@i_kiwamu Bayes - -

Size: px
Start display at page:

Download "@i_kiwamu Bayes - -"

Transcription

1 Bayes RStan

2 @i_kiwamu Bayes - -

3 Stan / RStan Bayes Stan Development Team - Andrew Gelman, Bob Carpenter, Matt Hoffman, Ben Goodrich, Michael Malecki, Daniel Lee and Chad Scherrer Open source Stand alone Stan R RStan

4 Stan by Andrew Gelman 1. graphical model compiler 2. (Adaptive) Hamiltonian Monte Carlo sampling 3. Gibbs sampling 4. etc......? ( д )

5 Stan BUGS JAGS Hamiltonian Monte Carlo No-U-Turn sampling...

6 1. RStan 2. Gibbs sampler

7 R Stan JAGS r_res_meeting_2012/ Mercurial GitHub

8 RStan Stan R 1. Running Stan from R 2. RStan Getting Started Guide

9 R Windows R install.packages(c( inline, Rcpp, RcppEigen ))

10 C++ compiler - Mac: Xcode - Windows: GCC in Rtools - Linux: GCC or Clang C++ compiler - Makeconf - Before: CXXFLAGS = -g -O2 $(LTO) - After: CXXFLAGS = -g -O3 $(LTO)

11 rstangettingstarted/8schools.stan data { int<lower=0> J; // number of schools real y[j]; // estimated treatment effects real<lower=0> sigma[j]; // s.e. of effect estimates parameters { real mu; real<lower=0> tau; real eta[j]; transformed parameters { real theta[j]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; model { eta ~ normal(0, 1); y ~ normal(theta, sigma); BUGS

12 rstangettingstarted/8schools.stan data { int<lower=0> J; // number of schools real y[j]; // estimated treatment effects real<lower=0> sigma[j]; // s.e. of effect estimates parameters { real mu; real<lower=0> tau; real eta[j]; transformed parameters { real theta[j]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; model { eta ~ normal(0, 1); y ~ normal(theta, sigma); Stan <lower=**,upper=**>

13 rstangettingstarted/8schools.stan data { int<lower=0> J; // number of schools real y[j]; // estimated treatment effects real<lower=0> sigma[j]; // s.e. of effect estimates parameters { real mu; real<lower=0> tau; real eta[j]; transformed parameters { real theta[j]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; model { eta ~ normal(0, 1); y ~ normal(theta, sigma);

14 rstangettingstarted/8schools.stan data { int<lower=0> J; // number of schools real y[j]; // estimated treatment effects real<lower=0> sigma[j]; // s.e. of effect estimates parameters { real mu; mu tau real<lower=0> tau; real eta[j]; transformed parameters { uniform real theta[j]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; msg/stan-users/4gv3fncqsnk/ model { VonPUkdcZuUJ eta ~ normal(0, 1); y ~ normal(theta, sigma); stan-reference pdf section C.3

15 rstangettingstarted/8schools.stan data { int<lower=0> J; // number of schools real y[j]; // estimated treatment effects real<lower=0> sigma[j]; // s.e. of effect estimates parameters { real mu; real<lower=0> tau; real eta[j]; transformed parameters { real theta[j]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; model { eta ~ normal(0, 1); y ~ normal(theta, sigma); for 1 { 2

16 rstangettingstarted/8schools.stan data { int<lower=0> J; // number of schools real y[j]; // estimated treatment effects real<lower=0> sigma[j]; // s.e. of effect estimates parameters { real mu; real<lower=0> tau; real eta[j]; transformed parameters { real theta[j]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; model { eta ~ normal(0, 1); y ~ normal(theta, sigma); dnorm normal tau sigma for

17 R > library(rstan) > schools.dat <- list(j = 8, y = c(28, 8, -3, 7, -1, 1, 18, 12), sigma = c(15, 10, 16, 11, 9, 11, 10, 18)) > fit1 <- stan(file='8schools.stan', data=schools.dat, iter=10000, chains=4, verbose=false) > print(fit1) > plot(fit1) > # extract data > fit1.la <- extract(fit1, permuted=true) > fit1.coef$mu <- median(fit1.la$mu)

