.3). F (φ) field φ(x 1 )φ(x 2 ) φ(x n ), 0 (3.15) ( 1 2ḃ(s)2 + U(b(s)))ds)db (3.16) S n (x 1,x 2,,x n )= φ(x 1 )φ(x 2 ) φ(x n ) (3.17) Schwinger function. Model ( ), Schwinger function [2, 1]., (3.17)., regularize well-defined. 3.2 Regularization Gaussian measure µ C sample field φ 1., field φ(x) 4, φ potential V. Sample field (regularity), regularization. UV cutoff Gaussian covariance C momentum space cutoff Rd e ip(x y) C ɛ (x, y) = p 2 + m 2 χ ɛ(p)dp (3.18) χ ɛ (p) = e ɛ2 p 2, ɛ > 0 (3.19),. { const. log(1/ɛ), d =2, C ɛ (x, y) < const.ɛ d+2, d > 2, (3.20) χ ɛ. p (UV region) smooth cutoff. 6 (3.15) counterterm. d =1,. H Schrödinger. 8

9 Theorem 3.1. [6, P.28] Gaussian measure µ Cɛ sample field, 1 C S. IR cutoff UV cutoff, sample field φ(x) 4, V (φ). R d, potential V (φ) V (φ) =λ φ(x) 4 dx (3.21) IR cutoff, (3.1) well-defined. 1 F (φ),ɛ = F (φ)e V(φ) dµ Cɛ (φ) (3.22) Z,ɛ Z,ɛ = e V(φ) dµ Cɛ (φ) (3.23) ɛ 0 UV cutoff. ɛ 0. counterterm. 3.3 d φ 4 model. counterterm. Field φ Gauss dµ C = dy dzc ɛ (x 1,y)C ɛ (y, z) 3 C ɛ (z,x 2 ) (3.24) R d R d = dy C ɛ (x 1,y)C ɛ (x 2,y)C ɛ (y, z) 2 C ɛ (z,x 3 )C ɛ (z,x 4 ) (3.25) R d R d covariance C convolution. (3.24),(3.25) covariance line Feynman graph amplitude. Gauss Feynman graph. n j>0 connected Feynman graph G ω(g) =(4 d)j + d 2 2 n d (3.26). (3.24) n =2,j =2,ω =6 2d (3.25) n =4,j =2,ω = 4 d. Theorem 3.2. [16] ω(g) 0, G amplitude ɛ 0.., G subgraph, G amplitude. G subgraph (G ) connected F, ω(f ) ω(g)., F F, F G F F. 9

10 Theorem 3.3. [6, P.65] Graph G subgraph F, connected,, G amplitude ɛ 0. ω(f ) > 0 (3.27) (3.27) subgraph,. 3.4 Counterterms subgraph j 1 (3.28). subgraph (3.29), Wick product renormalize [16, P.27]. renormalized potential. V,ɛ (φ) =λ dx : φ(x) 4 : Cɛ (3.30) counterterm µ (0) ɛ. well-defined dxφ(x) 2, µ (0) ɛ = 6λC ɛ (0) (3.31) F (φ),ɛ = 1 e V F (φ) Cɛ Z,ɛ (3.32) Z,ɛ = e V Cɛ (3.33) UV limit ɛ 0, IR limit R 2. subgraph. subgraph j n 3 (3.34) (j, n) =(1, 2) : (3.35) (j, n) =(2, 2) : (3.36) 10

11 . counterterm, Wick product (3.31), counterterm µ (1) ɛ dxφ(x) 2, µ (1) ɛ =48λ 2 dyc ɛ (x, y) 3 (3.37). 3 φ 4 model counterterm µ ɛ dxφ(x) 2, µ ɛ = µ (0) ɛ + µ (1) ɛ (3.38) potential V,ɛ (φ) = λ = λ dxφ(x) 4 + µ ɛ dxφ(x) 2 (3.39) dx : φ(x) 4 :+µ (1) ɛ dx : φ(x) 2 : +const. (3.40). n 4 subgraph, n =2, 4., subgraph counterterm. λ ɛ dxφ(x) 4 + µ ɛ dxφ(x) 2 + ζ ɛ dx φ(x) 2 (3.41) 2 4, explicit., Section 4. 4 φ 4 model potential, V,ɛ (φ) = λ ɛ dxφ(x) 4 + µ ɛ dxφ(x) 2 + ζ ɛ dx φ(x) 2 (3.42). d>4 d>4, n j, ω(g) 0., counterterm. [7] 4, counterterm,. λ ( )... Schwinger function (3.17),.. 3 Section

