LIFPIV I J I J AD AM C mol/ F(T) K() T Vpt Vp / Voc / Vo B / Cp B D Fi Fg fp fr l m ne Pa Pfm Px Top

Size: px
Start display at page:

Download "LIFPIV I J I J AD AM C mol/ F(T) K() T Vpt Vp / Voc / Vo B / Cp B D Fi Fg fp fr l m ne Pa Pfm Px Top"

Transcription

1 19

2 LIFPIV I J I J AD AM C mol/ F(T) K() T Vpt Vp / Voc / Vo B / Cp B D Fi Fg fp fr l m ne Pa Pfm Px Top

3 Pr R Rf Rp Rr r T2 T3 V Vs W Wp Wr a / 3 o / 3 p i r/ o

4

5 3 PIV PIV PIV() PIV PIV PIV PIV 3-5 LIFPIV EJ LIFPIV

6 4-5 LIF, PIV NSR NSRNarrow Single Ring

7 6-1 LIF 6-2 PIV 6-3 LIF PIV

8 1

9 LIF Fig.1-1 Schematic view of Laser induced fluorescence method 2

10 3

11 Fig.1-2(a)(b) Method of calibration Fig.1-3 Influence of concentration on fluorescence ( ) 4

12 Fig.1-4 Influence of oil film temperature on the Fluorescence intensity ( ) 5

13 Fig.1-5 Oil film thickness adjacent to top and second rings measured by fixed point LIF method Fig.1-6 Oil transport on the second land in the circumferential direction(12rpm-no load) 6

14 Fig.1-7 Scanning LIF system 7

15 Fig.1-8 Instantaneous oil film thickness distribution in ring-land region 8

16 Pressure Mpa Oil film thickness Crank angle deg. (a) 1rpm motoring Pressure Mpa Oil film thickness Crank angle deg. (c) 1rpm Full laod Oil film thickness Pressure Mpa Crank angle deg. (b) 2rpm motoring Pressure Mpa Oil film thickness Crank angle deg. () 2rpm Full load Fig.1-9 Minimum of oil film thickness at the top ring Under motoring and firing operation PIV 9

17 U U X t 1

18 Fig.1-1 Surface roughness on the Test Plate ( ) U Oil film thickness Friction force m N N Crank angle 24rpm 76kN/m 2 (a) Journal factor U Fig.1-11 Example of test result (21) (Test face No4,Viscosity.216Pas) Crank angle 6rpm 151kN/m 2 (b) Journal factor U 11

19 FURUHAMAREYNOLDS SEPARATION SEPARATION U U U Fig.1-12 Theoretical boundary condition model on piston ring oil film (21) Fig.1-13 Comparison of calculated result and test result (21) (Plate No.4,Viscocity.26Pa-s,12rpm,5kN/m 2, Journal Factor; ) Fig

20 Friction force N Cal.(with fcav) Cal.(without fcav) 6rpm 12rpm 2rpm 9 BDC 27 TDC 9 9 BDC BDC 27 TDC 9 Crank angle deg. Crank angle deg. Crank angle deg. Fig1-14 Characteristics of friction forces on ƒcav b u b dx f cav x x h U y xr h xr 2 13

21 14

22 LIFPIV 15

23 16

24 17

25 2 LIF Cuomarin6 He-Cd 18

26 Piston 1st ring 2nd ring 3rd ring Oil iinjection Glass cylinder Nd;YAG Laser Filter CCD Camera Rotary encoder Power source Engine controller Oil pass PIV processor Computer Oil return Oil tank Pump Fig.2-1 LIF Measurement system of oil film thickness on the test engine. Table2-1 Experimental engine specifications NAME MEGATECH MARK Engine Cycle 4 cycle Cylinder 1 cyl Bore Stroke(mm) Compression Ratio 4:1 Operation Motoring Engine LIF 3 rpm5rpm Rev. PIV 1rpm Cooling Air 19

27 Piston cap Piston cap Top ring 2nd ring Top land 2nd land 3rd land 3rd ring Fig.2-2 Piston configuration of an experimentally model engine 2

28 Table2-2 Lubrication oil specifications SEA #3 CD Class #3 Additive wt% 8.5 Base Oil 5SN wt% Density(15 )g/cm KV 1mm 2 /sec KV 4 mm 2 /sec VI Sulfated Ash wt%.77 TBN(HClO4)mg KOH/g

29 Fig. 2-3 LIF image by using slid glasses Fig.2-4 Experimentally setup verification of oil film thickness Fig.2-5 Fluorescence intensity and oil film thickness with various Dye concentration 22

30 Fluorescence intensity g g/l / Rhodamine B Oil film thickness m Fig.2-6 Relationship between fluorescence intensity and oil film thickness on temperature 23

31 Fluorescence Flourescence intensity (b)2. g/l 2./ Rhodamine B Oil film thickness μm Fig.2-7 Relationship between fluorescence intensity and oil film thickness on temperature Fig.2-8 Example of feeler gauge for oil film thickness calibration 24

32 Oil with RhodaminB.1g/ Glass cylinder Fig.2-9 Calibration method of cylinder with feeler gauge Fluorescence intensity Resin surface Metal surface Oil film thickness μm Fig. 2-1 Relationship between fluorescence intensity and oil film thickness in crystal cylinder 25

33 LIF Piston cap Top land Top ring 2nd land 3rd land 3rd ring Clank Angle deg. (TDC) Clank Angle 9deg. Clank Angle 18deg. (BDC) Fig.2-11 Oil film thickness on piston of suction stroke.) 3rd (TDC)(BDC) BDC TDC 26

34 Top ring 2nd ring Piston cap Top land 2nd land 3rd land 3rd ring Clank Angle 18deg(BDC). Clank Angle 27deg. Clank Angle 36deg. (TDC) Fig.2-12 Oil film thickness on piston of compression stroke Top ring 2nd ring Piston cap Top land 2nd land 3rd land 2nd land 3rd ring Clank Angle 36deg. (TDC) Clank Angle 45deg. Clank Angle 54deg. (BDC) Fig.2-13 Oil film thickness on piston of expansion stroke 27

35 Piston cap Top ring 2nd ring Top land 2nd land 3rd land 3rd ring 72deg Clank Angle 54deg. (BDC) Clank Angle 63deg. Clank Angle 72deg. (TDC) Fig.2-14 Oil film thickness on piston of exhaust stroke 28

