一般相対性理論に関するリーマン計量の変形について

Size: px
Start display at page:

Download "一般相対性理論に関するリーマン計量の変形について"

Transcription

1 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$ ( ) (trivial) $T_{ab}=-(F_{ac}F_{b}^{c}+ \frac{1}{4}f_{cd}f^{cd}g_{ab})$ $F$ 2 $divf=\mathcal{j}, df=0$ $\mathcal{j}$ 4 $(\rho,j)$

2 138 Hilbert-Einstein $\mathcal{h}(g)=\int_{n}\{r_{g}+l\}d\mu_{g}$ $L$ ( ) $L$ $F^{ab}F_{ab}$ 2 $g=-dt^{2}+\delta, N^{4}=\mathbb{R}\cross \mathbb{r}^{3}$ $\delta$ $\mathbb{r}^{3}$ $dx^{2}+dy^{2}+dz^{2}$ Schwarzschild (1916) $g=-v^{2}dt^{2}+u^{4}\delta, N^{4}=\mathbb{R}\cross(\mathbb{R}^{3}\backslash B)$ $B=B_{m/2}(0)$ $v= \frac{1-m/2r}{1+m/2r},$ $u=1$ $\frac{m}{2r}$ $m$ $m\geq 0$ (Causality) $r=m/2$ 4 ( ) Reissner-Nordstr\"om ( )(1918) $g=-v^{2}dt^{2}+u^{4}\delta, N^{4}=\mathbb{R}x(\mathbb{R}^{3}\backslash B)$

3 $\mathbb{r}$ 139 $B=B\sqrt{m^{2}-q^{2}}/2(0)$ $v= \frac{1-(m^{2}-q^{2})/4r^{2}}{1+m/r+(m^{2}-q^{2})/4r^{2}}, u=\sqrt{1+\frac{m}{r}+\frac{m^{2}-q^{2}}{4r^{2}}}$ $E=u^{-6} \nabla(\frac{q}{r}), B\equiv 0.$ $\nabla$ gradient (Causality) $m\geq$ $ q $ $q=0$ Reissner-Nordstr\"om Schwarzschild Maj umdar-papapetrou (1947) $g=-u^{2}dt^{2}+u^{-2}\delta N^{4}=\mathbb{R}\cross(\mathbb{R}^{3}\backslash \bigcup_{i=1}^{n}\{p_{i}\})$, $u=(1+ \sum_{i=1}^{n}m_{i}/r_{i})^{-1} E=\nabla\log u, B\equiv 0.$ $m_{i}>0$ $r_{i}$ $N=1$ (extremal Reissner-Nordstr\"om solution) $m= q $ Schwarzschild Reissner-Nordstr\"om Majumdar-Papapetrou $(N^{4}, g)$ $(\mathbb{r}\cross\sigma^{3}, -dt^{2}+g^{(3)})$ $(\Sigma^{3}, g^{(3)})$ 3 Theorem 1 (Chrusciel, Heusler, Bunting, Masood-ul-Alam, Tod, [4] ). Reissner-Nordstr\"om Majumdar-Papapetrou $ds^{2}=-v^{2}dt^{2}+g, A=\phi dt$

4 140 $R_{ij} = V^{-1}\nabla_{i}\nabla_{j}V-2V^{2}\nabla_{a}\phi\nabla_{b}\phi+V^{-2} \nabla\phi ^{2}g_{ij}$ $\triangle_{g}v = V^{-1} \phi ^{2}$ $\triangle_{g}\phi = V^{-1}\nabla_{a}\nabla^{a}\phi$ $\Sigma^{(3)}=$ { $t=$ const. } $(i=$ $1,2,3)$ $V>0$ $Varrow 1$ as $xarrow\infty$ and $V _{\partial\sigma}=0$ $V$ 3 $(M, g, k, E, B)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ $\mu =T(N, N)=\frac{1}{2}(R^{(3)}+(trk)^{2}- k ^{2})$ $J =T(N, \cdot)=div(k-(trk)g)$, $dive=o$, div$b=0$ $N$ $M$ $J$ $\mu$ $M$ 2 $E$ $B$ $\mu=0tr^{2}$ (Gauss eqn), $J=0$ tr(codazzi $eqn$) $\mu\geq J+2E\cross B + E ^{2}+ B ^{2}$ $M$ $N^{4}$ $k=0$ $B\equiv 0$ $R^{(3)}\geq 2\Vert E\Vert_{g}^{2}.$