18 R rstan > library(rstan) > schools.dat <- list(j = 8, y = c(28, 8, -3, 7, -1, 1, 18, 12), sigma = c(15, 10, 16, 11, 9, 11, 10, 18)) > fit1 <- stan(file='8schools.stan', data=schools.dat, iter=10000, chains=4, verbose=false) > print(fit1) > plot(fit1) > # extract data > fit1.la <- extract(fit1, permuted=true) > fit1.coef$mu <- median(fit1.la$mu)

19 R RStan > library(rstan) > schools.dat <- list(j = 8, y = c(28, 8, -3, 7, -1, 1, 18, 12), sigma = c(15, 10, 16, 11, 9, 11, 10, 18)) > fit1 <- stan(file='8schools.stan', data=schools.dat, iter=10000, chains=4, verbose=false) > print(fit1) > plot(fit1) > # extract data > fit1.la <- extract(fit1, permuted=true) > fit1.coef$mu <- median(fit1.la$mu)

20 R stan stan > library(rstan) > schools.dat <- list(j = 8, y = c(28, 8, -3, 7, -1, 1, 18, 12), sigma = c(15, 10, 16, 11, 9, 11, 10, 18)) > fit1 <- stan(file='8schools.stan', data=schools.dat, iter=10000, chains=4, verbose=false) > print(fit1) > plot(fit1) > # extract data > fit1.la <- extract(fit1, permuted=true) > fit1.coef$mu <- median(fit1.la$mu)

21 R print > library(rstan) > schools.dat <- plot list(j = 8, y = c(28, 8, -3, 7, -1, 1, 18, 12), sigma = c(15, 10, 16, 11, 9, 11, 10, 18)) > fit1 <- stan(file='8schools.stan', data=schools.dat, iter=10000, chains=4, verbose=false) > print(fit1) > plot(fit1) > # extract data > fit1.la <- extract(fit1, permuted=true) > fit1.coef$mu <- median(fit1.la$mu)

22 R extract > library(rstan) > schools.dat <- list(j = 8, y = c(28, 8, -3, 7, -1, 1, 18, 12), sigma = c(15, 10, 16, 11, 9, 11, 10, 18)) > fit1 <- stan(file='8schools.stan', data=schools.dat, iter=10000, chains=4, verbose=false) > print(fit1) > plot(fit1) > # extract data > fit1.la <- extract(fit1, permuted=true) > fit1.coef$mu <- median(fit1.la$mu)

23 plot(fit1) Rhat log probability

24 rstan::traceplot(fit1) burn-in

25 Gibbs sampler Nile - dlm package (1.1-0) - JAGS (3.3.0) - RStan (1.0.3) MCMC - iteration: burn-in: thinning rate: 1 - chain: 4 - Mac OS X R

26 Yi θi F i θi θi-1 G Y i = F i + i i N(0, y) i = G i 1 + i i N(0, )

27 dlm package > library(dlm) > nile.dlm <- dlmgibbsdig(nile, mod=dlmmodpoly(1), shape.y=0.1, rate.y=0.1, shape.theta=0.1, rate.theta=0.1, n.sample=8000) > burn <- 1:4000 > sigma.dlm <- matrix(unlist(nile.dlm[c("dv", "dw")]), ncol=2)[-burn,] > sigma.dlm <- sqrt(sigma.dlm) > colnames(sigma.dlm) <- c("sigma y", "sigma theta") > sigma.mcmc.dlm <- mcmc.list(mcmc(sigma.dlm)) > plot(sigma.mcmc.dlm)

28 dlm package σy σθ dlm chain 1

29 JAGS model{ for(i in 2:N){ Nile[i] ~ dnorm(f * theta[i], tau.y) theta[i] ~ dnorm(g * theta[i-1], tau.theta) Nile[1] ~ dnorm(f * theta[1], tau.y) theta[1] ~ dnorm(nile.1, tau.theta) F ~ dnorm(0,.0001) G ~ dnorm(0,.0001) tau.y <- pow(sigma.y, -2) tau.theta <- pow(sigma.theta, -2) sigma.y ~ dunif(0, 1000) sigma.theta ~ dunif(0, 1000)