36 Oil film thickness μm Suction Compression Expansion Exhaust piston cap2 top ring second ring third ring Fig.2-15 Variation of oil film thickness on the piston rings with crank angle TDC BDC TDC BDC TDC Crank angle deg. 29

37 (5),(6) 3

38 31

39 32

40 . 33

41 3 PIV PIV U U X t F.3- PIV Principal method 4 34

42 35

43 Fig.3-2 PIV Messurment flow chart (4) 36

44 Pixel pitch Fig.3-3 Sub pixel correlation (4) 37

45 Piston Glass cylinder Nd;YAG Laser Power source 2nd ring Filter 3rd ring Oil iinjection Slit 1mm CCD Camera Engine controller Rotary encoder PIV processor Oil pass Computer Oil return Oil tank Pump Fig.3-4 PIV Messurment system Lighting system PIV camera External signals Input buffer Synchronism unit Correlation unit PIV processor Measured data/set up Personal computer Fig.3-5 Block diagram of PIV system 38

46 39

47 a b c a,b,c,4.8mm Fig.3-6 Piston and piston-rings for PIV measurement 4

48 a9deg.(suction stroke). (b) 27deg.(Compression stroke ) Fig.3-7 Oil film vector maps around piston ring slit by PIV 41

49 Slit V(m/s) (a)deg(tdc) (b) 9 deg.(max.speed) (c) 18 deg(bdc) Fig.3-8 Contour map of oil film velocity with 2nd ring on suction stroke ( 4 Y mm X mm X mm (a) 21 deg (b) 27 deg.(max.speed) X mm (c) 36deg.(TDC) V(m/s) Fig.3-9 Contour map of oil film velocity with 2nd ring on compression stroke 42

50 Y mm X mm X mm X mm (a) 39 deg (b) 45 deg.(max.speed) (c) 54 deg.(bdc) Fig.3-1 Contour map of film velocity with 2nd ring on expansion stroke V(m/s) Y mm X mm X mm X mm (a) 57 deg (b) 63 deg.(max.speed) (c) 72deg.(TDC) V(m/s) Fig.3-11 Contour map of oil film velocity with 2nd ring on exhaust stroke 43

51 V m/s deg. 18 deg. 27 deg. 36 deg Measuring position mm Fig.3-12 Oil film velocity distribution with various crank angle 44

52 V m/s Suction Compression Expansion Exhaust Vpt Vp Voc Vo TDC BDC TDC BDC TDC Crank angle deg. Fig.3-13 Velocity of oil film and piston with crank angle 45

53 46

54 47

55 RCA29 48

56 LIFPIV 3 2nd NdYAG RhodamineB Glass cylinder Power source Piston NdYAG Laser 2nd rng 3rd ring Oil Injection Notch filter CCD Camera Rotary encoder Oil pass PIV Processor Computer Oil return Oil tank Pump Fig4-1 Measurement system of LIF and PIV combination method 49

57 Fig,4-2 Test equipment of model engine 5

58 51

59 1.5/s 1.5/s Fig.4-3Velocity map of Rhodamine B.1g/ Fig.4-4 Velocity map of Rhodamine B.5g/ 52

60 Table4-3 Horizontally opposite test engine specifications and engine operation NAME Cycle Cylinder Experimental horizontally opposite engine 4 cycle 2 cylinder Bore Stroke(mm) Compression ratio 9.5:1 Engine Rev. Operation Motoring Firing Cooling Motoring,Firing 8rpm,12rpm, 16rpm 12rpm Air 53

61 Fig.4-5 Piston specification of EJ22 Type 922 test engine. Table4-4 Piston rings specification Piston ring configuration BT Ring tension N Top ring nd ring Oil ring Total ring tension N

62 Horizontally opposite test engine Nd:YAG Laser Power source Mirror CCD Camera Notch filter Engine controller Rotary encoder PIV Processor Computer Fig,4-6 Measurement system by LIF and PIV Combinations method 55

63 Nd:YAG laser Engine with sapphire cylinder CCD Camera Fig.4-7 Experimental equipment for measuring LIF and PIV on the test engine Mirror Sapphire cylinder Rugate Notch filter CCD Camera EJ22 Horizontally opposite engine Fig.4-8 EJ22 Type922 Engine and measuring instrument 56

64 Fig.4-9 Fig.4-9 Calibration jig Feeler guage Lubrication oil Calibration jig Feeler gauge Sapphire cylinder Fig. 4-1 Example of calibration method 57

65 de -2de -1de de 1de 2de 3de (a) Poin of calibration Sapphire cylinder (b)phot.of jig Feeler gauge Fig.4-11 Calibration method of oil film thickness and intensity 58

66 Fluorescence Intensity Fluorescence Intensity 25 Fluorescence Intensity deg_ deg_ deg_ (a)cylinder deg.angle Oil Film Thickness (μm) 12.5deg. 12.5deg. 12.5deg. Oil film thickness(μm) (c)cylinder 12.5deg.angle Oil film thickness(μm) Fluorescence Intensity Fluorescence Intensity Oil Oil film Film thickness(μm) Thickness Oil film thickness(μm) Fig4-12 Calibration of oil film thickness and intensity with Rhodamine B deg. 1deg. 1deg deg. 2-3.deg. -3.deg (b)cylinder 1deg.angle (d)cylinder -3.deg.angle Oil hole Piston Center e 12.5deg. 3.deg. Fig.4-13 Measuerement point of oil film thickness and intensity on the piston 59

67 Fig.4-14 Cylinder pressure under motoring and firing operation on the test engine 6

68 1 12rpm mm 1 Piston skirt Top ring 2nd ring mm 1 3rd ring Oil hole 5 5 mm 1mm 5 1 mm Crank angle 1deg. 3rd land 5 1 Crank angle1deg. mm Unit Cylinder 5 1 Crank angle 16deg. mm Fig.4-15-(1) Oil film thickness distribution obtained by LIF at suction stroke under motoring operation (engine speed 12rpm) 61

69 2 12rpm mm 1 Piston skirt 2nd ring mm mm 1mm mm 5 1 Crank angle 28deg. mm 1 Cylinder Unit 5 1 Crank angle34deg.. mm Fig.4-15-(2) Oil film thickness distribution obtained by LIF at compression stroke under motoring operation (engine speed 12rpm) 62