12 3.1. (3.24) Feynman graph R d dx 1 Fourier kernel R d dx 2 exp (ip 1 x 1 + ip 2 x 2 ) A(x 1,x 2 )=δ(p 1 + p 2 )Â(p 1) (3.43). Â(p 1 ) UV limit (ɛ 0) d =2 d (3.37) µ (1) ɛ 48λ 2 µ (1) ɛ dyc ɛ (x 1,y)C ɛ (y, x 2 ) (3.44) Fourier kernel UV limit d =3 d (3.40) potential S,ɛ (x 1,x 2 ) = φ(x 1 )φ(x 2 ) exp( V,ɛ ) Cɛ exp( V,ɛ ) Cɛ, x 1 x 2 (3.45). λ λ 2 d =3 S,ɛ UV limit. 4 model scale. φ 4 model. 4.1 Block spin. S N = N (4.1) N. 1 2k k = 1 k + 1 (2k 1)(2k), k N (4.2) 0 <α<β. S 2N = S N + r N (4.3) α<r N <β (4.4) 1+αn S 2 n 1+βn, n N (4.5) scale. N R : N N R(2k 1) = R(2k) =k, k N (4.6) 12

13 N a : N R R (Ra)(k) = a(j) (4.7).. 2 n k=1 j:r(j)=k a(k) =(R n a)(1) (4.8) 2 n. a(k) =1/k R b scale Ra = a + b (4.9) α<(r n b)(1) <β (4.10). (R n a)(1) O(n). Z d R d random field. Block spin spin. Ising spin ( 4.1) (1) up spin down spin (a) (2) 3 3 block up spins gray level (b). (3) 1/3 (c) (4) up/down (a) (d). 7 spin microscopic macroscopic. gray level block spin gray level block spin (Section 5 ). momentum space scale. 4.2 Scale D covariance Gauss dµ D (φ) H(φ). dµ D (φ)h(φ) (4.11) 7 (c) (d) (b). 13

14 (a) Ising spin (b) Block spin (c) Block spin (d) Ising spin 4.1: Ising spin block spin D D = D 0 + D 1 (4.12) D 0,D 1 covariance Gaussian variable φ 0,φ 1 H (φ 0 ) = dµ D1 (φ 1 )H(φ 0 + φ 1 ) (4.13) dµ D (φ)h(φ) = dµ D0 (φ 0 )H (φ 0 ) (4.14). φ 1 UV ( ), φ 0 IR ( ),, H H (4.15) UV, IR marginal distribution. Iteration Gaussian covarinace D D = N D k (4.16) k=0 14

15 . D k covariance Gaussian variable φ k (x), φ k,0 = D k,0 = k φ j, k =0, 1, 2,,N (4.17) j=0 k D j, k =0, 1, 2,,N (4.18) j=0, φ k,0 D k,0 covariance Gaussian variable. Gauss (4.11) H N = H (4.19) H k 1 (φ k 1,0 ) = dµ Dk (φ k )H k (φ k + φ k 1,0 ), k = N,N 1,, 1 (4.20) dµ D (φ)h(φ) = dµ D0 (φ 0 )H 0 (φ 0 ) (4.21). (4.15), φ 0 H, φ 0 φ 1,. k, φ k (x)., φ k (x) covariance.,,. H k φ k (x) =L k(d 2)/2 φ k (L k x) (4.22) D k (x, y) =L k(d 2) D k (L k x, L k y) (4.23) φ k,0 (x) = L k(d 2)/2 φ k,0 (L k x) (4.24) D k,0 (x, y) = L k(d 2) D k,0 (L k x, L k y) (4.25) φ k,0 (x) = φ k (x)+l (d 2)/2 φk 1,0 (L 1 x) (4.26) D k,0 (x, y) = D k (x, y)+l (d 2) Dk 1,0 (L 1 x, L 1 y) (4.27) H k (φ k,0 )= H k ( φ k,0 ) (4.28) 15

