第1章 はじめに

Size: px
Start display at page:

Download "第1章 はじめに"

Transcription

1 Gaussian

2

3 ... 2 Gaussian ab initio Born-Oppenheimer Hartree-Fock SCF Møller-Plesset Gaussian Gaussian Z-matrix Gaussian Gaussian i

4 Q Q Q-3. SCF Q Q-5. Non-optimized Parameters... 4 Q-6. L03 4 Optimized Parameters Q Q Q Q-0. A Q-. MaxDisk Q-2. Z-matrix A-.... A- A A-2 ii

5 Gaussian Gaussian Gaussian John Pople (Gaussian 70) 998 Gaussian 98 Gaussian 3 Gaussian User s Reference [] [2] 2 Gaussian ab initio Gaussian 98 3 Gaussian 98 4 Gaussian 98 UNIX (Revision A..3) 3.2. Gaussian

6 2 Gaussian 98 ab initio Gaussian 98 (Molecular Mechanics) 2 3 ab initio 3 Schrödinger (2-) Gaussian 98 ab initio 2.. ab initio Gaussian ab initio [3-5] [6] [6,7] [2] 2... Born-Oppenheimer (time-independent) Schrödinger H ψ = Eψ (2-) n m n m n m n n m m 2 2 Z A Z AZ B H = + + i A (2-2) 2 2M r r R i= A= A i= A= ia i= j> i ij A= B> A M A A Z A A Born-Oppenheimer (2-2) 2 (2-2) m n n n m n n 2 Z A H elec = + i (2-3) 2 r r i= i= A= ia i= j> i ij AB 2

7 Schrödinger H elec Φ = ε Φ (2-4) elec elec elec E tot (2-5) m m Z AZ B Etot = ε elec + (2-5) R A= B> A AB Hartree-Fock SCF (2-4) Schrödinger Hartree-Fock χ φ i (r) α β χ = φ ( r) α( i) or χ = φ ( r) β ( i) (2-6) i i i i Pauli n Slater Ψ= φ ( r ) α() φ( r2 ) α(2) n! M φ ( r ) α( n) n φ ( r ) β () φ ( r ) β (2) 2 φ ( r ) β ( n) n M L L L φ ( r ) α() n n n 2 n φ ( r ) α(2) M M φ ( r ) α( n) φ ( r ) β () n φ ( r ) β (2) n 2 φ ( r ) α( n) n n (2-7) φ i (r) (2-3) h H elec = n i= h + i n n i= j> i r ij i 2 i = 2 A r ia (2-8) h i (2-8) i v Fock f(i) f ( i) = h + i v( i) (2-9) φ i (r) Hartree-Fock f φ ( r) = ε φ ( r) (2-0) i i i i (2-0) (SCF : Self-Consistent-Field Method) (2-0) ε i 3

8 n / 2 ε = H + (2J K ) (2-) i ii j= ij ij H ii J ij K ij H J K * ii = i ( ) hi () φi ()d r ij ij φ (2-2) = φ (2-3) * * i ( ) φ j (2) φi () φ j (2)drdr 2 r2 = φ (2-4) * * i ( ) φ j (2) φi (2) φ j ()d rdr 2 r2 E elec H ii ε i / 2 ( E = ε + ) (2-5) elec n i= i H ii (2-0) (Molecular Orbital) φ i (r) (Basis Function) (Roothaan SCF ) l φ = C (2-6) i µ = µ iφ µ φ µ (LCAO: Linear Combination of Atomic Orbitals) (Basis Set) 2..4 (2-6) l l m φ i = Cµ iφ µ = Cµ i dµ pg p (2-7) µ = µ = p= (2-6) (2-0) φ µ * * = νi µ ) f () φv ()d r ε i Cν i φµ () φv ν C ( ()d r (2-8) φ ν * S µν = φ µ ( ) φ v ( ) dr (2-9) (2-8) FC = SCe (2-20) Hartree-Fock (2-20) C F Fock n / 2 P * = 2 C µν µ ν (2-2) a a C a 4

9 5 ] ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( [ ) ( ) ( ) ( ) ( )] ( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( * * / * * * / * * * + = + = = d d d d 2 2 d d 2 d d r r r r r r r r v n a v a v n a v a a v v r r P h K J h f F φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ σ λ µ λ σ λ µ ν µ µ µ µ µν (2-22) SCF-MO ab initio MO (Restricted) Hartree-Fock RHF 2 (n) n/2 (Unrestricted) Hartree-Fock UHF Møller-Plesset Schrödinger (2-4) Hartree-Fock Hartree-Fock Hartree-Fock (E corr ) Gaussian 98 (2-20) F S P Fock (2-20) C ε C P' P P' P=P'

10 Møller-Plesset Configuration Interaction, CI Coupled Cluster (CC) Møller-Plesset H = H 0 + λv (2-23) H 0 Hartree-Fock 2 3 ϕ ϕ + λϕ + λ ϕ + λ +L (2-24) = 0 2 ϕ3 E λ E + λ E + λ +L (2-25) = E0 2 E3 Hartree-Fock 0 E 0 +E E corr MP MP3 MP4 MP5 Coupled Cluster [,2] (2-7) Slater (STO) Gauss Gaussian Gauss (GTO) Slater 3 STO-3G 970 [8] 6-3G 6-3G 6-3G 6 Gauss 3 Gauss 6-3G 3 (Polarization Function) Li F d (6-3G* 6-3G(d)) p (6-3G** 6-3G(d,p)) Diffuse 6-3+G Gaussian 98 Dunning-Hujinaga [,2] GTO 6

11 Gaussian 98 Gaussian n n: 2 Gaussian 98 NMR [,2] 7

12 3 Gaussian98 Gaussian Gaussian 98. UNIX vi Emacs 2. PC EmEditor MS-WORD Windows Gaussian 98 UNIX 2 FTP PC UNIX FTP $rungauss ; 0 %chk=/shome/rikou/sophia/g98/hf ; 02 #P SP HF/6-3G(d) ; 03 ; 04 Single-Point Calculation for HF ; 05 ; 06 0 ; 07 H ; 08 F ; 09 9 (;) 02 8

13 : 02 : 03 : 04 : 05 : 06 : 07 : 08, 09 : Z-matrix 02 /shome/rikou/sophia/g98 hf.chk chk 03 Gaussian 98 #P ( ) )/( SP Hartree-Fock HF 2..2 Hartree-Fock (RHF) (UHF) 2 HF RHF 2 UHF Hartree-Fock UHF 6-3G(d) Gaussian Gaussian 98 User's Reference [] Z-matrix Z-matrix

14 H F Å $rungauss ; 0 %chk=/shome/rikou/sophia/g98/hf ; 02 #P Opt=Z-matrix HF/6-3G(d) ; 03 ; 04 Geometry Optimization for HF ; 05 ; 06 0 ; 07 H ; 08 F2 rhf ; 09 ; 0 rhf=0.90 ; ; 2 --Link-- ; 3 %chk=/shome/rikou/sophia/g98/hf ; 4 #P Freq HF/6-3G(d) Geom=check ; 5 ; 6 Frequency Calculation for HF ; 7 ; 8 0 ; 9 02, ( 3-) 03 Opt Opt=Z-matrix Z-matrix (Å) rhf H F 0

15 3-3 0~ Link-- 5 Freq Geom=check Hartree-Fock (HF) Møller-Plesset MPn ( 3-4) 3-4. HF MP2 MP3 MP4 MP5 SP Opt Freq SP Opt Freq MPn 2 5 (MP2 MP5) MP2 MP4 MP2 MP GTO Gaussian 98