30 JAGS > library(r2jags) > nile.1 <- Nile[1] > nile.data.jags <- list("n", "Nile", "nile.1") > nile.inits.jags <- function() { list(theta=rnorm(n), sigma.theta=runif(1), sigma.y=runif(1), F=rnorm(1), G=rnorm(1)) > nile.params.jags <- c("theta", "sigma.y", "sigma.theta", "F", "G") > nile.jags <- jags(nile.data.jags, nile.inits.jags, nile.params.jags, model.file="nile.jags", n.iter=8000, n.burnin=4000, n.chains=4) > sigma.mcmc.jags <- lapply(1:4, function(i) as.mcmc(nile.jags)[[i]][,c(5,4)]) > plot(sigma.mcmc.jags)

31 JAGS

32 RStan data { int<lower=0> N; real<lower=0> Nile[N]; parameters { real theta[n]; real F; real G; real<lower=0> sigma_y; real<lower=0> sigma_theta; model { theta[1] ~ normal(nile[1], sigma_theta); Nile[1] ~ normal(f * theta[1], sigma_y); for(i in 2:N){ theta[i] ~ normal(g * theta[i-1], sigma_theta); Nile[i] ~ normal(f * theta[i], sigma_y);

33 RStan > nile.data.stan <- list(n=n, Nile=Nile) > nile.stan <- stan(file="nile.stan", data=nile.data.stan, iter=8000) > nile.stan.extract <- extract(nile.stan, inc_warmup=false) > sigma.mcmc.stan <- mcmc.list(mcmc(nile.stan.extract[,1,103:104]), mcmc(nile.stan.extract[,2,103:104]), mcmc(nile.stan.extract[,3,103:104]), mcmc(nile.stan.extract[,4,103:104])) > plot(sigma.mcmc.stan)

34 RStan

35 RStan observed estimation 95% HPD

36 RStan σy 95% σθ 95% Iteration 1 50 chain 1: chain 2: chain 3: chain 4:

37 RStan σy 95% Iteration chain 1 3 chain 4 σθ 95% chain 1: chain 2: chain 3: chain 4:

38 RStanの収束の様子 σの 95%範囲 収束完了 200 Iteration chain 1: 青 σθの 95%範囲 0 sigma theta y sigma y chain 2: 緑 chain 3: 黄 chain 4: 赤

39 RStan JAGS θ3の初期値 Burn-in期間中に 500 θ3 JAGS RStanで再計算 1500 同じ初期値を設定し 1000 幅広いサンプリング 推定結果が初期値に 左右されにくい 0 幅広くサンプリング θ2の初期値 θ

40 150 / dlm package JAGS RStan RStan JAGS 3

41 data { int<lower=0> N; real y[n]; transformed data { real sum_log_y; sum_log_y <- 0.0; for(i in 1:N) sum_log_y <- sum_log_y + log(y[i]); parameters { real<lower=0> mu; real<lower=0> lambda; f (x µ, ) = 2 x 3 model { lp <- lp * N * log(lambda / (2.0 * pi())) * sum_log_y; for(i in 1:N) lp <- lp - lambda * pow((y[i] - mu) / mu, 2) / (2.0 * y[i]); 1/2 exp (x µ) 2 2µ 2 x lp

42 > library(suppdists) > y <- rinvgauss(100, nu=5, lambda=50) > inv.gauss.data <- list(n = 100, y = y) > inv.gauss.stan <- stan(file = inv_gauss.stan, data = inv.gauss.data) > print(inv.gauss.stan) Inference for Stan model: inv_gauss. 4 chains: each with iter=2000; warmup=1000; thin=1; 2000 iterations saved. mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat mu lambda lp Samples were drawn using NUTS2 at Sun Nov 25 17:04: For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

43 Stan/RStan Gibbs sampler - - -

44 Stan reference stan-reference pdf ML or - ML: hl=ja&fromgroups#!forum/stan-users - FAQ: stan-users/4gv3fncqsnk/x95dtubcgcwj