70 12rpm mm mm 1 Piston skirt Top ring 2nd ring 3rd ring Oil hole rd land 5 1 mm 1mm Crank angle 46deg. mm 5 1 Crank angle 37deg mm Unit Cylinder 5 1 Crank angle 52deg. mm Fig.4-15-(3) Oil film thickness distribution obtained by LIF on expansion stroke under motoring operation (engine speed 12rpm) 63

71 12rpm ( ) mm mm 1 Piston skirt Top ring 2nd ring 3rd ring Oil hole rd land 1mm 5 1 Crank angle 55deg. mm 5 1 mm Crank angle 64deg. mm 1 Cylinder Unit 5 1 Crank angle 7deg. mm Fig.4-15-(4) Oil film thickness distribution obtained by LIF on exhaust stroke under motoring operation (engine speed 12rpm) 64

72 Oil O film i l f ilm thickness t h ic k n e s s [ μm μ m ] st 2nd 3rd 4th Crank angle 1deg () Oil ring 2nd ring Top ring Oil film thickness μm st 2nd 3rd 4th Crank angle 1deg () Oil ring 2nd ring Top ring Oil O film f thickness t h n e s s [μ m μm ] μm 4 1st 2nd 3rd 4th 4 2 Measurement Measurement position position mm Crank angle 1DEG (1) 2nd land 3rd land Top land Oil O il film lm thickness k n e s s [ μ μm m ] 6 2 3μm Measurement position mm st 2nd 3rd 4th Crank angle 1deg () 3rd land Top land Oil O il film f m thickness t h k n e s s [ μm μ m ] st 2nd 3rd 4th 4 Measurement 2 Measurement position mm Crank angle 16deg.() 6μm Oil O ifilm l lm thickness t h k n e s s [μ μm m ] st 2nd 3rd 4th 4 2 Measurement position mm Crank angle 16deg.() 6μm Measurement position 2 3μm Measurement position mm Measurement position Measurement position mm 6μm Fig.4-16-(1) Oil film thickness on the piston and ring at suction stroke 65

73 Oil film thickness μm Oil film thickness μm Oil O i l film f i l m thickness t h i c k n e s s [ μm μ m ] st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th Crank angle 19deg Oil ring 4 Measurement position Crank angle 28deg 4 2 Measurement position mm Oil film thickness μm 2 mm Crank angle 34deg. 2nd ring Top ring 3μm 5μm Oil film thickness μm Oil film thickness μm Oil O i l film f i l m thickness t h i c k n e s s [ μm μ m ] Measurement position Measurement position mm 3μm 3μ Measurement position mm Fig.4-16-(2) Oil film thickness on the piston and ring at compression stroke st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th Crank angle19deg () Oil ring 4 2 Measurement position mm Crank angle 28deg 4 2 Measurement position mm Crank angle 34deg 2nd ring Top ring 6μm 6μm 66

74 14 12 Oil film thickness μm Oil O il film f ilm thickness t h k n e s s [μ μm m ] O il f ilm th ic k n es s [μ m ] st 2nd 3rd 4th Crank angle 37deg Oil ring 4 2 Measurement position mm 2nd ring Top ring 1st 2nd 3rd 4th 6μm Crank angle46deg Oil O film f tthickness h k n e s s [μ μm m ] Oil O il film f ilm thickness k n s [μ μm m ] st 2nd 3rd 4th 1st 2nd 3rd 4th Crank angle 37deg Oil ring 4 2 Measurement position mm Crank angle 46deg 2nd ring Top ring Oil O Oil fil m film th i c thickness k n e s s [ μ m ] μm st 2nd 3rd 4th 4 2 Measurement 6μm Measurement position mm Measurement Measurement position mm 14 Crank angle 52deg 1st 12 2nd 3rd 1 4th Oil O il film m thickness i c k n e s s [ μ μm m ] Crank angle 52deg 6μm positon Measurement position mm Cra 5μm Measurement position mm 6μm Fig.4-16-(3) Oil film thickness on the piston and ring at expansion stroke 67

75 Oil O film thickness k n s [μ m μm ] st 2nd 3rd 4th Crank angle 55deg Oil ring 2nd ring 2ring Top ring Oil O il film f m thickness k n e s s [ μ μm m ] st 2nd 3rd 4th 2 Oil ring 2nd ring 2ring Top ring O Oil film m thickness i c k n e s s [ μ m μm ] st 2nd 3rd 4th 4 2 Measurement Measurement position mm Crank angle 64deg Cran 5μm 6 Oil film thickness μm st 2nd 3rd 4th Measurement Measurement position mm Crank angle 64deg 6μm Measurement position mm 5μm 6 4 Measurement position mm 6μm Oil O film f thickness k n s [μ μm m ] st 2nd 3rd 4th Crank angle 7deg Oil O il film f thickness t h k n e s s [μ μm m ] st 2nd 3rd 4th Crank angle 7deg Measurement position mm 2μm Measurement position mm 6μm Fig.4-16-(4) Oil film thickness on the piston and ring at exhaust stroke 68

76 69

77 Oil film thickness m Suction Compression Expansion Exhaust -3.deg.() (TDC) (BDC) (TDC) (BDC) (TDC) Crank angle deg. 12.5deg.() Fig.4-17 Oil film thickness around the top ring under motoring operation LIF, PIV 7

78 Piston moving direction 2m/s 2m/s 4deg 1degabout TDC 2m/s 2m/s 1deg.(about max.speed) 7deg 2m/s 2m/s 16deg.(about BDC) 13deg Fig,.4-18-(1) Oil film velocity maps at the suction stroke under motoring operation (12rpm) 71

79 Piston moving direction 2m/s 2m/s 19deg.(about BDC) 22deg 2m/s 2m/s 25deg 28deg.(about max.speed) 2m/s 2m/s 31deg 34deg.(about TDC) Fig.4-18-(2) Oil film velocity maps at the compression stroke under motoring operation ( 12rpm) 72

80 Piston moving direction 2m/s 2m/s 4deg 37deg.(about TDC) 2m/s 2m/s 46deg. 43deg(about max. speed) 2m/s 2m/s 52deg. 49deg Fig,4-18-(3) Oil film velocity maps at the expansion stroke under motoring operation- (12rpm) 73