16 Gaussian 98 GTO Diffuse STO-3G * H Xe 3-2G * or ** + H Xe 6-2G (d) H Cl 4-3G (d) or (d,p) H Ne 6-3G (3df,3pd) ++ H Kr 6-3G (3df,3pd) ++ H Kr 6-3G 6-3G Diffuse STO-3G Z-matrix Gaussian98 Z-matrix Z-matrix Z-matrix 3-6 Z-matrix 3-6. Z-matrix Ar ; 0 Gaussian Z-matrix 3-7 Z-matrix 3-7. Z-matrix H ; 0 2

17 F2 rhf ; 02 ; 03 rhf=0.90 ; 04 H F H F H (0 ) F F2 (H) rhf Z-matrix Z-matrix Z-matrix O ; 0 H2 roh ; 02 H3 roh2 2 ahoh ; 03 ; 04 roh=0.960 ; 05 roh2=0.96 ; 06 ahoh=00.0 ; (H3) Z-matrix 03 H3 roh2 3,, 2 ahoh Gaussian 98 a 0º < a < 80º Z-matrix Z-matrix Z-matrix C ; 0 Cl2 r2 ; 02 H3 r3 2 a3 ; 03 H4 r4 2 a4 3 d4 ; 04 H5 r5 2 a5 3 d5 ; 05 ; 06 r2=.760 ; 07 r3=.090 ; 08 3

18 r4=.09 ; 09 r5=.092 ; 0 a3=09.5 ; a4=09.6 ; 2 a5=09.7 ; 3 d4=20. ; 4 d5=-20.2 ; α Cl2 β H3 C C d 04 H4 H3 H4 H5 r4 4,, 2 d a4 4,, 2, 3 H4 d , 2, 3 α 4,, 2 β 3-2, 2 3,, 4 Gaussian 98 d -360º < d < 360º Z-matrix 3 (roh, roh2, ahoh) 2 OH, Z-matrix O ; 0 H2 roh ; 02 H3 roh 2 ahoh ; 03 ; 04 roh=0.960 ; 05 ahoh=00.0 ; Z-matrix 4

19 3-8 roh roh2 Gaussian 98 roh roh Z-matrix Gaussian 98 (X) X2 N H3 H4 H (NH 3 ) 3-. Z-matrix N ; 0 X2.0 ; 02 H3 rnh 2 axnh ; 03 H4 rnh 2 axnh ; 04 H5 rnh 2 axnh ; 05 ; 06 rnh=.000 ; 07 axnh=70.0 ; 08 3N-6 Z-matrix Z-matrix Gaussian 98 a 0º < a < 80º 80º Z-matrix Z-matrix C ; 0 N2 rcn ; 02 5

20 X ; 03 H3 rch ; 04 ; 05 rcn=.090 ; 06 rch=.450 ; [6] H Li Be B C N O F Na Mg Al Si P S Cl H Li Be B C N O F Na Mg Al Si P S Cl Z-matrix $rungauss ; 0 %chk=/shome/rikou/sophia/g98/h2o ; 02 #P Opt=z-matrix HF/6-3G(d) ; 03 ; 04 Full Optimization for H2O ; 05 ; 06 0 ; 07 6

21 O ; 08 H2 roh ; 09 H3 roh 2 ahoh ; 0 ; roh=0.960 ; 2 ahoh=00.0 ; OH HOH Z-matrix $rungauss ; 0 %chk=/shome/rikou/sophia/g98/h2o ; 02 #P Opt=z-matrix HF/6-3G(d) ; 03 ; 04 Partial Optimization for H2O ; 05 ; 06 0 ; 07 O ; 08 H2 roh ; 09 H3 roh 2 ahoh ; 0 ; ahoh=00.0 ; 2 ; 3 roh=0.960 ; 4 Z-matrix (0 ) (2 ) (4 ) 09, 0 roh Z-matrix Opt Z-matrix

22 $rungauss ; 0 %chk=/shome/rikou/sophia/g98/ch3cl ; 02 #P Opt=z-matrix HF/6-3G(d) ; 03 ; 04 Geometry Optimization for CH3Cl ; 05 ; 06 0 ; 07 C ; 08 Cl2 r2 ; 09 H3 r3 2 a3 ; 0 H4 r3 2 a ; H5 r3 2 a ; 2 ; 3 r2=.760 ; 4 r3=.090 ; 5 a3=09.5 ; 6 ; 7 --Link-- ; 8 %chk=/shome/rikou/sophia/g98/ch3cl ; 9 #P Freq HF/6-3G(d) Geom=check ; 20 ; 2 Frequency Calculation for CH3Cl ; 22 ; 23 0 ; 24 ; 25 --Link-- ; 26 %chk=/shome/rikou/sophia/g98/ch3cl ; 27 #P SP MP2/6-3+G(2d,p) Geom=check ; 28 ; 29 High Accuracy Single-Point Calculation for CH3Cl ; 30 ; 3 0 ; 32 HF/6-3G(d) MP2/6-3+G(2d,p) 8

23 MP2/6-3+G(2d,p)//HF/6-3G(d) 3.2. Gaussian 98 ),2) Gaussian 98 Gaussian Gaussian 98 UNIX PC PC PC telnet FTP UNIX UNIX [9,0] sophia g h2o.dat Gaussian 98 UNIX Gaussian 98 sagami biwa G98 G sophia@sagami [] => nohup G98 h2o.dat h2o.out & G98 ) Gaussian 98 UNIX (Revision A..3) 2) Gaussian 98 LSF LSF 9

24 Gaussian 98 dat, out nohup & UNIX Gaussian 98 nohup & Ctrl+C Ctrl+Z G Link (go.sh) #!/bin/csh ; 0 G98 h2o.dat h2o.out ; 02 G98 hf.dat hf.out ; 03 G98 ch3cl.dat ch3cl.out ; go.sh g98 chmod go.sh sophia@sagami [2] => chmod 755 go.sh sophia@sagami [3] => nohup./go.sh & 20

25 ps ux [5] =>ps ux USER PID %CPU %MEM VSZ RSS TTY S STARTED TIME COMMAND sophia M 20M ttyp3 R 8:6:30 3:06.39 /usr/local/g98/l502.exe sophia M 384K ttyp3 S 8:5:48 0: tcsh (csh) sophia M 440K ttyp3 I 8:6:28 0:00.02 csh -f /usr/local/bin/g98 sophia M 84K ttyp3 I 8:6:30 0:00.00 sh -c /usr/local/g98/l.exe sophia M 904K ttyp3 S 8:6:29 0:00.03 /usr/local/g98/g98 sophia@sagami [6] => ps USER : PID : ID %CPU : CPU %MEM : VSZ : RSS : TTY : S : (R:, S:, I: ) STARTED : TIME : CPU COMMAND : ID(PID) (S) (COMMAND) CPU (TIME) Gaussian 98 ID 584 3:06.39 sophia@sagami [6] => kill 584 kill PID Ctrl+C 2

26 3.3. Gaussian Gaussian 98 Gaussian 3-9 Gaussian L0 L L0 L02 L03 L05 L06 L07 L08 L09 L0 L L3 L4 L Gaussian 98 [] Fletcher-Powell Berny Murtagh-Sargent Linear-Synchronous-Transit (LST) Newton-Raphson 2 2 EF EF Intrinsic Reaction Coordinate (IRC) 22