16 H k 1 ( φ k 1,0 ) = dµ Dk ( φ k ) H k ( φ k ( )+L (d 2)/2 φk 1,0 (L 1 )) (4.29) H N ( φ N,0 ) = H(φ N,0 ) (4.30) dµ D (φ)h(φ) = dµ D0 ( φ 0 ) H k ( φ 0 ) (4.31). H k 1 H k,.. UV limit UV cutoff covariance. N ( ). covariance D (4.16) H k H k 1 (4.32) Rd e ip(x y) D(x, y) = p 2 + m 2 χ(l N p)dp (4.33) χ(p) = e p2 (4.34) D k (x, y) = D 0 (x, y) = Rd e ip(x y) p 2 + m 2 (χ(l k p) χ(l (k 1) p))dp, k =1, 2,,N (4.35) Rd e ip(x y) p 2 χ(p)dp (4.36) + m2 φ k, momentum scale L k ( L k ) Gaussian variable. (4.23) covarinace D k (x, y) = Rd e ip(x y) p 2 +(m/l k (χ(p) χ(lp))dp (4.37) ) 2, D k k, φ k k O(1). UV limit UV cutoff (4.33) N. UV limit. H n H n 1 H 0 (4.38) 16

17 4.3 dynamics (3.40) (3.42) potential V (φ) V N (φ) = V (φ) (4.39) H N (φ) = exp( V N (φ)) (4.40). H N (φ) H N ( φ N,0 ) = exp( ṼN( φ N,0 )) (4.41). H N 1 ( φ N 1,0 ) = dµ DN ( φ N ) H N ( φ N ( )+L (d 2)/2 φn 1,0 (L 1 )) (4.42), scale dµ DN ( φ N ) H N (L (d 2)/2 φn 1,0 (L 1 )) = H N (L (d 2)/2 φn 1,0 (L 1 )) (4.43),, Gauss contract., step,, scale contract. Relevant part scale. φ m R d dx φ k,0 (x) m (4.44) scaled term ( ) m dx L (d 2)/2 φk 1,0 (L 1 x) = L d m(d 2)/2 dx φ k 1,0 (x) m (4.45) R d R d d m(d 2)/2 > 0 (relevant) d m(d 2)/2 =0 (marginal) d m(d 2)/2 < 0 (irrelevant) d>2, irrelevant d =2, relevant. d>2, relevant/marginal terms explicit 17

18 . Gaussian contraction (4.42) Gauss contract. (4.41) Taylor H N ( φ N,0 ) = ( ṼN( φ N,0 )) k k=0 k! (4.46) contraction. k =2 = dx dy φ N 1,0 (x) φ N 1,0 (y) D N (x, y) 3 (4.47) nonlocal interaction. H n Taylor (4.44). H n H n 1. counterterm.. (4.44) H n a n n. 1 a n 1. scale L α a n b n. a n 1 = L α a n + b n, n = N,N 1,, 1 (4.48) a n relevant α>0 marginal α =0 irrelevant α<0. a 0 a 0 = L Nα a N + N L (n 1)α b n (4.49) n=1. UV limit N lim a 0 = lim N N LNα a N + L (n 1)α b n (4.50). a N N. 8 b n n ( ) 0 a n irrelevant (α <0) (4.50) 2. (4.50) a N 2. relevant marginal (α 0) (4.50) 2. a N. 8 a n,b n N a n,n,b n,n,n = N,N 1,, 0 lim N a n,n. n=1 18

19 a N counterterm. counterterm (4.50) (4.49). (4.48) 1 2 inductive. φ 4 model a n b n. Large field bound Taylor., φ 4 potential 1 I(λ) = exp( λx 4 1 R 2 x2 )dx (4.51).. ( λ) n I(λ) x 4n exp( 1 n! R 2 x2 )dx = λ n a n (4.52) n=0 n=0 a n =( 1) n 2π(4n 1)!!/n! (4.53), (4.52) 0. λ. potential λ>0. φ 4 model 1 λ., φ 4 potential φ. large field bound., (relevant/marginal part) (irrelevant part) Large field bound 3., ( ) large field bound.,,,. coupling constant λ, formulation. [4, 16] (4.5) (4.10). 5 4 φ 4 triviality, (λ ) trajectory., φ 4 model (λ ) Ising model hierarchical [9, 10, 11, 12, 13],. [ [15] ] 19