5 141 $M^{3}$ $R^{(3)}$ 3 $g$ $(M, g, E)$ Theorem 2 (Choquet-Bruhat Geroch [12] ). $(M, g, k)$ $(M^{3},g)$ $k$ $(N^{4}, g)$ 2 $N^{4}\cong^{diff}$ $M^{3}\cross(-\epsilon, \epsilon)$ Corollary 3. $(M, g, k, E, B)$ $(M^{3}, g)$ $k$ $(N^{4}, g)$ $N$ $M$ $E$ $B$ $F$ Theorem 4 ( (Bonnet)). $n$ $g$ $k$ $(M, g, k)$ $\{\begin{array}{ll}r_{ijkl}=k_{ij}k_{kl}-k_{il}k_{jk} (Gauss equation)d_{i}k_{jk}-d_{j}k_{ik}=0 (Codazzi equation).\end{array}$ $g$ $k$ $\iota$ 1 2 $M^{n}arrow \mathbb{r}^{n+1}$ ( )

6 142 ( ) Gauss Codazzi $(M, g, E)$ $K\subset M$ $M\backslash K$ $\mathbb{r}^{3}\backslash B_{1}(0)$ $\mathbb{r}^{3}$ $g$ $E$ $g_{ij}-\delta_{ij}=o_{1}(r^{-1}), E=O(r^{-2})$. ( ) ADM $m= \frac{1}{16\pi}\lim_{rarrow\infty}\int_{s_{r}}(g_{ij,i}-g_{ii,j})v^{j}$ $q_{e}= \frac{1}{4\pi}\lim_{rarrow\infty}\int_{s_{r}}e\cdot\nu, q_{b}=\frac{1}{4\pi}\lim_{rarrow\infty}\int_{s_{r}}b\cdot\nu.$ 4 $N^{4}=\mathbb{R}\cross(\mathbb{R}^{3}\backslash \{O\})$ Schwarzschild $g=-v^{2}dt^{2}+u^{4}\delta, v=\frac{1-m/2r}{1+m/2r}, u=1+\frac{m}{2r}$ $($ $r=\sqrt{x^{2}+y^{2}+z^{2}})$ $( \mathbb{r}^{3}\backslash \{r=0\}, (1+\frac{m}{2r})^{4}\delta)$ $\{r=$ $\}$2 $A(r)$ $A(r)=4 \pi r^{2}(1+\frac{m}{2r})^{4}$

7 143 $A(r)$ $r=m/2$ Schwarzschild $\{t=$ $\mathbb{r}^{4}=\{(x, y, z, w)\}$ $\}$ Flamm Paraboloid 4 3 $r= \frac{1}{2m}w^{2}+\frac{m}{2} (r=\sqrt{x^{2}+y^{2}+z^{2}})$, $w=0$ $m/2$ ( 2 ) $(r, w)\mapsto(r, -w)$ $\}$ $\{t=$ $\mathbb{z}_{2}$ Schwarzschild $(M, g)$ ( ) ( $=$ ) 3 $M$ $M$ $(N$ $)$ ( 1 ) $\mathbb{r}^{3}\backslash \bigcup_{i=1}^{n}b^{3}$ $M^{3}$ (outermost) ( ) (cf. Flamm Paraboloid) $\Sigma^{2}$ $\Sigma$ $(M, g)$ $A$ $r_{0}=\sqrt{\frac{a}{4\pi}}$ $\Sigma$ (area radius) 5 Penrose ( ) ADM ([8] ) ADM Theorem 5 $(Schoen-Yau[10,11] ,$ Witten $[14] 1981)$. $(M, g)$ $(R_{g}\geq 0)$ $ADM$ $m$ \delta)$ $m=0$ $(M, g)$ $(\mathbb{r}^{3},