27 L6 L7 L8 L20 L202 L30 L302 L303 L308 L309 L30 L3 L34 L36 L39 L40 L402 L405 L502 L503 L506 L508 L50 L60 L602 L604 L607 L608 L609 L70 L702 L703 L Self-Consistent Reaction Field (SCRF) Post-SCF SCRF Trajectory ONIOM Dipole Velocity Effective Core Potential (ECP) 2 (spdf, in a primitive fashion) 2 (sp) 2 (spdf) 2 (for approximate spin orbital coupling) (MO) MCSCF SCF SCF Direct Minimization ROHF GVB-PP SCF MC-SCF Population Natural Bond Orbital (NBO) DFT Atoms in Molecules (AIM) (sp) 2 2 (spdf) ECP 23

28 L76 L80 L802 L803 L804 L8 L90 L902 L903 L905 L906 L908 L909 L93 L94 L95 L98 L002 L003 L04 L0 L02 L0 L L2 L (N3 in-core) Complete Basis Set (CBS) MP2 2 2 Hartree-Fock Old In-Core MP2 MP2 Semi-Direct MP2 Outer Valence Green s Function (OVGF) OVGF Post-SCF CI-Singles, RPA, Zindo SCF 5 (MP5, QCISD(TQ) BD(TQ)) CPHF NMR CP-MCSCF CI-Singles 2 2 Fx 2 PDM Post-SCF MP HF/6-3G(d) 3-20 (H3) Z-matrix (0 ) Z-matrix 24

29 3-20. $rungauss %chk=/shome/rikou/sophia/g98/h2o #P SP HF/6-3G(d) Single-Point Calculation for H2O 0 O H2 roh H3 roh 2 ahoh roh=0.960 ahoh= kb Entering Gaussian System, Link 0=/usr/local/g98/g98 Initial command: /usr/local/g98/l.exe/home/work/sophia/sagami.752/gau-758.inp -scrdir=/home/work/sophia/sagami.752/ Entering Link = /usr/local/g98/l.exe PID= 775. Copyright (c) 988,990,992,993,995,998 Gaussian, Inc. All Rights Reserved. Gaussian 98 Gaussian Cite this work as: Gaussian 98, Revision A..3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, Gaussian 98 25

30 *************************************************** Gaussian 98: DEC-AXP-OSF/-G98RevA..3 5-Feb Aug-2002 *************************************************** %chk=/shome/rikou/sophia/g98/h2o Default route: MaxDisk=2GB #P SP HF/6-3G(d) /38=/; 2/7=6,8=5,40=/2; 3/5=,6=6,7=,=9,25=,30=/,2,3; 4//; 5/5=2,32=,38=4/2; 6/7=2,8=2,9=2,0=2,28=/; 99/5=,9=/99; Leave Link at Wed Aug 28 20:00: , MaxMem= 0 cpu: 0. (Enter /usr/local/g98/l0.exe) Single-Point Calculation for H2O Symbolic Z-matrix: Charge = 0 Multiplicity = O H2 roh H3 roh 2 ahoh Variables: Constants: roh 0.96 ahoh 00. Leave Link 0 at Wed Aug 28 20:00: , MaxMem= cpu: 0. 4 Z-matrix Z-matrix orientation Standard orientation 2 (Enter /usr/local/g98/l202.exe) Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N Length/X N2 Alpha/Y N3 Beta/Z J O 2 2 H ( ) 3 3 H ( 2) ( 3) Z-Matrix orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z Distance matrix (angstroms): 2 3 O

31 2 H H Interatomic angles: H2-O-H3=00. Stoichiometry H2O Framework group C2V[C2(O),SGV(H2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z Rotational constants (GHZ): Isotopes: O-6,H-,H- Leave Link 202 at Wed Aug 28 20:00: , MaxMem= cpu: 0.2 (L30) (L302) (L303) (L40) SCF (L502) (Enter /usr/local/g98/l502.exe) Warning! Cutoffs for single-point calculations used. IExCor= 0 DFT=F Ex=HF Corr=None ScaHFX=.0000 ScaDFX= IRadAn= 0 IRanWt= - IRanGd= 0 ICorTp=0 Using DIIS extrapolation. Closed shell SCF: Requested convergence on RMS density matrix=.00d-04 within 64 cycles. Requested convergence on MAX density matrix=.00d-02. Requested convergence on energy=5.00d-05. Integral symmetry usage will be decided dynamically. Keep R integrals in memory in canonical form, NReq= IEnd= 6096 IEndB= 6096 NGot= MDV= LenX= Symmetry not used in FoFDir. MinBra= 0 MaxBra= 2 Meth=. IRaf= 0 NMat= IRICut= DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0. Cycle Pass IDiag : E= D+02 DIIS: error= 2.74D-0 at cycle. T= Gap= NK=0 IS= IE= 9 NO(<0.9)= 0 NV(>0.)= e < EF 0.00e >EF Err=2.3D-3 RMSDP=2.60D-02 MaxDP=.98D-0 SCF 6 SCF Cycle 6 Pass IDiag : E= D+02 Delta-E= DIIS: error= 9.67D-05 at cycle 6. Coeff: 0.99D D D D-0 0.2D D+0 RMSDP=2.90D-05 MaxDP=2.06D-04 SCF Done: E(RHF) = A.U. after 6 cycles Convg = D-04 -V/T = S**2 = KE= D+0 PE= D+02 EE= D+0 Leave Link 502 at Wed Aug 28 20:0: , MaxMem= cpu:

32 SCF Done Hartree-Fock Hartrees (Hartree) Hartree kj mol - A- Mulliken Population (L60) (Enter /usr/local/g98/l60.exe) Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (A) (A) (B2) (A) (B) Virtual (A) (B2) (B2) (A) (B) (A) (B2) (A) (A) (A2) (B) (A) (B2) (A) The electronic state is -A. Alpha occ. eigenvalues Alpha virt. eigenvalues Alpha virt. eigenvalues Alpha virt. eigenvalues Condensed to atoms (all electrons): 2 3 O H H Total atomic charges: O H H Total atomic charge Sum of Mulliken charges= Atomic charges with hydrogens summed into heavy atoms: O H H Sum of Mulliken charges= Electronic spatial extent (au): <R**2>= Charge= electrons Dipole moment Standard orientation Dipole moment (Debye): X= Y= Z= Tot= Quadrupole moment (Debye-Ang): XX= YY= ZZ= XY= XZ= YZ= Octapole moment (Debye-Ang**2): XXX= YYY= ZZZ= XYY= XXY= XXZ= XZZ= YZZ= YYZ= XYZ= Hexadecapole moment (Debye-Ang**3): 28