45 Thank you for your attentions!

2014ESJ.key

2014ESJ.key http://www001.upp.so-net.ne.jp/ito-hi/stat/2014esj/ Statistical Software for State Space Models Commandeur et al. (2011) Journal of Statistical Software 41(1) State Space Models in R Petris & Petrone (2011)

More information

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht kubo2015ngt6 p.1 2015 (6 MCMC kubo@ees.hokudai.ac.jp, @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /

More information

Stanによるハミルトニアンモンテカルロ法を用いたサンプリングについて

Stanによるハミルトニアンモンテカルロ法を用いたサンプリングについて Stan によるハミルトニアンモンテカルロ法を用いたサンプリングについて 10 月 22 日中村文士 1 目次 1.STANについて 2.RでSTANをするためのインストール 3.STANのコード記述方法 4.STANによるサンプリングの例 2 1.STAN について ハミルトニアンモンテカルロ法に基づいた事後分布からのサンプリングなどができる STAN の HP: mc-stan.org 3 由来

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71 2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS kubo@ees.hokudai.ac.jp http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12

More information

kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1

kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1 kubostat1g p.1 1 (g Hierarchical Bayesian Model kubo@ees.hokudai.ac.jp http://goo.gl/7ci The development of linear models Hierarchical Bayesian Model Be more flexible Generalized Linear Mixed Model (GLMM

More information

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons. 2010 05 22 1/ 35 2010 2010 05 22 *1 kubo@ees.hokudai.ac.jp *1 c Mike Gonzalez, October 14, 2007. Wikimedia Commons. 2010 05 22 2/ 35 1. 2. 3. 2010 05 22 3/ 35 : 1.? 2. 2010 05 22 4/ 35 1. 2010 05 22 5/

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: gito@eco.u-toyama.ac.jp October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

untitled

untitled MCMC 2004 23 1 I. MCMC 1. 2. 3. 4. MH 5. 6. MCMC 2 II. 1. 2. 3. 4. 5. 3 I. MCMC 1. 2. 3. 4. MH 5. 4 1. MCMC 5 2. A P (A) : P (A)=0.02 A B A B Pr B A) Pr B A c Pr B A)=0.8, Pr B A c =0.1 6 B A 7 8 A, :

More information

2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28

More information

: Bradley-Terry Burczyk

: Bradley-Terry Burczyk 58 (W15) 2011 03 09 kubo@ees.hokudai.ac.jp http://goo.gl/edzle 2011 03 09 (2011 03 09 19 :32 ) : Bradley-Terry Burczyk ? ( ) 1999 2010 9 R : 7 (1) 8 7??! 15 http://www.atmarkit.co.jp/fcoding/articles/stat/07/stat07a.html

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

10

10 z c j = N 1 N t= j1 [ ( z t z ) ( )] z t j z q 2 1 2 r j /N j=1 1/ N J Q = N(N 2) 1 N j j=1 r j 2 2 χ J B d z t = z t d (1 B) 2 z t = (z t z t 1 ) (z t 1 z t 2 ) (1 B s )z t = z t z t s _ARIMA CONSUME

More information

kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10

kubo2017sep16a p.1 ( 1 ) :   : :55 kubo (  ( 1 ) / 10 kubo2017sep16a p.1 ( 1 ) kubo@ees.hokudai.ac.jp 2017 09 16 : http://goo.gl/8je5wh : 2017 09 13 16:55 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 1 / 106 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 2 / 106

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

バイオインフォマティクス特論4

バイオインフォマティクス特論4 藤 博幸 1-3-1. ピアソン相関係数 1-3-2. 致性のカッパ係数 1-3-3. 時系列データにおける変化検出 ベイズ統計で実践モデリング 5.1 ピアソン係数 第 5 章データ解析の例 データは n ペアの独 な観測値の対例 : 特定の薬剤の投与量と投与から t 時間後の注 する遺伝 の発現量 2 つの変数間の線形の関係性はピアソンの積率相関係数 r で表現される t 時間後の注 する遺伝

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

専修人間科学論集心理学篇 Vol. 7, No. 1, pp. 15~23, ロジスティック型項目反応理論モデルにおける JAGS と Stan を用いた推定の比較評価 1 北條大樹 2 岡田謙介 3 Comparative evaluation of parameter estim