8 Theorem 6 $($Gibbons, Hawking, Horowitz, Perry, $[3]1983)$. $(M, g, E, B)$ $(R_{g}\geq 2\Vert E\Vert^{2})$ Dominant Energy Condition $m\geq\sqrt{q_{e}^{2}+q_{b}^{2}}$ 144 $(M,g, E, B)$ Majumdar-Papapetrou $\{t=$ $\}$ $ADM$ / Penrose $ADM$ Theorem 7 (Bray [1], Huisken/Ilmanen [5] 2001). $(M, g)$ Dominant Energy Condition $(R_{g}\geq 0)$ $M$ $r_{0}$ $ADM$ m $m \geq\frac{r_{0}}{2},$ $(M,g)$ Schwarzschild $\{t=$ $\}$ Schwarzschild $(B\equiv 0)_{\backslash }$ Jang [6] (1979) Gibbons [2] (1983) pure electric Penrose Reissner$-$Nordstr \"om $m$ $r_{0}$ $q$ $\Sigma$ 1 $M$ Theorem 8 $(Jang [6], Huisken/$Ilmanen [$5], Khuri-$Disconzi). $(M, g, E)$ $(R_{g}\geq 2\Vert E\Vert^{2})$ $hg\not\in$ $M$ 1

9 145 m ro $q$ $(M, g, E)$ $ADM$ $m \geq\frac{1}{2}(r_{0}+\frac{q^{2}}{r_{0}})$ $(M, g, E)$ Reissner-Nordstr\"om $\{t=$ $\}$ Majumdar-Papapetrou Theorem 9 (Weinstein-Yamada [13] 2005). $(M, g, E)$ $m< \frac{1}{2}(r_{0}+\frac{q^{2}}{r_{0}})$ $q^{2}/r_{0})$ Jang [6] Gibbons [2] $m\geq 1/2(r_{0}+$ $m-\sqrt{m^{2}-q^{2}}\leq r_{0}\leq m+\sqrt{m^{2}-q^{2}}.$ Penrose $r_{0}\leq m+\sqrt{m^{2}-q^{2}}$ Weinstein-Yamada [13] $m-\sqrt{m^{2}-q^{2}}\leq r_{0}$ Theorem 10 (Khuri-Weinstein-Yamada [7]). $(M, g, E)$ $(R_{g}\geq 2\Vert E\Vert_{g}^{2})$ $(M, g, E)$ $ADM$ m $r_{0}$ $q$ $r_{0}\leq m+\sqrt{m^{2}-q^{2}}$ $(M, g, E)$ Reissner-Nordstr\"om $\{t=$ $\}$

10 146 $r_{0}\leq m+\sqrt{m^{2}-q^{2}}$ 2 $m\geq q $ if $r_{0}\leq q$ $m \geq\frac{1}{2}(r_{0}+\frac{q^{2}}{r_{0}})$ if $q<r_{0}$ Gibbons Hawking Horowitz Perry [3] $m\geq q $ $q$ $r_{0}$ $m \geq\frac{1}{2}(r_{0}+_{r_{0}}l^{2})$ $q<r_{0}$ $q<r_{0}$ $m \geq 0$ $m \geq \frac{1}{2}r_{0}$ $m$ $\geq$ $\frac{1}{2}(r_{0}+\frac{q^{2}}{r_{0}})$ if $r_{0}\geq q $ $m$ $\geq$ $ q $ if $r_{0}< q $ ( ) 5.1 $R^{3}\backslash \{0\}$ $g(t)=\mathcal{u}(t)^{4}(dr^{2}\cdot+r^{2}d\omega^{2})$. $\mathcal{u}(t)=e^{-t}+\frac{m}{2re^{-t}}.$