33 XXXX= YYYY= ZZZZ= XXXY= XXXZ= YYYX= YYYZ= ZZZX= ZZZY= XXYY= XXZZ= YYZZ= XXYZ= YYXZ= ZZXY= N-N= D+00 E-N= D+02 KE= D+0 Symmetry A KE= D+0 Symmetry A2 KE= D-35 Symmetry B KE= D+00 Symmetry B2 KE= D+00 Leave Link 60 at Thu Aug 22 3:5: , MaxMem= cpu: 0.4 (L9999) (Enter /usr/local/g98/l9999.exe) GINC-SAGAMI SP RHF 6-3G(d) H2O SOPHIA 28-Aug #P SP HF/6-3G(D) Single-Point Calculation for H2O 0, O H,,0.96 H,,0.96,2,0 0. Version=DEC-AXP-OSF/-G98RevA..3 State=-A HF= RMSD= 2.897e-05 Dipole= ,0., PG=C02V HF= (CPU ) WE'RE IN THE POSITION OF A VISITOR FROM ANOTHER DIMENSION WHO COMES TO EARTH AND SEES A CHESS MATCH. ASSUMING HE KNOWS IT'S A GAME, HE'S GOT TWO PROBLEMS: FIRST, FIGURE OUT THE RULES, AND SECOND, FIGURE OUT HOW TO WIN. NINETY PERCENT OF SCIENCE (INCLUDING VIRTUALLY ALL OF CHEMISRY) IS IN THAT SECOND CATEGORY. THEY'RE TRYING TO APPLY THE LAWS THAT ARE ALREADY KNOWN. -- SHELDON GLASHOW, 979 Job cpu time: 0 days 0 hours 0 minutes 3.7 seconds. File lengths (MBytes): RWF= Int= 0 D2E= 0 Chk= 8 Scr= Normal termination of Gaussian 98. Normal termination of Gaussian HF/6-3G(d) 3-2 (H3) Z-matrix (0 ) 3-2. $rungauss %chk=/shome/rikou/sophia/g98/h2o #P Opt=Z-matrix HF/6-3G(d) Full Optimization for H2O 0 29

34 O H2 roh H3 roh 2 ahoh roh=0.960 ahoh= L0 L03 Initial Parameters (Enter /usr/local/g98/l0.exe) Full Optimization for H2O Symbolic Z-matrix: Charge = 0 Multiplicity = O H2 roh H3 roh 2 ahoh Variables: roh 0.96 ahoh 00. Leave Link 0 at Wed Aug 28 20:0:4 2002, MaxMem= cpu: 0. (Enter /usr/local/g98/l03.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass ! Initial Parameters!! (Angstroms and Degrees)! ! Name Value Derivative information (Atomic Units)! ! roh 0.96 estimate D2E/DX2!! ahoh 00. estimate D2E/DX2! Trust Radius=3.00D-0 FncErr=.00D-07 GrdErr=.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 00. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 03 at Wed Aug 28 20:0: , MaxMem= cpu: 0.0 (Enter /usr/local/g98/l202.exe) Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N Length/X N2 Alpha/Y N3 Beta/Z J O 2 2 H ( ) 3 3 H ( 2) ( 3) SCF (L502) Population (L60) L70, L702, L703, L76 L03 (Enter /usr/local/g98/l03.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 30

35 Berny optimization. Search for a local minimum. Step number out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. The second derivative matrix: roh ahoh roh.0947 ahoh Eigenvalues RFO step: Lambda= D-03. Linear search not attempted -- first point. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) roh ahoh Item Value Threshold Converged? Maximum Force NO RMS Force NO Maximum Displacement NO RMS Displacement NO Predicted change in Energy= D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 03 at Wed Aug 28 20:02:6 2002, MaxMem= cpu: 0.2 Gaussian 98 4 Maximum Force ( ) RMS Force Maximum Displacements RMS Displacements (Threshold) (Value) Threshold Gaussian 98 Converged? NO L202 SCF (Enter /usr/local/g98/l202.exe) Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N Length/X N2 Alpha/Y N3 Beta/Z J O 2 2 H ( ) 3 3 H ( 2) ( 3) L03 Item Value Threshold Converged? Maximum Force NO RMS Force NO Maximum Displacement NO RMS Displacement NO 2 3

36 L202 L03 2 Population 4 SCF Done: E(RHF) = A.U. after cycles 2 SCF Done: E(RHF) = A.U. after 9 cycles 3 SCF Done: E(RHF) = A.U. after 7 cycles 4 SCF Done: E(RHF) = A.U. after 7 cycles Optimized Parameters Item Value Threshold Converged? Maximum Force YES RMS Force YES Maximum Displacement YES RMS Displacement YES Predicted change in Energy= D-0 Optimization completed. -- Stationary point found ! Optimized Parameters!! (Angstroms and Degrees)! ! Name Value Derivative information (Atomic Units)! ! roh DE/DX = 0.!! ahoh DE/DX = 0.! GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 03 at Wed Aug 28 20:03: , MaxMem= cpu: 0. (Enter /usr/local/g98/l202.exe) Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N Length/X N2 Alpha/Y N3 Beta/Z J O 2 2 H ( ) 3 3 H ( 2) ( 3) Z-Matrix orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z Distance matrix (angstroms): 2 3 O H H Interatomic angles: H2-O-H3= Stoichiometry H2O Framework group C2V[C2(O),SGV(H2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation:

37 Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z Rotational constants (GHZ): Isotopes: O-6,H-,H- Leave Link 202 at Wed Aug 28 20:03: , MaxMem= cpu: 0.2 Population (L60) (L9999) (Enter /usr/local/g98/l9999.exe) GINC-SAGAMI FOpt RHF 6-3G(d) H2O SOPHIA 28-Aug-2002 #P OPT=Z- MATRIX HF/6-3G(D) Full Optimization for H2O 0, O H,,rOH H,,rOH,2,aHOH roh= ahoh= Version=DEC-AXP-OSF/-G98RevA..3 State=-A HF= RMSD=2.788e-09 RMSF=6.6e-06 Dipole= ,0., PG=C02V WHEN YOU'VE SEEN ONE NUCLEAR WAR YOU'VE SEEN THEM ALL. Job cpu time: 0 days 0 hours 0 minutes 8.0 seconds. File lengths (MBytes): RWF= Int= 0 D2E= 0 Chk= 8 Scr= Normal termination of Gaussian 98. L HF/6-3G(d) $rungauss %chk=/shome/rikou/sophia/g98/h2o #P Opt=Z-matrix HF/6-3G(d) Geometry Optimization for H2O 0 O H2 roh H3 roh 2 ahoh roh=0.960 ahoh= link-- %chk=/shome/rikou/sophia/g98/h2o #P Freq HF/6-3G(d) Geom=check 33

38 Frequency Calculation for H2O Optimized Parameters Optimization completed. -- Stationary point found ! Optimized Parameters!! (Angstroms and Degrees)! ! Name Value Derivative information (Atomic Units)! ! roh DE/DX = 0.!! ahoh DE/DX = 0.! GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad *************************************************** Gaussian 98: DEC-AXP-OSF/-G98RevA..3 5-Feb Aug-2002 *************************************************** %chk=/shome/rikou/sophia/g98/h2o Default route: MaxDisk=2GB #P Freq HF/6-3G(d) Geom=check /0=4,29=2,30=,38=/,3; 2/40=/2; 3/5=,6=6,7=,=9,25=,30=/,2,3; 4//; 5/5=2,38=4/2; 8/6=4,=,23=2,27= /; 0/3=0/2; /6=2,8=,9=,5=,6=/,2,0; 0/6=/2; 6/7=2,8=2,9=2,0=2,8=,28=/; 7/8=,0=,25=/,2,3,6; /0=4,30=/3; 99//99; Leave Link at Thu Aug 29 3:4: 2002, MaxMem= 0 cpu: 0. (Enter /usr/local/g98/l0.exe) Frequency Calculation for H2O Z-Matrix taken from the checkpoint file: /shome/rikou/sophia/g98/h2o.chk Charge = 0 Multiplicity = O H,,rOH H,,rOH,2,aHOH Variables: 34