20 5.1 Hierarchical model, 1 Ising model. spin long range interaction. Dyson [9], hierarchical model spin,. Hierarchical model, Gaussian measure model,,. Hierarchical model 2 N spin φ θ = φ θn,...,θ 1, θ =(θ N,..., θ 1 ) {0, 1} N (5.1), Hamiltonian H N (φ) = 1 2 N ( c n 4) n=1 θ N,...,θ n+1 θ n,...,θ 1 φ θn,...,θ 1 2 (5.2) single spin distribution h(φ θ ) 1 F N,h = dφf (φ) exp( βh N (φ)) h(φ θ ) (5.3) Z N,h θ Z N,h = dφ exp( βh N (φ)) h(φ θ ) (5.4) θ., h(x)dx = 1 (5.5) R. (hierarchical model)., s Ising spin measure, φ 4 single spin measure h Ising (x) = 1 (δ(x s)+δ(x + s)) (5.6) 2 h µλ (x) = const. exp( µx 2 λx 4 ) (5.7) µ = 2λs 2, λ (5.8), hierarchical Ising model. Hiercarchial Ising model, infinite volume limit, 0 <c<2 (5.9) 1 <c<2 (5.10) 20

21 , [9]. spin φ, β>0, β = 1 c 1 2 (5.11). Block spin Block spin φ, φ τ = c 2 φ τθ1, τ =(τ N 1,..., τ 1 ) (5.12) θ 1 =0,1 θ n,...,θ 1 φ θn,...,θ 1 = θ n,...,θ 2 c 2 φ θ N,...,θ 2 (5.13) H N (φ) = H N 1 (φ ) 1 2 τ φ 2 τ (5.14), F (φ) block spin F (φ) = F (φ ) (5.15), F N,h = F N 1,Rh (5.16) Rh(x) = const. exp( β 2 x2 ) dyh( x + y)h( x y),x R (5.17) R c c., h R., h 0, R trajectory. Gaussian trajectory Single spin measure Gauss, trajectory h n = R n h 0, n =0, 1, 2,... (5.18) h 0 (x) = const. exp( α 0 2 x2 ) (5.19) R n h 0 (x) = const. exp( α n 2 x2 ) (5.20) α n+1 = 2 c α n β (5.21) 21

22 ., (5.11) α n = ( 2 c )n (α )+1 2 (5.22)., α N > 0 (5.23) well-defined, α 0 > 1 2 (5.24) infinite volume limit. α 0 = 1 2, h G (x) = const. exp( 1 4 x2 ) (5.25) R fixed point, massless Gaussian measure. Dimensionality m =1, 2,..., N,. χ N,N,h spin susceptibility M m (φ) = φ θn,...,θ 1 (5.26) θ m,...,θ 1 χ m,n,h = 1 2 m M m (φ) N,h (5.27) χ = x φ(0)φ(x) (5.28). Block spin, χ m,n,h = 2 c χ m 1,N 1,Rh (5.29). h = h G, infinite volume limit N,. χ m,,hg = const.( 2 c )m (5.30) Z d (d>2) massless Gaussian model correlation decay φ(x)φ(y) const. x y d+2, x y (5.31) φ(0)φ(x) const.r 2 (5.32) x <r ( 2 c )m = r 2 (5.33) 22

23 , spin 2 m r d c = 2 1 2/d (5.34) β = 1 2 (22/d 1) (5.35). c (5.34), d hierarchical model. Fixed points (5.25) (Gaussian) fixed point, (non-gaussian) fixed point,.[10, 11, 12] d 4, ϕ G non-gaussian fixed point. d<4 d 4, ϕ G non-gaussian fixed point., d 4, ϕ G trajectory, trivial., Ising φ 4 model triviality, Ising φ 4 model ( Gauss ) trajectory., [10, 12] Gauss, trajectory., characteristic function. 5.2 Characteristic function Single spin distribution h n characteristic function ϕ n (ξ) = dxe iξx h n (x) (5.36) R. Ising spin, ϕ n+1 = Rϕ n (5.37) R = TS (5.38) c Sg(ξ) = g( 2 ξ)2 (5.39) T g(ξ) = exp( β )g(ξ) (5.40) 2 h 0 (x) = 1 (δ(x s)+δ(x + s)) (5.41) 2 ϕ 0 (ξ) = cos(sξ) (5.42) 23