81 Piston moving direction 2m/s 2m/s 55deg.(about BDC) 58deg. 2m/s 2m/s 61deg. 64deg.(about max. speed) 2m/s 2m/s 67deg 7deg.(about TDC) Fig,.4-18-(4) Oil film velocity maps at the exhaust stroke under motoring operation (12rpm) 74

82 75

83 76

84 V m/s Expansion Stroke 8rpm 8rpm_Vpt 12rpm 12rpm_Vpt 16rpm 16rpm_Vpt Exhaust Stroke 64deg(max.speed) -8 44deg(max.speed) (TDC) (BDC) (TDC) Crank angle deg. Fig.4-19 Oil film velocity and theoretical piston velocity with various engine speeds. V V - V Vpt pt m/s m/s deg Expansion Stroke Piston direction Exhaust Stroke VOil film velocity VptTheoretical piston velocity 3deg. Piston direction -.3 TDC BDC Crank angle deg TDC Fig,.4-2 Relative velocity between oil film (V)and piston(vpt) 77

85 78

86 Y X 4mm Oil ring Center (3rd ring) Oil hole Fig4-21.Measurement point of oil film velocity on 3rd ring and piston skirt 79

87 Piston speed Piston speed mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 1deg. mm Oil ring gap Velocity of oil film on skirt Crank angle 1deg. mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 1deg. Oil ring gap Velocity of oil film on skirt Crank angle 1deg V m/s V m/s V m/s V m/s V m/s V m/s mm 16deg mm mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 16deg. Oil ring gap Velocity of oil film on skirt Crank angle 16deg. Fig.4-22-(1) Velocity of il film on 3rd ring and skirt at suction stroke(12rpm) 8

88 V m/s V m/s Piston speed mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 19deg. V m/s V m/s Piston speed mm Oil ring gap Velocity of oil film on skirt Crank angle 19deg. mm mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 28deg. Oil ring gap Velocity of oil film on skirt Crank angle 28deg. V m/s V m/s mm mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 34deg. 81 Oil ring gap Velocity of oil film on skirt Crank angle 34deg. Fig4-22-(2) Velocity of oil film on 3rd ring and skirt at compression stroke(12rpm)

89 Piston speed Piston speed V m/s V m/s V m/s mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 37deg. mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 46deg. V m/s V m/s V m/s mm Oil ring gap Velocity of oil film on skirt Crank angle 37deg. mm Oil ring gap Velocity of oil film on skirt Crank angle 46deg. 52deg (1.3) mm mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 52deg. Oil ring gap Velocity of oil film on skirt Crank angle 52deg. Fig4-22-(3) Velocity of oil film on 3rd ring and skirt at expansion stroke(12rpm) 82

90 ( V m/s V m/s 55dg(.65 ) Piston speed mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 55deg. V m/s V m/s Piston speed mm Oil ring gap Velocity of oil film on skirt Crank angle 55deg. mm mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 64deg. Oil ring gap Velocity of oil film on skirt Crank angle 64deg. V m/s V m/s mm mm Oil ring gap Velocity of oil film on 3rd ring Crank angle 7deg. Oil ring gap Velocity of oil film on skirt Crank angle 7deg. Fig4-22-(4) Velocity of oil film on 3rd ring and skirt at exhaust stroke(12rpm) 83

91 84

92 85

93 Suction Compression Expansion Exhaust V m/s Advanced point -2-4 Advanced point Advanced point Piston Velocity Advanced point Crank angle deg. Fig4-23 Relationship velocity between piston and oil film velocity of 3rd ringpiston skirt under motoring operation(12rpm) V / Vpt deg. 31deg. 31deg. 31deg. Crank angle deg. Vs / Vpt Vo / Vpt (TDC) (BDC) (TDC) (BDC) (TDC) Fig4-24 Vs/Vpt,Vo/Vpt change with crank angle under motoring operation (12rpm) 86

94 V m/s V m/s mm mm Oil ring gap Fig.4-25-(1) Oil film velocity at 3rd ring on crank angle 46deg. under motoring (12rpm) Oil ring gap Fig4-25-(2) Oil film velocity at 3rd ring on crank angle 46deg. under firing (12rpm) 87

95 V m/s V m/s mm mm Oil ring gap Fig4-26-(1) Oil film velocity at piston skirt on crank angle 46deg.under motoring (12rpm) Oil ring gap Fig4-26-(2) Oil film velocity at piston skirt on crank angle 46deg. under firing (12rpm) 88

96 89

97 9

98 91

99 26 92

100 5 Table5-1 Horizontally opposite engine specifications and engine operation NAME Horizontally opposite engine Cycle 4 cycle Cylinder & Volume 4 cylinder, Bore Stroke(mm) Compression ratio 9.:1 Operation Motoring Engine Motoring Rev. 1rpm6rpm Rev.Load Load Full Load Oil cooling system Water Con.rod length& r/= 12mm&=.25 93

101 Table5-2 Lubrication oil specification SEA #3 Additive wt% Base Oil 5SN wt% 1 Density(15 )g/cm KV 1mm 2 /s 1.94 KV 4 mm 2 /s VI 97 Sulfated Ash wt% TBN(HClO4)mg KOH/g Table5-3 Piston rings specification Piston ring configuration B Ring tension N Top ring nd ring Oil ring Total ring tension N

102 Fig.5-1 Measured system of friction losses on horizontally opposite engine 95

103 96

104 Horizontally opposite engine Mean effective friction pressure Pa Engine speed rpm Fig.5-2 Friction losses in each sliding component 97

105 5-2-4 () W p Cp (μ ω /W p ) 98

106 Friction coefficient f o p / W p Fig.5-3 Stribeck diagram R f R r R p R r f r W r f r W r R r W r W r W r BP x P r 99

107 Piston Cylinder Fig.5-4 The force of rings pushing against each cylinder Fig.5-4 The force of ring pushing against each cylinder ω π/3 n E rsinθρ/2sin2θ R r π /3 Cr D r n E Σ{B(P x + P r )} - sinθρ/2sin2θ R p f p ( )tanφ =P πd /4 (W/g)( π/3 ne)2 r{cosθ+ρ/2cos2θ} tansinρsinθ Fig.5-5 The force of a piston body 1