11 147 Schwarzschild $g(t)$ $\phi_{t}$ $r\mapsto r\exp 2t$ $\phi_{t}^{*}g(o)$ $u(t)=$ $\mathcal{u}(t)/\mathcal{u}(0)$ $g(t)=u(t)^{4}g(0)$ $xarrow\infty$ $v(r_{t})=0$ Dirichlet $varrow-1$ $\triangle_{g(t)}v(t)=0$ $t$ $r_{0}=m/2$ $u(t)= \exp\int_{0}^{t}v(\tau)d\tau$ $r_{t}=r_{0}e^{2t}$ Schwarzschild $\mathbb{z}_{2}$ Flamm $r=r_{0}$ Dirichlet $v$ $r=r_{0}$ $R^{3}\backslash \{0\}$ $R^{3}\backslash \{0\}$ $g(t)=\mathcal{u}(t)^{4}(dr^{2}+r^{2}d\omega^{2})$ $\mathcal{u}(t)=(e^{-t}+\frac{m+q}{2re^{-t}})^{1/2}(e^{-t}+\frac{m-q}{2re^{-t}})^{1/2}$ Reissner-Nordstr\"om $g(t)$ $\phi_{t}$ $r\mapsto r\exp 2t$ $\phi_{t}^{*}g(o)$ $u(t)=\mathcal{u}(t)/\mathcal{u}(o)$ $t$ $g(t)=u(t)^{4}g(0)$ $xarrow\infty$ $varrow-1$ $v(r_{t})=0$ Dirichlet $r_{t}$ $r_{0}e^{2t}$ $r_{0}=\sqrt{m^{2}-q^{2}}/2$ $\triangle_{g(t)}v(t)=\vert E\Vert_{g(t)}^{2}v(t)$ $u(t)= \exp\int_{0}^{t}v(\tau)d\tau.$ $u$ $v$ Schwarzschild Schwarzschild Reissner-Nordstr\"om $(M,g, E)$ Dirichlet $t$ 3 Reissner-Nordstr\"om Penrose

12 $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ 148 $\bullet$ $\partial M_{t}$ $ \partial M_{t} = \partial M $ $q_{t}=q$ $\frac{d}{dt}m_{t}\leq 0$ ( ) Reissner-Nordst\"om Maxwell $div_{g_{t}}e_{t}=0$, $\geq 2 E_{t} ^{2}$ $E=0$ HBray ( $\phi_{t}$ ) $m_{t}=m_{0}.$ $Reissner-Nordstr\ddot{o}m$ $r\mapsto r\exp 2t$ References [1] H. Bray. Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differential Geometry, , [2] G. Gibbons. The isoperimetric and Bogomolny inequalities for black holes. In T.J. Willmore and N. Hitchin, editors, Global Riemannian Geometry, pages John Wiley & Sons, New York, [3] G. W. Gibbons, S. W. Hawking, Gary T. Horowitz, and Malcolm J. Perry. Positive mass theorems for black holes. Comm. Math. Phys. 88(1983), [4] M. Heusler. Black Hole Uniqueness Theorems Cambridge Lecture Notes in Physics, [5] G. Huisken and T. Ilmanen. The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geometw, , [6] P. Jang. Note on cosmic censorship. Phys. Rev. $D,$ $20(4) $, [7] M. Khuri, G. Weinstein and S. Yamada, The Riemannian Penrose Inequality with Charge for Multiple Black Holes, $\cdot 2013.$ arxiv ,