24 . d = c =2,β =0, recursion ϕ n+1 (ξ) = ϕ n ( ξ 2 ) 2 (5.43). Ising spin ϕ n (ξ) = cos 2n ( sξ ) (5.44) 2n/2 exp( s2 2 ξ2 ), n (5.45), trajectory Gauss (trivial). (.) (5.45), ξ < 2 n/2 π 2s ξ ϕ n (ξ) = exp( V n (ξ)) (5.46) V n (ξ) = µ (n) 2j ξ2j (5.47), V n dual potential. V n, recursion j=1 µ (n) 2j = 2 1 j µ (n 1) 2j, j =1, 2, 3,... (5.48)., ξ 2 marginal, 4 irrelevant. Dual potential V n (ξ) ξ < 2 n/2 π 2s (5.49), continuum limit lim V n(ξ) = s2 n 2 ξ2 (5.50), R., continuum limit, characteristic function ξ =0., characteristic function, large field problem. Ising spin (5.41), dual potential V 0 (ξ) = s2 2 ξ2 + s4 12 ξ4 + s6 45 ξ6 + 17s ξ8 + (5.51)., (5.48), (d = ). d< d< (β >0), (5.40) operator T, dual potential., relevant/irrelevant terms. 24

25 d>4, ξ 2 relevant, ξ 4 irrelevant. d =4, ξ 2 relevant, ξ 4 marginal, ξ 6 irrelevant. d<4, ξ 2,ξ 4 relevant, d, relevant part., non-gaussian fixed point., trajectory,. [.] (a) d=2 (b) d= (c) d=4 (d) d=5 5.1: Ising trajectory, potential (µ 2,µ 4 /µ 2 2 ) plot. Gaussian fixed point (5.25) (1, 0). trajectory s, s =1.0, 1.1, 1.2,...,, d>2, µ (0) 2 = s 2 /2, µ (0) 4 /µ(0)2 2 =1/3 (5.52) µ (0) 2, trajectory (0, 0) ( ). µ (0) 2, trajectory ( ) µ (0) 2 (critical point), trajectory (0, 0) (critical trajectory). 25

26 5.3 Lee Yang property Newman s bound Ising dual potential., µ (n) 2j 0, j 1 (5.53) µ (n) 2j 1 j (2µ(n) 4 )j/2, j 3 (5.54) Characteristic function [ spin Lee-Yang property] [14]. Newman s bound (5.54) V n Taylor, n µ (n) 4 0,. µ (n) 4 0, 0, triviality. Gauss µ 2j., critical trajectory Gauss, computer. (5.53), operator T. (5.40). g t., V t g t (ξ) = exp( t )g(ξ) (5.55) T g = g β/2 (5.56) d dt g t(ξ) = g t (ξ) (5.57) g 0 (ξ) = g(ξ) (5.58) g t (ξ) = exp( V t (ξ)) (5.59). d dt V t = ( V t ) 2 V t (5.60) V t Taylor, (5.60) Taylor upper bound. [ upper bound, (5.60) lower bound.] 26

27 5.4 Triviality Characteristic function, [15]. d 4 hierarchical Ising model triviality idea. (1) Characteristic function Gauss,. (2) Ising critical trajectory, Gauss, computer. Model critical N =0, 1, 2,. 1 µ 2,N µ 4,N (5.61) s N = inf{s >0 µ 2,N 1}, (5.62) s N = inf{s >0 µ 2,N min{1+ 3 µ 4,N, 2+ 2}}. 2 (5.63) Bleher Sinai argument [10]. Proposition 5.1. N 0 N 1 N 0 N 1 s [s N1, s N1 ] 0 µ 4,N , (5.64) 1.6µ 2 4,N 0 µ 6,N0 6.07µ 2 4,N 0, (5.65) 0 µ 8,N µ 3 4,N 0, (5.66) µ 2,N < 2+ 2, N 0 N<N 1, (5.67). s c [s N1, s N1 ] s = s c. lim 4,N =0, N (5.68) lim 2,N = 1 N (5.69). Proposition 5.2. Proposition 5.1 N 0 =70and N 1 = 100. s N1 and s N s N1, s N (5.70) Proposition 5.1,Proposition 5.2. Theorem 5.3. d =4 s critical value s c [ , ] (5.71) s = s c trajectory Gauss. h (x) = exp( x 2 /4) (5.72) 27