108 Fig.5-6 The force of pushing cylinder contracting with a piston and the contact angle between them. f p = Cr ( ω/ W p ) W p W p ( )tanφ /(Dδp/2) R p Cp π/6 D r n E δp ρ 1- sinθρ/2sin2θ sinθ[(π/4)dp+(1/g)( π/3) 2 (r/d)wn E 2 {cosθρ/2cos2θ}] - R f ±R r R p R f ±D (r n E ) sinθρ/2sin2θ [(π /3Cr Σ{B(P x + P r )} - Cp π/6 (π/4) - D - δp ρ 1- sinθ[p+(1/g)4/ππ/3) 2 (r/d )Wn E 2 {cosθρ/2cos2θ}] - ] P fm n E D r w p R f d 4 11

109 PV PV n = GRT = constant Fig.5-7 P-V diagram V V V V G G a V s P P = R a T 2 (ℇ-1) -(n-1) ( V/Vs ) -n 2 V s 12

110 P = R a T 3 (ℇ-1) -(n-1) ( V/Vs ) -n VV S /{(1-cosθ)+(ρ/4)(1-cos2θ)+2/(ε-)} 1 m 1 m 1 m P fm D r n C ( BP ) ( BP ) +Cr 2 { B T η V (ε-1) } - 1 m 1 m 1 m n 1 m m m T T C B P 1 T T 2 n 1 1 m 1 m m 1 m 1 m C rd m 1 m C p 2 p D V 1 T 2 T n 1 m 2 m m 1 Wn T T V E 3 r 1 r 3 E r r 2 T V 3 r T 3 2 p 3 p 3 C p 1 m p r D 1 m n 2 2 m E (1) Mean effective friction pressure Pa Engine speed rpm Fig.5-8 Measured value of friction losses of the piston system 13

111 Mean effective friction pressure Pa Exhaust 5 Kinematics viscosity of oil Fig.5-9 Measured value of friction losses othe piston system.5 P fm υ

112 C r1 1.33C r2 1.8C r3.14 C p C p2.142c p3 R B Px Pr.12D p r 2 sin P.14 Wn E cos cos D f Dr ne sin sin P fm.5 rne BPr BPr T D B. 5 1 T2 T3.14 B Pr 1 T T 2 T p Wr D ne p D 1 T 2 T3 Cylinder pressure MPa Spark timing 24deg.BTDC Full load No load BDC Compression TDC Expansion BDC Fig.5-1 Measured value of cylinder pressure 15

113 Suction Compression Expansion Exhaust Piston friction N N 1.3l horizontally opposite engine Engine speed: 5rpm,Full load Lubricating oil; SAE#3 Oil temperature: 11 Total friction at firing Total friction t motoring Piston ring friction (No pressure at cylinder) Fig.5-11 Results of calculation of friction losses on a piston system 16

114 Suction Compression Expansion Exhaust Piston friction N Diesel engine 1cyliner BS;137125mm Engine Speed;1rpm Furuhama s experimental result at full load Calculated Result at full load Calculated Result at full load (No pressure at cylinder) Fig.5-12 Comparison between calculated piston friction and the measured results by Furuhama s Diesel engine 4 17

115 Table5-4 Specification of EK56 type engine Type EK56 Straight engine Total displacement.55 Cylinder bore stroke 76mm 6mm Number of cylinders 2 Compression ratio 9.3 : 1 Cooling method Water-cooled Main materials Cast iron (aluminum for pistons) 8. 3 ring package 2 ring package NSRNarrow Single Ringpiston Fig.5-13 Each piston in 2 cylinder test engine 18

116 Table5-5 Piston rings specification of test engine Ring configuration & Tension Standard 2 ring package NSR 2 ring package Tension=8.5N Tension=18.3N Tension=18.3N Tension=12.N Tension=34.N Tension=34.N Tension=9.1N 19

117 Piston Floating liner Liner supporter Piezo type load washer Gas seal O-ring O-ring holder O-ring holder Upper part lateral stopper Lower part lateral stopper Fig.5-14 Measuring flouting cylinder device of piston frictional forces () 11

118 111, 3 1 m 2 2 E 2 2 cos 2 cos D r n W g P sin m m m e m f 2 sin 2 sin n Dr R m 1 m p m 1 m 1 m ' p m 1 ' r m m 1 D 4 6 C P P B C 3 m 1 T r m 1 r r1 m E 1 fm BP 1 1BP C rn D P m 1 3 m 1 2 m 1 1 ) n ( 2 r T T 1 B 1C m 3 m 2 m 1 ) n ( T m 1 3 r T T 1 p B C 2m 2 E m 1 m p pl n D r 1C m 1 3 m 1 2 m 1 1 ) n ( m p 2 p T T 1 D 1C m ) 1 ( m 1 m p 3 1C p rd m 3 m 2 2 E m 1 ) n ( T T Wn 1

119 2 cylinder engine (.55) Lubricating oil SAE#3 Mean effective friction Pressure Pa Engine speed rpm Fig.5-15 Measured value of friction losses on piston assembly Cr =.6, Cp =.18, Cr 1 =.167, Cr 2 =.714, Cr 3 =.553 1, Cp 1 =.27 1 Cp 2 =.374 Cp 3 = 112

120 R f Dr n E sin sin B Px Pr.115D P r 2 sin P.14 Wn cos cos2 2 D E P fm BPr Bp r 5.71B T v 1 ( T2 T3 ) T ( B Pr ) T v 1 ( T2 T3 ) W D n E r n. 5 D E D - 1) T T p v

121 Suction Compression Expansion Exhaust Cylinder internal pressure MPa Piston friction N Crank Angle Fig.5-16 Piston frictional force diagram. Standard 3 ring package 1rpmTc=9 114

122 (2) Suction Compressio Expansion Exhaust Cylinder internal pressure MPa Piston friction N Crank Angle Fig.5-17 Piston frictional force diagram. Standard 3 ring package 2rpm Tc=9 115

123 Suction Compression Expansion Exhaust Cylinder internal pressure MPa Piston friction N Crank Angle Fig.5-18 Piston frictional force diagram. Standard 3 ring package 3rpm Tc=9 116

124 Suction Compression Expansion Exhaust Cylinder internal pressure MPa Piston friction N Crank angle Fig.5-19 Piston frictional force diagram. Standard 3 ring package 2rpm Tc=6 117