13 149 [8] M. Mars. Present status of the Penrose inequality. Class. Quant. Grav., , [9] R. Penrose. Naked singularities. Ann. New York Acad. Sci., , [10] R. Schoen and $S$.-T. Yau. On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys., $65(1)45-76$, [11] R. Schoen and S-T. Yau. Proof of the positive mass theorem. II. Comm. Math. Phys., $79(2) $, [12] R. Wald. General Relativity, University of Chicago Press, [13] G. Weinstein and S. Yamada. On a Penrose inequahty with charge. Commun. Math. Phys., $257(3) $, [14] E. Witten. $A$ new proof of the positive energy theorem. Communications in Mathematical Physics, , $1007/BF $

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

“‡”�„³…u…›…b…N…z†[…‰

“‡”�„³…u…›…b…N…z†[…‰ 2009 8 31 / 4 : : Outline 4 G MN T t g x mu... g µν = G MN X M x µ X N x ν X G MN c.f., : X 5, X 6,... g µν : : g µν, A µ : R µν 1 2 Rg µν = 8πGT µν : G MN : R MN 1 2 RG MN = 0 ( ) Kaluza-Klein G MN =

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

GR_LN2001.dvi

GR_LN2001.dvi 2001 -2-1 4 1.1 Riemann....................... 4 1.2 Lie................................. 6 1.3.................................. 9 1.4 Killing...................... 10 1.5 Weyl................................

More information

X x X X Y X Y R n n n R n R n 0 n 1 B n := {x R n : x < 1} B n := {x R n : x 1} 0 n := (0,..., 0) R n R n 2 S 1 S 1 3 B 2 S 1 (manifold) 2 ( ) n 1 n p

X x X X Y X Y R n n n R n R n 0 n 1 B n := {x R n : x < 1} B n := {x R n : x 1} 0 n := (0,..., 0) R n R n 2 S 1 S 1 3 B 2 S 1 (manifold) 2 ( ) n 1 n p ( ) 1904 H. Poincaré 2002 03 G. Perelman Perelman 1. Topology Differential Geometry H. Poincaré 1904 [Po] 21 G. Perelman 1 ( ) 3 3 S 3 n n R n := {(x 1,..., x n ) : x 1,..., x n R} R N n R n x = (x 1,...,

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

1

1 http://www.is.oit.ac.jp/~shinkai/ 1 2 3 一般相対性理論 重力場の方程式 1916 空間の曲がりがモノの運動を決める アインシュタイン曲率テンソル 空間の歪み モノがあると空間が曲がる エネルギー運動量テンソル モノの分布 4 一般相対性理論 重力場の方程式 1916 空間の曲がりがモノの運動を決める モノがあると空間が曲がる 定常的な宇宙モデルをつくるために

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

流体とブラックホールの間に見られる類似性・双対性

流体とブラックホールの間に見られる類似性・双対性 1822 2013 56-68 56 (MIYAMOTO, Umpei) Department of Physics, Rikkyo University 1 : ( $)$ 1 [ 1: ( $BH$ ) 57 2 2.1 3 $(r, \theta, \phi)$ $t$ 4 $(x^{a})_{a=0,1,2,3}:=$ $c$ $(ct, r, \theta, \phi)$ $x^{a}$

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

高密度荷電粒子ビームの自己組織化と安定性

高密度荷電粒子ビームの自己組織化と安定性 1885 2014 1-11 1 1 Hiromi Okamoto Graduate School of Advanced Sciences ofmatter, Hiroshima University ( ( ) $)$ ( ) ( ) [1],, $*1$ 2 ( $m,$ q) $*1$ ; $\kappa_{x}$ $\kappa_{y}$ 2 $H_{t}=c\sqrt{(p-qA)^{2}+m^{2}c^{2}}+q\Phi$

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

hirameki_09.dvi

hirameki_09.dvi 2009 July 31 1 2009 1 1 e-mail: mtakahas@auecc.aichi-edu.ac.jp 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

eng10june10.dvi

eng10june10.dvi The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University 1 2 1. Gaussian curvature K Figure 1. (Surfaces of K0 L p (r) =the length of the geod. circle of