専修人間科学論集心理学篇 Vol. 7, No. 1, pp. 15~23, ロジスティック型項目反応理論モデルにおける JAGS と Stan を用いた推定の比較評価 1 北條大樹 2 岡田謙介 3 Comparative evaluation of parameter estim 専修人間科学論集心理学篇 Vol. 7, No. 1, pp. 15~23, 2017 15 ロジスティック型項目反応理論モデルにおける JAGS と Stan を用いた推定の比較評価 1 北條大樹 2 岡田謙介 3 Comparative evaluation of parameter estimation methods between JAGS and Stan in Bayesian item

More information

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77 60 (W30)? 1. ( ) kubo@ees.hokudai.ac.jp 2. ( ) web site URL http://goo.gl/e1cja!! 2013 03 07 (2013 03 07 17 :41 ) 1/ 77 ! : :? 2013 03 07 (2013 03 07 17 :41 ) 2/ 77 2013 03 07 (2013 03 07 17 :41 ) 3/ 77!!

More information

Microsoft PowerPoint - bsj2015spring_0308b.pptx

Microsoft PowerPoint - bsj2015spring_0308b.pptx 1 日本行動計量学会第 17 回春の合宿セミナー 2015 年 03 月 08 日 行動計量学のためのベイズ推定におけるモデル選択 評価 専修大学 岡田謙介 2 https://twitter.com/amstatnews/status/547403146365272064 前世紀的な統計分析 統計分析が行えるモデルの数が限られてり そうした実行可能なモデルにデータをあわせる 心理学分野では分散分析の濫用

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0)

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0) E-mail: takio-kurita@aist.go.jp 1 ( ) CPU ( ) 2 1. a f(a) =(a 1.0) 2 (1) a ( ) 1(a) f(a) a (1) a f(a) a =2(a 1.0) (2) 2 0 a f(a) a =2(a 1.0) = 0 (3) 1 9 8 7 (x-1.0)*(x-1.0) 6 4 2.0*(x-1.0) 6 2 5 4 0 3-2

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM kubo@ees.hokudai.ac.jp https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi kubostat7f p statistaical models appeared in the class 7 (f) kubo@eeshokudaiacjp https://googl/z9cjy 7 : 7 : The development of linear models Hierarchical Baesian Model Be more flexible Generalized Linear

More information

Microsoft PowerPoint - bayes-juku_2015_03010(public).pptx

Microsoft PowerPoint - bayes-juku_2015_03010(public).pptx 1 第 2 回ベイズ推定 WS Stan によるベイズ推定の可能性と課題 2015 年 03 月 04 日 ベイズ塾実践篇 STAN の魅力 使い方階層ベイズ その他ベイズ統計いろいろ 専修大学 岡田謙介 2 塾生 さんらよりいただいたお題 1 他の MCMC 実行ソフトウェアにない STAN の特徴 (STAN のここがウリ!! という点 ) 2STAN でいくつかの代表的な統計モデルを推定する際の実例や注意点

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

スライド 1

スライド 1 WinBUGS 入門 水産資源学におけるベイズ統計の応用ワークショップ 2007 年 8 月 2-3 日, 中央水研 遠洋水産研究所外洋資源部 鯨類管理研究室 岡村寛 WinBUGS とは BUGS (Bayesian Inference Using Gibbs Sampling) の Windows バージョン フリーのソフトウェア Gibbs samplingを利用した事後確率からのサンプリングを行う

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

Microsoft PowerPoint - R-stat-intro_20.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_20.ppt [互換モード] と WinBUGS R で統計解析入門 (20) ベイズ統計 超 入門 WinBUGS と R2WinBUGS のセットアップ 1. 本資料で使用するデータを以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/r-intro/r-stat-intro_data.zip 2. WinBUGS のホームページから下記ファイルをダウンロードし WinBUGS14.exe

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM kubo@ees.hokudai.ac.jp I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

医薬品開発の意思決定における Bayesian Posterior Probability の適用例 ~ Random-Walk Metropolis vs. No-U-Turn Sampler ~ 作井将 清水康平 舟尾暢男 武田薬品工業株式会社日本開発センター生物統計室 Using Bayesi