39 roh= ahoh= Recover connectivity data from disk. Leave Link 0 at Thu Aug 29 3:4:3 2002, MaxMem= cpu: 0. (Enter /usr/local/g98/l03.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass ! Initial Parameters!! (Angstroms and Degrees)! ! Name Value Derivative information (Atomic Units)! ! roh calculate D2E/DX2 analytically!! ahoh calculate D2E/DX2 analytically! Trust Radius=3.00D-0 FncErr=.00D-07 GrdErr=.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 00. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 03 at Thu Aug 29 3:4:5 2002, MaxMem= cpu: 0.0 (Enter /usr/local/g98/l202.exe) Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N Length/X N2 Alpha/Y N3 Beta/Z J O 2 2 H ( ) 3 3 H ( 2) ( 3) Z-Matrix orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z Distance matrix (angstroms): 2 3 O H H Interatomic angles: H2-O-H3= Stoichiometry H2O Framework group C2V[C2(O),SGV(H2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z Rotational constants (GHZ): Isotopes: O-6,H-,H- Leave Link 202 at Thu Aug 29 3:4:6 2002, MaxMem= cpu: 0.2 Initial Parameters SCF (L502) 2 (L76) 35

40 , 2, 3, 3 (A, B 2 ) Frequencies IR Inten Raman Activ Harmonic frequencies (cm**-), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), Raman depolarization ratios, reduced masses (AMU), force constants (mdyne/a) and normal coordinates: 2 3 A A B2 Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar Atom AN X Y Z X Y Z X Y Z X Y Z Standard Orientation K atm Thermochemistry Temperature Kelvin. Pressure Atm. Atom has atomic number 8 and mass Atom 2 has atomic number and mass Atom 3 has atomic number and mass Molecular mass: amu. Principal axes and moments of inertia in atomic units: 2 3 EIGENVALUES X Y Z THIS MOLECULE IS AN ASYMMETRIC TOP. ROTATIONAL SYMMETRY NUMBER 2. ROTATIONAL TEMPERATURES (KELVIN) ROTATIONAL CONSTANTS (GHZ) Zero-point vibrational energy (Joules/Mol) (Kcal/Mol) VIBRATIONAL TEMPERATURES: (KELVIN) Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy=

41 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= E (Thermal) CV S KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN TOTAL ELECTRONIC TRANSLATIONAL ROTATIONAL VIBRATIONAL Q LOG0(Q) LN(Q) TOTAL BOT D TOTAL V= D VIB (BOT) D VIB (V=0) D ELECTRONIC D TRANSLATIONAL D ROTATIONAL D GaussView Gaussian UNIX Windows Z-matrix Gaussian 98 Gaussian 37

42 FreeWheel GaussView Gaussian (MM3 ) MOPAC, HONDO Gaussian MOLDEN Gaussian MOPAC, GAMESS Z-matrix UNIX (Xwindows) Mac OS X Normal termination of Gaussian L9999 HF= MP2=

43 2. Normal termination of Gaussian L Optimized Parameters Optimized Parameters 3. Link Frequencies 5. Zero-point 6. Z-matrix orientation 4 Q-. A-. Link0 2 2 #P 0 ( ) O ( ) 39

44 Geom=check Geom=check FTP PC UNIX 3.2. Q-2. A-2. Z-matrix 3..6 Q-3. SCF A-3. SCF SCF=(MaxCycle=N) N (N ) STO-3G SCF MO Guess=Read 40

45 SCF SCF=QC SCF SCF Q-4. A-4. #P Opt=Restart ( )/( ) Q-5. Non-optimized Parameters A Item Value Threshold Converged? Maximum Force NO RMS Force NO Maximum Displacement NO RMS Displacement NO MaxCycle=N (N ) A-4 #P Opt=(Restart, MaxCyle=N) )/( n 4

46 #P Opt=(Z-matrix,CalcFC,MaxCyle=N) Geom=(Check, Step=n)... CalcFC 3..7 Q-6. L03 4 Optimized Parameters A-6. 4 (Value) (Threshold) /00 Q-7. A-7. Q-8. Leave Link 60 at Mon Aug 26 6:05: , MaxMem= cpu: 0. (Enter /usr/local/g98/l70.exe) 42

47 Compute integral second derivatives.... and contract with generalized density number 0. Insufficient memory in PRISM at phase 22 IEnd= limit= Error termination via Lnke in /usr/local/g98/l70.exe. Job cpu time: 0 days 0 hours 0 minutes 4.6 seconds. File lengths (MBytes): RWF= Int= 0 D2E= 0 Chk= 8 Scr= forrtl: severe (74): SIGSEGV, segmentation fault occurred 0: _call_remove_gp_range [0x3ff8a6de38] : _call_remove_gp_range [0x3ff8a7744] 2: _call_remove_gp_range [0x3ff800d8d70] 3: _call_remove_gp_range [0x3ff800e9b74] 4: _call_remove_gp_range [0x3ffbf909964] 5: _call_remove_gp_range [0x3ffbf9c2730] 6: _call_remove_gp_range [0x3ffbfcd4b48] 7: _call_remove_gp_range [0x3ffbf980958] 8: _call_remove_gp_range [0x3ffbfdf9b28] 9: _call_remove_gp_range [0x3ffbfe8d30] 0: _call_remove_gp_range [0x3ffbfa57420] : de_ [de.f: 62, 0x200094] 2: ml70_ [ml70.f: 4, 0x2000d554] 3: main [for_main.c: 203, 0x2000d5e4] 4: start [0x2000d438] A-8. Gaussian 98 64MB $RUNGAUSS %mem=28mb 28MB GB Q-9. Leave Link 80 at Wed Aug 7 5:05: , MaxMem= cpu: 0.0 (Enter /usr/local/g98/l804.exe) Closed-shell transformation, MDV= ITran=4 ISComp=. Semi-Direct transformation. ModeAB= 4 MOrb= 3 LenV= LASXX= LTotXX= LenRXX= LTotAB= MaxLAS= LenRXY= 0 NonZer= LenScr= LnRSAI= LnScr= LExtra= Total= MaxDsk= SrtSym= T ITran= 4 JobTyp=0 Pass : I= to 3. Complete sort for first half transformation. Erroneous write. Write instead of fd = 4 Erroneous write. Write instead of fd = 4 g_write g_write: Not a typewriter forrtl: severe (74): SIGSEGV, segmentation fault occurred 0: _call_remove_gp_range [0x3ff8a6de38] : _call_remove_gp_range [0x3ff8a7744] 2: _call_remove_gp_range [0x3ff800d8d70] 3: _call_remove_gp_range [0x3ff800e9b74] 4: _call_remove_gp_range [0x3ffbf909964] 43

48 5: _call_remove_gp_range [0x3ffbf90ad7c] 6: _call_remove_gp_range [0x3ffbf9089f8] 7: _call_remove_gp_range [0x3ffbf908f88] 8: _call_remove_gp_range [0x3ffbfdadf20] 9: _call_remove_gp_range [0x3ffbfb86f8] 0: _call_remove_gp_range [0x3ffbf97270] : dosdtr_ [dosdtr.f: 536, 0x200bee0] 2: trnds_ [trnds.f: 47, 0x ] 3: trndsk_ [trndsk.f: 8, 0x200604] 4: dirtrn_ [dirtrn.f: 43, 0x2000f984] 5: ml804_ [ml804.f: 4, 0x2000d834] 6: main [for_main.c: 203, 0x2000d8c4] 7: start [0x2000d78] A-9. Gaussian 98 (Read-Write File) Read-Write File 00GB 30GB Read-Write File SCF=Direct Read-Write File Q-0. A A Hartree 0-6 Hartree 0-4 Å