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

タミフルインタビューフォーム

タミフルインタビューフォーム 2008 1 20 87625 IF 1998 9 75 3% 2 1 75mg 1 g 30mg Oseltamivir Phosphate 2000 12 12 2001 2 2 2001 2 2 2002 1 17 2002 4 26 2002 7 31 IF 2008 1 O H 2 N O H O CH 3 H 3 C N H H 3 PO 4 H H O H 3 C CH 3

More information

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

1) K. J. Laidler, Reaction Kinetics, Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, Catalysis and Inhibition of Chemical Reactio 1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactions", Butterworths, London (1963) Chap. 7, p. 185. 2)

More information

1 1 (November 15, 2018) 1975 ** ** ( ** ) 015-**** ***** () * * * **** 090-****-****

1 1 (November 15, 2018) 1975 ** ** ( ** ) 015-**** ***** () * * * **** 090-****-**** Contents Contents 1 2 2 5 2.1........................................... 5 2.2......................................... 5 2.3................................. 5 2.4....................................

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

D.dvi

D.dvi 2005 3 3 1 7 1.1... 7 1.2 Brane... 8 1.3 AdS/CFT black hole... 9 1.4... 10 2 11 2.1 Kaluza-Klein... 11 2.1.1 Kazula-Klein 4... 11 2.1.2 Kaluza-Klein... 13 2.2 Brane... 14 2.2.1 Brane 4... 14 2.2.2 Bulk

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

Abstract Gale-Shapley 2 (1) 2 (2) (1)

Abstract Gale-Shapley 2 (1) 2 (2) (1) ( ) 2011 3 Abstract Gale-Shapley 2 (1) 2 (2) (1) 1 1 1.1........................................... 1 1.2......................................... 2 2 4 2.1................................... 4 2.1.1 Gale-Shapley..........................

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

Duality in Bayesian prediction and its implication

Duality in Bayesian prediction and its implication $\theta$ 1860 2013 104-119 104 Duality in Bayesian prediction and its implication Toshio Ohnishi and Takemi Yanagimotob) a) Faculty of Economics, Kyushu University b) Department of Industrial and Systems

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL   R Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: 114-125 Issue Date 1992-12 URL http://hdl.handle.net/2433/83117 Right Type Departmental Bulletin Paper Textversion publisher

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

untitled

untitled Abstract Black Hole Black Hole Λ 1 1 Introduction 4 1.1 Prelude : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2 History : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

More information

流体としてのブラックホール : 重力物理と流体力学の接点

流体としてのブラックホール : 重力物理と流体力学の接点 1890 2014 136-148 136 : Umpei Miyamoto Research and Education Center for Comprehensive Science, Akita Prefectural University E mail: umpei@akita-pu.ac.jp 1970 ( ) 1 $(E=mc^{2})$, ( ) ( etc) ( ) 137 ( (duality)

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

Q E Q T a k Q Q Q T Q =

Q E Q T a k Q Q Q T Q = i 415 q q q q Q E Q T a k Q Q Q T Q = 10 30 j 19 25 22 E 23 R 9 i i V 25 60 1 20 1 18 59R1416R30 3018 1211931 30025R 10T1T 425R 11 50 101233 162 633315 22E1011 10T q 26T10T 12 3030 12 12 24 100 1E20 62

More information

untitled

untitled 24 2016 2015 8 26,,,,,,,,,,,, D.,,, L.,,, E.,,,,,, 1 1,,,,, 2,,, 7 1 2, 3 4 5 6 7 Contribution No.: CB 15-1 20 40,,,,,,,, 3,,,,, 10,,,,,,, 2, 3 5, 7 ,,, 2,, 3,, 4,,,,,,,,,,,,, 4,,,,,,,,, 1, 50, 1, 50 50,