125 Suction Compression Expansion Exhaust Cylinder internal pressure MPa Piston friction N Crank angle Fig.5-2 Piston frictional force diagram. Standard 2 ring package 2rpm,Tc=9 118

126 Suction Compression Expansion Exhaust Cylinder internal pressure MPa Piston friction N Crank angle Fig.5-21 Piston frictional force diagram. NSR 2 ring package 2rpm (Tc=9) 119

127 12

128 121

129 122

130 ( 1 )C ( 2 )C 6 123

131 124

132 125

133 126

134 127

135 128

136 129

137 13

138 LIF PIV 131

139 2 4 2 BP OEM 2 132

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space Characteristics of Hydrostatic Bearing/Seal Parts of Hydraulic Pumps and Motors for Water Hydraulic Systems (2nd Report, Theory) Xiongying WANG, Atsushi YAMAGUCHI In this paper, the characteristics of

More information

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364>

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364> Laser Flash Exposure time 25(50)µsec Deadtime=150nsec 5µsec I0 I1 I2 I3 I4 I5 Camera (40000 or 20000 fps) Phosphorescence ɡ ɡ ɡ ɡ TSParticle Intensity Ratio [ ] 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Fitted

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

A Akzo 12y26.doc Example of sun shade mat: ECO-MAT Power consumption of air-conditioner is saved by 10%. Picture of air-conditioner with ECO-MAT Comparison of consumed power of air-conditioner

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

研究成果報告書

研究成果報告書 (NOx) (SOx)2016 (EGR) (SCR) NOx NOx (UHC) NOx 25 ( ) CO 2 ( ) (Gas Permeation Membrane; GPM) 1 GPM GPM (2 ) (Anti-Quenching Membrane; AQM) GPM 2 (Oxygen Enriched Air; )1 (Nitrogen Enriched Air; NEA) NEA

More information

スペースプラズマ研究会-赤星.ppt

スペースプラズマ研究会-赤星.ppt 14 1 1 1 1 Pauline Faure 1 1 2 3 (1: 2: JAXA 3: IHI) IHI (C)(No.21560819) ISAS(JAXA) ISO TC20/SC14 / (Spall) 60~90% 2 (Cone) 1% (Jetting) CDV11227 Committee Draft for Comments CDV11227 Witness plate Sabot

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

Journal of Textile Engineering, Vol.53, No.5, pp

Journal of Textile Engineering, Vol.53, No.5, pp ORIGINAL PAPER Journal of Textile Engineering (2007), Vol.53, No.5, 203-210 2007 The Textile Machinery Society of Japan Analyzing the Path and the Tension of a Yarn under a False-twist Process Using a

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

17 Fig.2-1 Relationship between cooling water temperature and steam consumption of booster Source: The new oil and fat technology, Mr. E. Bornardini, Publishing house Technologie, Rome Note:

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

日立金属技報 Vol.34

日立金属技報 Vol.34 Influence of Misorientation Angle between Adjacent Grains on Magnetization Reversal in Nd-Fe-B Sintered Magnet Tomohito Maki Rintaro Ishii Mitsutoshi Natsumeda Takeshi Nishiuchi Ryo Uchikoshi Masaaki Takezawa

More information

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ 51 155 2009 23-30 Journal of the Combustion Society of Japan Vol.51 No.155 (2009) 23-30 FEATURE Clarification of Engine Combustion and the Evolution ディーゼルエンジン燃焼の課題と今後 Diesel Combustion Challenge and Future

More information

untitled

untitled NAOSITE: Nagasaki University's Ac Title Author(s) 予混合圧縮着火機関における天然ガスおよびメタノールの着火 燃焼特性に関する研究 鄭, 奭鎬 Citation (2008-03-19) Issue Date 2008-03-19 URL http://hdl.handle.net/10069/16303 Right This document is

More information

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overall height (at C.W.) mm (in) 1,425 (56.1), 1,435 (56.5)

More information

untitled

untitled 2M5-24 SM311 SM332 3 4 e30mm 5 e30mm [2M5-24] 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25

More information

charpter0.PDF

charpter0.PDF Kutateladze Zuber C 0 C 1 r eq q CHF A v /A w A v /A w q CHF [1] [2] q CHF A v /A w [3] [4] A v : A w : A : g : H fg : Q : q : q CHF : T : T 1 : T 2 : T 3 : c 100 T 4 : c 100 T b : T sat : T w : t : V

More information

燃焼圧センサ

燃焼圧センサ 49 Combustion Pressure Sensor Kouji Tsukada, Masaharu Takeuchi, Sanae Tokumitsu, Yoshiteru Ohmura, Kazuyoshi Kawaguchi π 1000N 150 225N 1 F.S Abstract A new combustion pressure sensor capable of measuring

More information

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp 58 00847 53 * ** ** Journal of Japan Institute of Light Metals, Vol. 58, No. 008, pp. 47 53 Production of aluminum tall container with flange by hydraulic bulging with compression of surrounding material

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射 1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射線技術科 緒言 3D PET/CT Fusion 1 liquid crystal display:

More information

(11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis (

(11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis ( (11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis (FEA) is suggested in this report. The pump induces

More information

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会 1. 1(1) 1(2)[1] 1992 [2] 1992 [3] 100 100 比率 (%) 80 60 40 変形腐食亀裂 相対損傷数 80 60 40 変形腐食亀裂 20 20 0 0 5 10 15 20 25 船齢 ( 年 ) 0 0 5 10 15 20 25 船齢 ( 年 ) (1) Ratio of Each Damage (2) Number of Damage Fig.1 Relation

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

untitled

untitled ( ) (mm) (GHz)=300( ) 30 300GHz=1 10mm ( 2GHz2Mbps) Gbps= Mbps ( m),? S G=P/Pi30dB=1000 Gm=4πS/λ 2, S= 80λ 2 Gm=30dB η=g/gm, S= 80λ 2,G=27dB η=50% (GHz) 80 70 60 50 40 30 20 10 16 19 22 25 28 31 34 37

More information

薄板プレス成形の高精度変形解析手法と割れ予測

薄板プレス成形の高精度変形解析手法と割れ予測 Finite Element Simulation of Deformation and Breakage in Sheet Metal Forming Noritoshi Iwata, Masao Matui 3 4J2G Stören & Rice FEM In the analysis of sheet metal forming, constitutive equations are examined