49 Q-. MaxDisk A-. MPn, QCI, CC SCF SCF MaxDisk MaxDisk 2GB Gaussian 98 MaxDisk SCF MaxDisk MaxDisk=5GB 5GB MaxDisk Q-2. Z-matrix A-2. Z-matrix

50 . Æ. Frisch and M. J. Frisch, Gaussian 98 User s Reference, 2nd Ed., Gaussian Inc., Pittsburg (999). 2. J. B. Foresman and Æ. Frish, Exploring Chemistry with Electronic Structure Methods, 2nd Ed., Gaussian Inc., Pittsburg (996). : B. Foresman, Æ. Frish,,, 2, Gaussian Inc., Pittsburg (998). 3. A. Szabo, N. S. Ostlund,,,, (99). 4.,,, (995). 5., 3,, (983). 6. T. Clark,, 3,, (992). 7.,, MOPAC, 2,, (992). 8. D. A. McQuarrie, J. D. Simon,,,, (999). 9., UNIX, 5. (200). 0., UNIX,, (2002). IVN 46

51 A-. Gaussian Å (amu) kg ESU C J s mol - (cal) 4.84 J J cm s J K (atm, 273.5K) m 3 Electron Mass = kg Proton Mass = Electron Mass Atomic Mass Unit (amu) = Electron Mass Electron Volt (ev) = kcal mol - Hartree = = kcal mol ev Bohr Electron = Debye Debye 2 Å -2 amu - = = km mol cm -2 atm - at STP Hartree -/2 Bohr - amu -/2 = cm - A- 47

52 A 水素ヘリウム 2 H He 本表の値は, IUPAC Inorganic Chemistry Division, CAWIA: Atomic Weights of Elements 200 の資料による 安定な同位体がなく, 天然同位体組 成を示さない元素では, その元素の最もよく知られた放射性同位体の質量数 () 内 2 3 Li 4 Be に表示した したがって, それらの値を他の元素の原子量と同等に取り扱うことはで 5 B 6 C 7 N 8 O 9 F 0 Ne きない 原子番号 0 から 6 までの元素名は暫定的なものである 原子量は Ar( 2 C)=2 に対する相対値である リチウムベリリウムホウ素炭素窒素酸素フッ素ネオン ナトリウムマグネシウムアルミニウムケイ素リン硫黄塩素アルゴン 3 Na 2 Mg 3 Al 4 Si 5 P 6 S 7 Cl 8 Ar カリウムカルシウムスカンジウムチタンバナジウムクロムマンガン鉄コバルトニッケル銅亜鉛ガリウムゲルマニウムヒ素セレン臭素クリプトン 4 9 K 20 Ca 2 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 3 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr ルビジウム ストロン イットリウムジルコニウム ニオブ モリブデンテクネチウムルテニウム ロジウム パラジウム 銀 カドミウム インジウム スズ アンチモン テルル ヨウ素 キセノン チウム 5 37 Rb 38 Sr 39 Y 40 Zr 4 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 5 Sb 52 Te 53 I 54 Xe (99) セシウムバリウムハフニウムタンタルタングステンレニウムオスミウムイリジウム白金金水銀タリウム鉛ビスマスポロニウムアスタチンラドン 6 55 Cs 56 Ba 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 8 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn フランシウムラジウム ランタノイド (20) (20) (222) ラザホージウム ドブニウム シーボーギウム ボーリウムハッシウム 7 87 Fr 88 Ra 04 Rf 05 Db 06 Sg 07 Bh 08 Hs 09 Mt 0 Uun Uuu 2 Uub 4 UUq 6 Uuh (223) (226) アクチノイド マイトネリウム ウンウンニリウム ウンウンウニウム ウンウンビウム ウンウンクワジウム (26) (262) (263) (264) (269) (268) (269) (272) (277) (289) (292) ウンウンヘキシウム ランタノイド アクチノイド ランタン セリウム プラセオジム ネオジム プロメチウムサマリウム ユウロピウムガドリニウムテルビウムジスプロ シウム ホルミウムエルビウムツリウム 57 La 58 Ce 59 Pr 60 Nd 6 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 7 Lu (45) アクチニウムトリウム プロトアクチニウム ウランネプツニウムプルトニウムアメリシウムキュリウムバークリウム カリホルニウム アインスタイ フェルミウム メンデレ ニウムフェルミウム ビウム イッテルビウム ルテチウム ノーベリウムローレンシウム 89 Ac 90 Th 9 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 00 Fm, 0 Md 02 No 03 Lr (227) (237) (239) (243) (247) (247) (252) (252) (257) (258) (259) (262) A-2

53 Gaussian (500) : ( ) ( )

54 2

和佐田 裕昭P indd

和佐田 裕昭P indd 19 20 Gaussian 20 Gaussian 1998 J. A. Pople Gaussian Windows Macintosh Gaussian 12 [1] 21 HPC2500 Gaussian Gaussian 03 IT Gaussian Gaussian Gaussian 94 5 [2-6] Gaussian 98 1 [7] Gaussian 03 Gaussian 03

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

P 和佐田.indd

P 和佐田.indd force 0 m 1 m 2 k (1) (2) 1 2 R R e 0 4 (3) 3 dv/dx 0 x (3) (4) 4 (4) (1) k N 3N x y z 3N 6 3N 5 3N 3N 3N (Hessian) 0 1 (2) V 二次の鞍点 始状態 ( エネルギー極小点 ) 遷移状態 ( 鞍点 ) 遷移状態 終状態 ( エネルギー極小点 ) Gaussian FREQ 2 B3LYP/6-31G(d)

More information

元素分析

元素分析 : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります (PET) 1 18 1 18 H 2 13 14 15 16 17 He 1 2 Li Be B C N O F Ne 3 4 5 6 7 8 9 10 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P

More information

和佐田P indd

和佐田P indd B3LYP/6-31G* Hartree-Fock B3LYP Hartree-Fock 6-31G* Hartree-Fock LCAO Linear Combination of Atomic Orbitals Gauss Gaussian-Type Orbital: GTO Gaussian- Type Function: GTF 2 23 1 1 X, Y, Z x, y, z l m n

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合 1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合の実効線 務従事者 区域外の 区域外の 量係数 量係数 の呼吸す 空気中の 水中の濃 る空気中 濃度限度

More information

RN201602_cs5_0122.indd

RN201602_cs5_0122.indd ISSN 1349-1229 No.416 February 2016 2 SPECIAL TOPIC113 SPECIAL TOPIC 113 FACE Mykinso 113 SPECIAL TOPIC IUPAC 11320151231 RI RIBFRILAC 20039Zn30 Bi83 20047113 20054201283 113 1133 Bh107 20082009 113 113

More information

P 和佐田.indd

P 和佐田.indd X Gaussian 03 POP Mulliken natural population analysis r Hartree-Fock 1 1 i n i n i 0, 1, 2 2 N 2 N N 3 3 spin spin Mulliken 1955 R. S. Mulliken [1-4] Gaussian 03 Mulliken Mulliken { (r)} 4 4 41 { (r)}

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2004 3 3 2 3 4 5 6 7 8 9 10 T. Ito, A. Yamamoto, et al., J. Chem. Soc., Chem. Commun., 136 (1974) J. Chem. Soc., Dalton Trans., 1783 (1974) J. Chem. Soc., Dalton Trans., 1398 (1975) 11 T.Ito, A. Yamamoto,

More information

2_R_新技術説明会(佐々木)