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

[3] 2 2

[3] 2 2 (Akio HOSOYA) 2-12-1 Department of Physics, Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551 2011 9 27 1 2 9 = 18 9 9 = 81 3 9 = 27 8 9 = 72 [1] [2] email: ahosoya@th.phys.titech.ac.jp

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

量子フィードバック制御のための推定論とその応用

量子フィードバック制御のための推定論とその応用 834 203 96-08 96 * Naoki Yamamoto Department of Applied Physics and Physico-Informatics Keio University PID ( ) 90 POVM (i) ( ) ( ), (ii) $(y(t))$ (iii) $(u(t))$ 3 223-8522 3-5-3 $f$ $t$ 97 [,2] [3] [4]

More information

2009 4

2009 4 2009 4 LU QR Cholesky A: n n A : A = IEEE 754 10 100 = : 1 / 36 A A κ(a) := A A 1. = κ(a) = Ax = b x := A 1 b Ay = b + b y := A 1 (b + b) x = y x x x κ(a) b b 2 / 36 IEEE 754 = 1 : u 1.11 10 16 = 10 16

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun 1786 2012 128-142 128 Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Masakazu Onitsuka) Department of General Education Miyakonojo National

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

* Department of Mathematics, Graduate School of Science, Osaka University Sep. 29 Contents

* Department of Mathematics, Graduate School of Science, Osaka University Sep. 29 Contents 1668 2009 7-24 7 - * Department of Mathematics, Graduate School of Science, Osaka University goto@mathsciosaka-uacjp 2009 Sep 29 Contents 1 2 3 4 5 1 $n$ $x$ $\omega$ $x$ $K_{X}$ $\Omega$ $n$ $n$ $(\Omega,\omega)$

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

MI( MI() 100% 100% 75% 75% 33% 75% 60% 40% 25% 60% 1 2 3 4 5 6 7 8 9 () 12 () () () !! 1. 2. 3. 1. 2. () () () 3-5% ex. ex. 11 ex. () ex. ex. : ex. : (insula) () () ( 2009 ) () ( ) YES! ()

More information

橡同居選択における所得の影響(DP原稿).PDF

橡同居選択における所得の影響(DP原稿).PDF ** *** * 2000 13 ** *** (1) (2) (1986) - 1 - - 2 - (1986) Ohtake (1991) (1993) (1994) (1996) (1997) (1997) Hayashi (1997) (1999) 60 Ohtake (1991) 86 (1996) 89 (1997) 92 (1999) 95 (1993) 86 89 74 79 (1986)

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2 2003 1 1 (Emmy Noether 1) [1] [2] [ (Paul Gordan Clebsch-Gordan ] 1915 habilitation habilitation außerordentlicher Professor Außerordentlich(=extraordinary) 1 1: (Emmy Noether; 1882-1935) (Feynman) [3]

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot 外力項付常微分方程式の周期解および漸近周期解の初期 Title値問題について ( 力学系 : 理論から応用へ 応用から理論へ ) Author(s) 野原, 勉 ; 有本, 彰雄 Citation 数理解析研究所講究録 (2011), 1742: 108-118 Issue Date 2011-05 URL http://hdl.handle.net/2433/170924 Right Type Departmental

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2 Hubbard 2 1 1 Pauli 0 3 Pauli 4 1 Vol. 51, No. 10, 1996, pp. 741 747. 2 http://www.gakushuin.ac.jp/ 881791/ 3 8 4 1 1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

Keiji Matsumoto (Hokkaido Univ.) Jan. 08, ,

Keiji Matsumoto (Hokkaido Univ.) Jan. 08, , Keiji Mtsumoto (Hokkido Univ.) Jn. 08, 009 009, . > b > 0 { n }, {b n } ( 0, b 0 ) = (, b), ( n+, b n+ ) = ( n + b n, n b n ). { n }, {b n } lim n n = lim b n n b M(, b) Theorem (C.F. Guss 799 ) Mple M(,

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information