More information

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6 JSPE-54-04 Factor Analysis of Relationhsip between One's Visual Estimation and Three Dimensional Surface Roughness Properties on Belt Sanded Surface Motoyoshi HASEGAWA and Masatoshi SHIRAYAMA This paper

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CHIBA Department of Mechanical Engineering, Tokyo University

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li 2004.3.28 物理学会シンポジウム 磁気プラズマセイル の可能性と 深宇宙探査への挑戦 宇宙航空研究開発機構 船木一幸 Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

A Study about the Oscillation of the Water Pistons of the Fluidyne Heat Machine ( A Study about the Oscillation of the Water Pistons of the Fluidyne Heat Machine (II) For the teaching materials of the

More information

SICE東北支部研究集会資料(2004年)

SICE東北支部研究集会資料(2004年) 219 (2004.11.05) 219-4 Development of a 3D Range Sensor Based on Equiphase Light-Section Method KUMAGAI Masaaki * *Tohoku Gakuin University : (Vision sensor), (3-D range sensor), (Light-section method),

More information

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l A study on the simulation of the motion of personal full-submerged hydrofoil craft by Yutaka Terao, Member Summary A new energy utilization project developed by Tokai University was started in 1991. It

More information

1 158 14 2 8 00225 2 1.... 3 1.1... 4 1.2... 5 2.... 6 2.1...7 2.2... 8 3.... 9 3.1... 10 3.2... 16 4.... 17 4.1... 18 4.2... 20 4.3... 22 5.... 23 5.1... 24 5.2... 28 5.3... 34 5.4... 37 5.5... 39 6....

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

m 50m 4,380 ton 80m 2 110kW The Offshore Floating Type Wave Power Device "Mighty Whale" Open Sea Tests; Part1 : An overvie

m 50m 4,380 ton 80m 2 110kW The Offshore Floating Type Wave Power Device Mighty Whale Open Sea Tests; Part1 : An overvie 10 9 10 30m 50m 4,380 ton 80m 2 110kW 50 10 5 6 18 7 13 The Offshore Floating Type Wave Power Device "Mighty Whale" Open Sea Tests; Part1 : An overview of the experimental system and the mooring operations

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Fig. 1. Schematic drawing of testing system. 71 ( 1 ) 1850 UDC 669.162.283 : 669.162.263.24/. 25 Testing Method of High Temperature Properties of Blast Furnace Burdens Yojiro YAMAOKA, Hirohisa HOTTA, and Shuji KAJIKAWA Synopsis : Regarding the reduction under

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent

More information

Study on Imaging and Strain Mapping in the Vicinity of Internal Crack Tip Using Synchrotron White X-Ray

Study on Imaging and Strain Mapping in the Vicinity of Internal Crack Tip Using Synchrotron White X-Ray (Journal of the Society of Materials Science, Japan), Vol. 57, No. 7, pp. 667-673, July 2008 X Study on Imaging and Strain Mapping in the Vicinity of Internal Crack Tip Using Synchrotron White X-Ray by

More information

H17-NIIT研究報告

H17-NIIT研究報告 DLC SiC 1 2 3 4 4 5 5 6 The Influence of SiC Shot Blasting on Adhesion of DLC Film MIKI Yasuhiro *1), TANIGUCHI Tadashi *2), MATSUOKA Takashi *3) SASAKI Kenji *4), FUKUSHI Takayoshi *4), YUKI Tamotsu *5),

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405 Fig. 1 Experimental Apparatus Fig. 2 Typical Ion Distribution in COG-Air Flame Fig. 3 Relation between Steel Temperature and Reduction Time (a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig.

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

14 2 5

14 2 5 14 2 5 i ii Surface Reconstruction from Point Cloud of Human Body in Arbitrary Postures Isao MORO Abstract We propose a method for surface reconstruction from point cloud of human body in arbitrary postures.

More information

緩衝材透水特性II 技術資料.PDF

緩衝材透水特性II 技術資料.PDF JNC TN8430 2003-002 ) 7.878 15.138 47.155 exp( 2 ρ b ρ b κ + = κ [m 2 ] b ρ [Mg/m 3 ] * ** JNC TN8430 2003-002 March2003 Hydraulic characteristics of Buffer Material-II The influence which saline water

More information

<30345F90BC96EC90E690B65F E706466>

<30345F90BC96EC90E690B65F E706466> 15 特集 国際宇宙ステーション日本実験棟 きぼう における流体実験 * Space Experiment on the Instability of Marangoni Convection in Liquid Bridge Koichi NISHINO, Department of Mechanical Engineering, Yokohama National University 1 thermocapillary

More information

155 13 2 15 B97176 1 1.1. 4 1.2. 5 1.2.1. 1.2.2. 1.3. 7 2. 2.1. 9 2.2. 1 2.3. 13 2.4. 16 3. 3.1. 3.1.1. 18 3.1.2. 26 3.1.3. 33 3.2. 3.2.1. 34 3.2.2. 5 4. 4.1. 52 4.2. 53 54 55 2 1 1.1 1.2 1.3 3 4 Fig.

More information

J. Jpn. Soc. Soil Phys. No. 126, p (2014) ECH 2 O 1 2 Calibration of the capacitance type of ECH 2 O soil moisture sensors Shoichi MITSUISHI 1 a

J. Jpn. Soc. Soil Phys. No. 126, p (2014) ECH 2 O 1 2 Calibration of the capacitance type of ECH 2 O soil moisture sensors Shoichi MITSUISHI 1 a J. Jpn. Soc. Soil Phys. No. 126, p.63 70 (2014) ECH 2 O 1 2 Calibration of the capacitance type of ECH 2 O soil moisture sensors Shoichi MITSUISHI 1 and Masaru MIZOGUCHI 1 Abstract: Volumetric water contents,

More information

07_N1A_Setup_Manual_Parts_List

07_N1A_Setup_Manual_Parts_List - - -3 -4 -5 -6 -7 -8 -9 -0 - - -3 6 8 9 3 7 0 4 6 7 8 5 9 3 4 0 5-4 -5 -6 - - -3 -4 -5 -6 () () -7 -8 -9 -0 C A D - - -3 -4 -5 -6 -7 -8 -9 -0 - - -3 -4 -5 -6 -7 -8 -9 () () () (3) (4) () () () (3) ()