28 s=s c µ 4 s=s -- N 1 s=s -- N N 0 N 0 N 1 N µ 2 5.2: (µ 2,µ 4 ) (Proposition 5.1). Gauss (1.0, 0) s = s N1 s = s N1 s = s c. (5.61),(5.64),(5.67) (5.2) H N (φ) = θ,θ J θθ (φ θ φ θ ) 2 θ µφ 2 θ (5.73) µ Ising measure ϕ(ξ) = cos(sξ) potential Taylor (5.51) ( 0). [1] J.Glimm, A.Jaffe, T.Spencer, The Particle Structure of the Weakly Coupled P (φ) 2 Model and Other Applications of High Temparature Expansions, in G. Velo, A. Wightman (eds.), Constructive Quantum Field Theory, Lecture Notes in Physics 25, Springer, 1973, [2] J.Glimm, A.Jaffe, Quantum Physics, Second Edition, Springer, [3] R. Fernández, J. Fröhlich, A. D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory, Springer, [4] D.Brydges, J.Dimock, T.R.Hurd, The short distance behavior of (φ 4 ) 3, Commun. Math. Phys., 172, 1995, [5] K.Gawedzki, A.Kupiainen, Massless Lattice φ 4 4 theory: Rigorous Control of a Renormalizable Asymptotically Free Model, Commun. Math. Phys., 99, 1985, [6] V. Rivasseau, From Perturbative to Constructive Renormalization, Princeton University Press,

29 [7] C. Itzykson, J-B. Zuber, Quantum Field Theory, McGraw-Hill, [8],,,, [9] F. J. Dyson, Exisitence of a Phase Transision in a One Dimensional Ising Ferromagnet, Commun. Math. Phys., 12, 1969, [10] Ya. G. Sinai, Theory of Phase Transition: Rigorous Results, Pergamon Press, [11] P. Collet, J.-P. Eckmann, A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics, Springer Lecture Note in Physics 74 [12] K. Gawedzki, A. Kupiainen, Non-Gaussian Fixed Point of the Block Spin Transformation. Hierarchical Model Approximation, Commun. Math. Phys., 89, 1983, [13] H.Koch, P.Wittwer, A Non-Gaussian Renormalization Group Fixed Point for Hierarchical Scalar Lattice Field Theories, Commun. Math. Phys., 106, 1986, [14] C.M.Newman Inequalities for Ising medels and field theories which obey the Lee Yang theorem, Commun. Math. Phys., 41, 1975, 1-9. [15] T.Hara, T.Hattori, H.Watanabe, Triviality of hierarchical Ising model in four dimensions, Commun. Math. Phys., 220, 2001, [16] 22,1997,

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê .. 1 10-11 Nov., 2016 1 email:keiichi.r.ito@gmail.com, ito@kurims.kyoto-u.ac.jp ( ) 10-11 Nov., 2016 1 / 45 Clay Institute.1 Construction of 4D YM Field Theory (Jaffe, Witten) Jaffe, Balaban (1980).2 Solution

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

ver.1, 1994 ver.2, 1996 ver.3.0.7, ver.3.1.0, ver.3.2.0, I HP ϕ

ver.1, 1994 ver.2, 1996 ver.3.0.7, ver.3.1.0, ver.3.2.0, I HP ϕ e-mail: hara@math.nagoya-u.ac.jp ver.1, 1994 ver., 1996 ver.3.0.7, 1999.0.1 ver.3.1.0, 000.01.01 ver.3..0, 001.03.11 I HP 1 1.1 ϕ 4 -....................................... 1.............................................

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) I( ) TA: ( M2)

( ) I( ) TA: ( M2) ( ) I( ) TA: ( M) 015 7 17 , 7 ( ) I( ).., M. (hatomura@spin.phys.s.u-tokyo.ac.jp).,,.. Keywords: 1. (gas-liquid phase transition). (critical point) 3. (lattice gas model) (Ising model) H = ϕ 0 i,j n i

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information