2_R_新技術説明会(佐々木) % U: 6.58%, Np, Am:.5%, Pu:.% 5.8% Cs 6.5% Sr %.9%Mo 8.74% Tc.9% TODA C 8 H 7 C 8 H 7 N CH C CH N CH O C C 8 H 7 O N MIDOA C 8 H 7 DOODA NTA + HN(C 8 H 7 ) + H O DCC + SOCl + HN(C 8 H 7 ) + Cl TODA (TODA)

More information

P 和佐田.indd

P 和佐田.indd B3LYP/6-31G* X HGS MOL-TALOU [1] 1 2-4 II CS Chem Office [2] Molecular Dynamics 1 ChemDraw 2 3 Chem 3D 4 Gaussian Input X 28 27 12 13 26 11 29 14 10 15 25 2 9 27 2 21 7 3 43 7 3 5 Cu 41 Cu 4 10 22 28 H

More information

Microsoft Word - 紀要 doc

Microsoft Word - 紀要 doc 12-816 2-17-1 812-8581 6-1-1 558-8585 3-3-138 e-mail: nakata@i.hosei.ac.jp [1] [2] [3] [4] [5, 6] log(k /k ) or log(k /K ) = "(# r$# R ) k/k K/K "# R $ # %# [7] [8] 9 [9] - 5 - [1] log(k /k ) or log(k

More information

SIサイエンス株式会社 stable isotope metal

SIサイエンス株式会社 stable isotope metal 12 マグネシウム Magnesium 24 Mg 酸化物 78.99 99.7 12 マグネシウム Magnesium 25 Mg 酸化物 10.0 97.0 12 マグネシウム Magnesium 26 Mg 酸化物 11.01 97.0 12 マグネシウム Potassium 39 K 塩化物 93.11 99.97 12 マグネシウム Potassium 40 K 塩化物 0.011 2.10

More information

Platypus-QM β ( )

Platypus-QM β ( ) Platypus-QM β (2012.11.12) 1 1 1.1...................................... 1 1.1.1...................................... 1 1.1.2................................... 1 1.1.3..........................................

More information

和佐田P indd

和佐田P indd 2000 B3LYP/6-31G Gaussian 98 03 B3LYP/6-31G* Gaussian STO-3G RHF Gaussian RHF/STO-3G B3LYP RHF 6-31G* STO-3G Schrödinger Schrödinger s p d Schrödinger Schrödinger Hohenberg-Kohn Kohn-Sham Kohn-Sham [1-3]

More information

RAA-05(201604)MRA対応製品ver6

RAA-05(201604)MRA対応製品ver6 M R A 対 応 製 品 ISO/IEC 17025 ISO/IEC 17025は 試験所及び校正機関が特定の試験又は 校正を実施する能力があるものとして認定を 受けようとする場合の一般要求事項を規定した国際規格 国際相互承認 MRA Mutual Recognition Arrangement 相互承認協定 とは 試験 検査を実施する試験所 検査機関を認定する国際組織として ILAC 国際試験所認定協力機構

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

MP-AES ICP-QQQ Agilent 5100 ICP-OES Agilent 5100 (SVDV) ICP-OES (DSC) 1 5100 SVDV ICP-OES VistaChip II CCD Agilent 7900 ICP-MS 7700 / 10 7900 ICP-MS ICP-MS FTIR Agilent 7900 ICP-MS Agilent Cary 7000 (UMS)

More information

2 1 7 - TALK ABOUT 21 μ TALK ABOUT 21 Ag As Se 2. 2. 2. Ag As Se 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 Sb Ga Te 2. Sb 2. Ga 2. Te 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4

More information

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード] 化学結合と分 の形 なぜ原 と原 はつながるのかなぜ分 はきまった形をしているのか化学結合の本質を理解しよう 分子の形と電子状態には強い相関がある! 原子 分子 基礎化学 ( 化学結合論 構造化学 量子化学 ) 電子配置分子の形強い相関関係 ( 電子状態 ) ( 立体構造 ) 分子の性質 ( 反応性 物性 ) 先端化学 ( 分子設計 機能化学 ) 機能 分子の形と電子配置の基礎的理解 基礎 ( 簡単

More information

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A IS(A3)- 284 - No.e1 核種核種半減期エネルギー放出割合核種通番数値単位 (kev) (%) 1 1 1 MG-28 20.915 H 29.08 27.0000 β-/ce K Al-28 2 1 2 MG-28 20.915 H 30.64 2.6000 β-/ce L Al-28 3 2 1 SC-44M 58.6 H 270.84 0.0828 EC/CE CA-44 4 2

More information

P 和佐田.indd

P 和佐田.indd Gaussian 03 Q Gaussian 03 [1,2] Q U S 1 2 k B 1.38054 10 23 JK 1 T 1 2 Q el Q trans Q rot Q vib 3 Q Q el Q trans Q rot Q vib 1 24 5 U E el E trans E rot E vib S S el S trans S rot S vib 6 3 4 5 6 R R 1.987

More information

Gaussian & WebMO II. 構造の入力 (4) New Job メニューの Create New Job をクリックすると, 分子編集用の Editor が現れる ログアウトは右上端の Logout をクリックする

Gaussian & WebMO II. 構造の入力 (4) New Job メニューの Create New Job をクリックすると, 分子編集用の Editor が現れる ログアウトは右上端の Logout をクリックする Gaussian & WebMO 2015-1 Gaussian および WebMO による分子軌道計算 Gaussian は世界で最も広く使用されている量子化学計算プログラムである ここでは, Gaussian の入力ファイルと出力ファイルの扱いを容易にするため,Web ベースの計算支援プログラム WebMO を併用して計算を行う方法を説明する Windows 用の市販プログラムである Chem3D,GaussView

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

スライド 1

スライド 1 Gaussian の使い方 %chk=default # HF/6-3G** comments H 入力ファイル %chk=default チェックポイントファイルの指定 # HF/6-3G** 出力フォーマット (ormal, Print, Terse) Hartree-Fock 法,6-3G** 基底関数 comments コメント 電荷 スピン多重度 H 元素記号 分子構造の情報 XYZ 座標で指定

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

Microsoft Word - Jmol リソースの使い方-2.doc

Microsoft Word - Jmol リソースの使い方-2.doc Moodle での Jmol リソースの 使 い 方 1. 表 示 例 分 子 構 造 データファイルを 指 定 して 分 子 の 3 次 元 構 造 と 分 子 軌 道 などを 表 示 することができます 1.1. DNA PDB 形 式 データファイル 1.2. タンパク 質 の 表 示 GFP の 一 種 1 1.3. 波 動 関 数 の 表 示 -アセトアルデヒド 2. リソースの 追 加

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

K 吸収端 XAFS 用標準試料 Ti Ti-foil 金属箔 縦 1.3 cm 横 1.3 cm 厚さ 3 µm TiO2 anatase ペレット φ 7 mm 厚さ 0.5 mm 作製日 TiO2 rutile ペレット φ 7 mm 厚さ 0.5 mm 作製日 2017.