More information

自動車ボディ寸法検査

自動車ボディ寸法検査 Dimensional Inspection of an Automotive Body Kazunori Higuchi, Osamu Ozeki, Shin Yamamoto Abstract With recent increase of a high class and high quality cars, there is a great demand for more sophisticated

More information

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Member (Okinawa Electric Power Co.,Inc.) Toshimitsu Ohshiro,

More information

07_学術.indd

07_学術.indd Arts and Sciences computed radiography CRpresampled MTF Measurement of presampled MTFs with computed radiography (CR) by contrast method using smoothed square-wave. 1 16813 1, 2 1 1 1 2 Key words: contrast

More information

20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol

20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol 58 *1, *1, * 2 Mechanism of Heat Transfer through Mold Flux in Continuous Casting Mold By Hiroyuki Shibata, Shin-ya Kitamura and Hiromichi Ohta 1 K.C.Mills and A.B.Fox [1] [2] Fig.1 q c q r q t q t = q

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

35TS.indd

35TS.indd 海 外 開 発 / 海 外 生 産 特 集 海 外 の 大 学 とのエンジン 共 同 研 究 Collaboration on Engine Research with Foreign Universities 米 谷 俊 一 Shunichi Kometani 研 究 創 発 センター コア 技 術 研 究 室 1 はじめに 2 研 究 課 題 とテストエンジン 表 1 図 1 Engine Type

More information

Distributeur : JBG-METAFIX

Distributeur : JBG-METAFIX CL-7IR-X (.x.5x.mm) Lead-free RS-4 (.65x7.5x.75mm) Lead-free PR- (.5x.375x.6 mm) Lead-free P.7 P.4 P.35 CL-9IRS-X (x.8x.8mm) Lead-free RS-47 (3.x4.5x.mm) Lead-free CPT-3 (3.xx.mm) Lead-free P.8 P.6 P.37

More information

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Research Laboratory Osamu HIROSE Maya OZAKI This paper

More information

電子部品はんだ接合部の熱疲労寿命解析

電子部品はんだ接合部の熱疲労寿命解析 43 Evaluation for Thermal Fatigue Life of Solder Joints in Electronic Components Haruhiko Yamada, Kazuyoshi Ogawa 2 63Sn- 37Pb 95Pb-5Sn Si Cu Si 63Sn-37Pb Since automotive electronic components are used

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

撮 影

撮 影 DC cathode ray tube, 2.2 log log log + log log / / / A method determining tone conversion characteristics of digital still camera from two pictorial images Tone conversion characteristic Luminance

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

CM1-GTX

CM1-GTX CM1-GTX000-2002 R R i R ii 1-1 1-2 1-3 Process Variables Process Variables Pressure Output Analog Output Sensor Temp. Lower Range Value (0%) Upper Range Value (100%) Pressure Pressure Chart Pressure

More information

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA [ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA Keiji and HIRATA Yoshinori Metal transfer modes in

More information

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について 1/ 35 ブローダウン過給システムを用いたガソリン HCCI 機関の運転領域拡大 後藤俊介, 窪山達也, 森吉泰生 ( 千葉大学 ) 畑村耕一, 鈴木正剛,( 畑村エンジン研究事務所 ) 山田敏生,(CDAJ) 高梨淳一,( 本田技術研究所 ) 本日の発表内容 2/ 35 1. 背景 2. 目的 3. ブローダウン過給 (BDSCI) システム 4.EGRガイド 5. 実験装置 6. 実験結果と考察

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

bousai.dvi

bousai.dvi * ** *** * ** ***,.,,,, 197 : 1. 197 Fig.1 1.1 7,4 6,868km 45km Table 1 Fig. Fig.3 Fig. 1 Area of study 15 55km 3,3km 38.m 8,815 3, 13 15 1 8 1 16mm 1999 1. Shimonoseki Fig. Observation point of tide Yamaguti

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki

More information

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Nagakute, Aichi 480-11, Japan A package of computer programs

More information

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ 56 178 2014 291-297 Journal of the Combustion Society of Japan Vol.56 No.178 (2014) 291-297 FEATURE /Issues and Solutions for Engine Combustion φ-t マップとエンジン燃焼コンセプトの接点 A Point of Contact between a φ-t Map

More information

K02LE indd

K02LE indd I Linear Stage Table of Contents 1. Features... 1 2. Description of part Number... 1 3. Maximum Speed Limit... 2 4. Specifications... 3 5. Accuracy Grade... 4 6. Motor and Motor Adaptor Flange... 4 6-1

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt Typical Telemetry Applications on Wind Turbines Roller Bearing Load Rotor Shaft Torque and Bending Load Rotor Blade Strain and Vibration Generator Rotor Temperature Gear Wheel Tooth Root Force Generator

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

untitled

untitled - 37 - - 3 - (a) (b) 1) 15-1 1) LIQCAOka 199Oka 1999 ),3) ) -1-39 - 1) a) b) i) 1) 1 FEM Zhang ) 1 1) - 35 - FEM 9 1 3 ii) () 1 Dr=9% Dr=35% Tatsuoka 19Fukushima and Tatsuoka19 5),) Dr=35% Dr=35% Dr=3%1kPa

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test (J. Soc. Mat. Sci., Japan), Vol. 52, No. 11, pp. 1351-1356, Nov. 2003 Fatigue Life Prediction of Coiled Tubing by Takanori KATO*, Miyuki YAMAMOTO*, Isao SAWAGUCHI** and Tetsuo YONEZAWA*** Coiled tubings,

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 5. 5.1,,, 5.2 5.2.1,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 31, 22, 13,,, L1, L3, L2, 0 5.2.4,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 D C 1 0 0 A C 2 2 0 j X E 0 5.3: 5.5: f,, (),,,,, 1, 5.2.6

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

卒業論文

卒業論文 1 2 3 A 4 6 ( ) (Bubble Flow) (Slug Flow) Churn Flow (Annular Flow) 7 Bubble Flow Slug Flow Churn Flow Annular Flow Fig.1.2.1 8 1961 Griffith Wallis..7 1 2.34 198 Taitel Dukler 1983 Fig.1.3.1. Taitel-Dukler

More information