医薬品開発の意思決定における Bayesian Posterior Probability の適用例 ~ Random-Walk Metropolis vs. No-U-Turn Sampler ~ 作井将 清水康平 舟尾暢男 武田薬品工業株式会社日本開発センター生物統計室 Using Bayesi 医薬品開発の意思決定における Bayesian Posterior Probability の適用例 ~ Random-Walk Metropolis vs. No-U-Turn Sampler ~ 作井将 清水康平 舟尾暢男 武田薬品工業株式会社日本開発センター生物統計室 Using Bayesian Posterior Probability for Go/No-Go Decision Making

More information

バイオインフォマティクス特論12

バイオインフォマティクス特論12 藤 博幸 事後予測分布 パラメータの事後分布に従って モデルがどんなデータを期待するかを予測する 予測分布が観測されたデータと 致するかを確認することで モデルの適切さを確認できる 前回と同じ問題で事後予測を う 3-1-1. 個 差を考えない場合 3-1-2. 完全な個 差を考える場合 3-1-3. 構造化された個 差を考える場合 ベイズ統計で実践モデリング 10.1 個 差を考えない場合 第 10

More information

本資料は 2001 年 4 月に作成者らが NONMEM の入門的な解説として 母集団薬物動態解析法の応用例を紹介する目的で行ったセミナーで使用したスライドを元に修正を加えたものである 本来であれば 説明文による解説を必要とするが ご容赦願いたい 説明のために使用したデータは全て シミュレーションに

本資料は 2001 年 4 月に作成者らが NONMEM の入門的な解説として 母集団薬物動態解析法の応用例を紹介する目的で行ったセミナーで使用したスライドを元に修正を加えたものである 本来であれば 説明文による解説を必要とするが ご容赦願いたい 説明のために使用したデータは全て シミュレーションに 本資料は 2001 年 4 月に作成者らが NONMEM の入門的な解説として 母集団薬物動態解析法の応用例を紹介する目的で行ったセミナーで使用したスライドを元に修正を加えたものである 本来であれば 説明文による解説を必要とするが ご容赦願いたい 説明のために使用したデータは全て シミュレーションにより作成した架空の数値であり 考え方の例示を目的としたものである 母集団薬物動態解析法を検討される方にとって

More information

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 : Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) http://kenichi.kurihara.googlepages.com/miru_workshop.pdf 1 /40 MIRU2008 : Dirichlet process mixture Dirichlet process

More information

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i kubostat2017j p.1 2017 (j) Categorical Data Analsis kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

Fig. 1.1 Annual commercial landings of masu salmon in Hokkaido during 1970-2002. Fig. 1.2 Number of hatchery-reared masu salmon stocked in Hokkaido, 1980-2001. Fig. 2.2a Masu salmon landed

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

2004 Copyright by Tatsuo Minohara Programming with Mac OS X in Lambda 21 - page 2

2004 Copyright by Tatsuo Minohara Programming with Mac OS X in Lambda 21 - page 2 Living with Mac OS X in Lambda 21 2004 Copyright by Tatsuo Minohara Programming with Mac OS X in Lambda 21 - page 1 2004 Copyright by Tatsuo Minohara Programming with Mac OS X in Lambda 21 - page 2 2004

More information

MacOSXLambdaJava.aw

MacOSXLambdaJava.aw Living with Mac OS X in Lambda 21 2005 Copyright by Tatsuo Minohara Programming with Mac OS X in Lambda 21 - page 1 2005 Copyright by Tatsuo Minohara Programming with Mac OS X in Lambda 21 - page 2 2005

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

2016年2月27日11s感性工学会パンフレット

2016年2月27日11s感性工学会パンフレット TIMETABLE 9 10 11 12 13 14 15 16 17 18 19 20 9 1 4 7 8 13:00-13:20 13:20-14:20 5 11 2 3 5 6 8 1 1 2 TIMETABLE 9 10 11 12 13 14 15 16 17 18 19 20 3 6-1 6-2 9 11 2 12 10 4 10-1 13 4 3 10-2 7 10:00-12:00

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

Influence of Material and Thickness of the Specimen to Stress Separation of an Infrared Stress Image Kenji MACHIDA The thickness dependency of the temperature image obtained by an infrared thermography

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30 PlotNet 6 ( ) 2006-01-19 TOEF(1998 2004), AM, growth6 DBH growth (mm) 1998 1999 2000 2001 2002 2003 2004 10 20 30 40 50 70 DBH (cm) 1. 2. - - : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/show/2006/plotnet/

More information

<30315F985F95B65F90B490852E696E6464>

<30315F985F95B65F90B490852E696E6464> Modeling for Change by Latent Difference Score Model: Adapting Process of the Student of Freshman at Half Year Intervals Kazuaki SHIMIZU and Norihiro MIHO Abstract The purpose of this paper is to present

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó 2 2015 4 20 1 (4/13) : ruby 2 / 49 2 ( ) : gnuplot 3 / 49 1 1 2014 6 IIJ / 4 / 49 1 ( ) / 5 / 49 ( ) 6 / 49 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49

More information

こんにちは由美子です

こんにちは由美子です Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA

More information

28

28 y i = Z i δ i +ε i ε i δ X y i = X Z i δ i + X ε i [ ] 1 δ ˆ i = Z i X( X X) 1 X Z i [ ] 1 σ ˆ 2 Z i X( X X) 1 X Z i Z i X( X X) 1 X y i σ ˆ 2 ˆ σ 2 = [ ] y i Z ˆ [ i δ i ] 1 y N p i Z i δ ˆ i i RSTAT

More information

udc-2.dvi

udc-2.dvi 13 0.5 2 0.5 2 1 15 2001 16 2009 12 18 14 No.39, 2010 8 2009b 2009a Web Web Q&A 2006 2007a20082009 2007b200720082009 20072008 2009 2009 15 1 2 2 2.1 18 21 1 4 2 3 1(a) 1(b) 1(c) 1(d) 1) 18 16 17 21 10

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

1 1 Gnuplot gnuplot   Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5

More information

DVIOUT-ar

DVIOUT-ar 1 4 μ=0, σ=1 5 μ=2, σ=1 5 μ=0, σ=2 3 2 1 0-1 -2-3 0 10 20 30 40 50 60 70 80 90 4 3 2 1 0-1 0 10 20 30 40 50 60 70 80 90 4 3 2 1 0-1 -2-3 -4-5 0 10 20 30 40 50 60 70 80 90 8 μ=2, σ=2 5 μ=1, θ 1 =0.5, σ=1

More information

Microsoft Word - Meta70_Preferences.doc

Microsoft Word - Meta70_Preferences.doc Image Windows Preferences Edit, Preferences MetaMorph, MetaVue Image Windows Preferences Edit, Preferences Image Windows Preferences 1. Windows Image Placement: Acquire Overlay at Top Left Corner: 1 Acquire

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

RとExcelを用いた分布推定の実践例

RとExcelを用いた分布推定の実践例 R Excel 1 2 1 2 2011/11/09 ( IMI) R Excel 2011/11/09 1 / 12 (1) R Excel (2) ( IMI) R Excel 2011/11/09 2 / 12 R Excel R R > library(fitdistrplus) > x fitdist(x,"norm","mle")

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)

今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回) 生態学の時系列データ解析でよく見る あぶない モデリング 久保拓弥 mailto:kubo@ees.hokudai.ac.jp statistical model for time-series data 2017-07-03 kubostat2017 (h) 1/59 今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

²¾ÁÛ¾õ¶·É¾²ÁË¡¤Î¤¿¤á¤Î¥Ñ¥Ã¥±¡¼¥¸DCchoice ¡Ê»ÃÄêÈÇ¡Ë

²¾ÁÛ¾õ¶·É¾²ÁË¡¤Î¤¿¤á¤Î¥Ñ¥Ã¥±¡¼¥¸DCchoice ¡Ê»ÃÄêÈÇ¡Ë DCchoice ( ) R 2013 2013 11 30 DCchoice package R 2013/11/30 1 / 19 1 (CV) CV 2 DCchoice WTP 3 DCchoice package R 2013/11/30 2 / 19 (Contingent Valuation; CV) WTP CV WTP WTP 1 1989 2 DCchoice package R

More information

Microsoft Word - 資料 (テイラー級数と数値積分).docx

Microsoft Word - 資料 (テイラー級数と数値積分).docx δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h

More information

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra 1,a) 1 1 2 1 Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on traffic Abstract: The equipment with Wi-Fi communication function such as a smart phone which are send on a regular

More information

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation 1 1 1 1 SPEC CPU 2000 EQUAKE 1.6 50 500 A Parallelizing Compiler Cooperative Multicore Architecture Simulator with Changeover Mechanism of Simulation Modes GAKUHO TAGUCHI 1 YOUICHI ABE 1 KEIJI KIMURA 1

More information

2 I I / 61

2 I I / 61 2 I 2017.07.13 I 2 2017.07.13 1 / 61 I 2 2017.07.13 2 / 61 I 2 2017.07.13 3 / 61 7/13 2 7/20 I 7/27 II I 2 2017.07.13 4 / 61 π-computer gnuplot MobaXterm Wiki PC X11 DISPLAY I 2 2017.07.13 5 / 61 Mac 1.

More information

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc 1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

Solution Report

Solution Report CGE 3 GAMS * Date: 2018/07/24, Version 1.1 1 2 2 GAMSIDE 3 2.1 GAMS................................. 3 2.2 GAMSIDE................................ 3 2.3 GAMSIDE............................. 7 3 GAMS 11

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

Ver ceil floor FunctionGenerator (PTZCameraSony)

Ver ceil floor FunctionGenerator (PTZCameraSony) RT 2011 9 18 2009 11 15 1 2009 11 20 2009 12 4 1.2 Ver.1.0.2 ceil floor 3.2.1 4 FunctionGenerator 4.1 2009 12 7 4.2 2009 12 18 1.4 - - (PTZCameraSony) 2.2 - - 4.3 - - 2009 12 27 1.1 2011 9 18 OpenRTM-aist-1.0.0

More information

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alternative approach using the Monte Carlo simulation to evaluate

More information

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2) Vol. 47 No. SIG 14(TOM 15) Oct. 2006 RBF 2 Effect of Stock Investor Agent According to Framing Effect to Stock Exchange in Artificial Stock Market Zhai Fei, Shen Kan, Yusuke Namikawa and Eisuke Kita Several

More information

二項‐ベータ階層ベイズモデルによる児童虐待相談対応率の地域差に関する研究 : 都道府県政令指定都市別による多重比較

二項‐ベータ階層ベイズモデルによる児童虐待相談対応率の地域差に関する研究 : 都道府県政令指定都市別による多重比較 Kwansei Gakuin University Rep Title Author(s) 二 項 ベータ 階 層 ベイズモデルによる 児 童 虐 待 相 談 対 応 率 の 地 域 差 に 関 する 研 究 : 都 道 府 県 政 令 指 定 都 市 別 による 多 重 比 較 Lee, Jung Won, 李, 政 元 Citation 総 合 政 策 研 究, 41: 29-36 Issue

More information

Microsoft Word - 03-数値計算の基礎.docx

Microsoft Word - 03-数値計算の基礎.docx δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (

More information

dvi

dvi 2017 65 2 235 249 2017 1 2 2 2016 12 26 2017 3 1 4 25 1 MCMC 1. SLG OBP OPS Albert and Benett, 2003 1 2 3 4 OPS Albert and Benett 2003 Albert 2008 1 112 8551 1 13 27 2 112 8551 1 13 27 236 65 2 2017 Albert

More information

Microsoft PowerPoint - 14回パラメータ推定配布用.pptx

Microsoft PowerPoint - 14回パラメータ推定配布用.pptx パラメータ推定の理論と実践 BEhavior Study for Transportation Graduate school, Univ. of Yamanashi 山梨大学佐々木邦明 最尤推定法 点推定量を求める最もポピュラーな方法 L n x n i1 f x i 右上の式を θ の関数とみなしたものが尤度関数 データ (a,b) が得られたとき, 全体の平均がいくつとするのがよいか 平均がいくつだったら

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information