K 吸収端 XAFS 用標準試料 Ti Ti-foil 金属箔 縦 1.3 cm 横 1.3 cm 厚さ 3 µm TiO2 anatase ペレット φ 7 mm 厚さ 0.5 mm 作製日 TiO2 rutile ペレット φ 7 mm 厚さ 0.5 mm 作製日 2017. あいち SR BL5S1 硬 X 線 XAFS ビームライン Ⅰ 標準試料リスト 周期表のリンクをクリックすると 各元素の標準試料リストに飛びます 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga

More information

hv (%) (nm) 2

hv (%) (nm) 2 HOLLOW CATHODE LAMPS hv 1 2 1 8 5 3 4 6 (%) 6 4 7 8 2 16 2 24 28 32 36 4 44 (nm) 2 1 328.7 346.5 Ag 47-47NB(AG) 338.28 1 2 Re 75-75NB(RE) 346.47 2 25 39.27 343.49 Al 13-13NB(AL) 396.15 1 2 Rh 45-45NB(RH)

More information

希少金属資源 -新たな段階に入った資源問題-

希少金属資源 -新たな段階に入った資源問題- H 耐用 TMR 占有増大 Li 94.5 4CL 0 Na 56 0 K 800 6CA 99 Rb 0. Cs 0.0 Fr Be.5 86US 4 Mg 5500 0.07 8CN 5 Ca 0.09 7 Sr 0.5 48ES Ba 0.5 47 Ra Sc. Y 6.7 7 (Ln) 800-97CN 6 (An) Center for Strategic Material NIMS,Japan

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

目次 Gaussian 利用の手引き 1 1. はじめに 利用できるバージョン 概要 マニュアル 2 2. TSUBAME での利用方法 Gaussian の実行 2 (1) TSUBAMEにログイン 2 (2) バージョンの切り替え 2 (3) イン

目次 Gaussian 利用の手引き 1 1. はじめに 利用できるバージョン 概要 マニュアル 2 2. TSUBAME での利用方法 Gaussian の実行 2 (1) TSUBAMEにログイン 2 (2) バージョンの切り替え 2 (3) イン Gaussian 利用の手引 東京工業大学学術国際情報センター 2017.04 version 1.10 目次 Gaussian 利用の手引き 1 1. はじめに 1 1.1 利用できるバージョン 1 1.2 概要 1 1.3 マニュアル 2 2. TSUBAME での利用方法 2 2.1 Gaussian の実行 2 (1) TSUBAMEにログイン 2 (2) バージョンの切り替え 2 (3)

More information

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1 QMAS SiC 7661 24 2 28 SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 100) MedeA SiC QMAS - C Si (0001)

More information

01-表紙.ai

01-表紙.ai B 0 5 0-5 双極子核 I=1/ 2 四極子核 I 1 e Li Be B C N F Ne Na Mg 黒字はNMR 観測不可 Al Si P S Cl Ar K Ca Sc Ti V Cr MnFe Co Ni Cu ZnGaGe As Se Br Kr RbSr Y Zr NbMoTc RuRhPdAgCd In Sn SbTe I Xe Cs Ba La f Ta W Res Ir Pt

More information

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity atom interstitial impurity atom line defect dislocation planar defect surface grain boundary interface

More information

JA-22932R_SI

JA-22932R_SI SUPPLEMENTARY INFRMATIN Wakodecalines A and B, new decaline metabolites isolated from a fungus Pyrenochaetopsis sp. RK10-F058 Toshihiko Nogawa 1, Naoki Kato 2, Takeshi Shimizu 1, Akiko kano 1, Yushi Futamura

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

Al アルミニウム Cu 銅 Fe 鉄 Ni ニ

Al アルミニウム Cu 銅 Fe 鉄 Ni ニ Al アルミニウム 30000 30000 30000 26000 26000 26000 28000 Cu 銅 140000 140000 140000 110000 110000 110000 130000 Fe 鉄 86000 87000 88000 140000 140000 140000 110000 Ni ニッケル 13000 13000 14000 23000 23000 23000

More information

理工学部無機化学ノート

理工学部無機化学ノート 2 周期表と元素の性質の周期性 電子配置 通常の長周期型周期表 非金属元素と金属元素 e Cs Ba f Ta W Re Os Ir Pt Au g Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh s Mt Ds Rg Cn Fl Lv 元素の大半は金属元素である 14 族や 15 族は 周期が下がるにつれ 性質が大幅に変化することが分かる La Ce Pr Nd Pm Sm

More information

Molecule tomic rbital bridied tomic rbital Valence Shell Electron Pair Repulsion Rule Molecular rbital 2 1+ + 1+ 1+ 1+ 2 9+ + 9+ 9+ 9+ 2 1+ 1+ 1s 1s 2 9+ 9+ 2p 2p 9+ () 2 (2p ) 2 (2p ) 2 (2p ) 1 Energ

More information

β

β β 01 7 1 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 s s s d 10 s p s p s p 3 s p 4 s p 5 s p 6 1 1H He 1.01 4.00 3Li 4Be 5B 6C 7N 8O 9F 10Ne 6.94 9.01 10.81 1.01 14.01 16.00 19.00 0.18 3 11Na 1Mg 13Al 14Si

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

Basic Welding 1. welding processes and equipments

Basic Welding  1. welding processes and equipments オーステナイト FCC: 面心立方格子 Face Centered Cubic = 最密 (closed pack)! α,δ- フェライト BCC : 体心立方格子 Body Centered Cubic A1 変態温度 (A1 変態線 ) A3 変態温度 (A3 変態線 ) 変形 = 転位の動き 最大せん断応力方向 刃状転位 変形 = 転位の動き 最大せん断応力方向 刃状転位 粒界 鉄鋼材料の熱処理

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

CPT2L1Z1J154.indd

CPT2L1Z1J154.indd 要点学習化学変化と原子分子 1 1 30 分分解, 物質のしくみ CPT2L1-Z1J1-01 要点 要点を読んで重要なポイントを確認しましょう 分解 1 分解 物質そのものが 性質が異なる別の物質に変わる変化を() といいます 1 種類の物質が2 種類以上の別の物質に分かれる化学変化をといいます 加熱により起こる分解をとくにといい 電流を流すことにより起こる分解をとくに といいます 2 炭酸水素ナトリウムを熱分解する実験

More information

JAJP

JAJP Agilent 7500ce ORS ICP-MS Glenn Woods Agilent Technologies Ltd. 5500 Lakeside, Cheadle Royal Business Park Stockport UK Agilent 7500ce ICP-MS 5 7500ce (ORS) 1 ORS 7500ce ORS ICP-MS ( ) 7500 ICP-MS (27.12

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp April 30, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 260 Today s Lecture: Itinerant Magnetism 60 / 260 Multiplets of Single Atom System HC HSO : L = i l i, S = i s i, J = L +

More information

物理化学I-第12回(13).ppt

物理化学I-第12回(13).ppt I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)

More information

スライド 1

スライド 1 High-k & Selete 1 2 * * NEC * # * # # 3 4 10 Si/Diamond, Si/SiC, Si/AlOx, Si Si,,, CN SoC, 2007 2010 2013 2016 2019 Materials Selection CZ Defectengineered SOI: Bonded, SIMOX, SOI Emerging Materials Various

More information

CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COO

CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COO CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COOH COOH COOH COO - CH 2 NH + + CH 2 NH COO - COO - COO

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

新規な金属抽出剤

新規な金属抽出剤 新規な金属イオン抽出剤 (MIDA) 貴金属の簡便な回収法に利用 日本原子力研究開発機構 基礎工学研究センター 佐々木祐二 原子力機構では使用済み燃料中の有用金属の回収を目的として 様々な分離技術の開発を行っています 発電前発電後 (An, 含む ) せん断 溶解分離 U, Pu 精製 U 精製 再処理工場へ ウラン燃料 Pu 精製 核変換 高レベル廃液 燃料再処理 (PUREX) 中間貯蔵 U,

More information

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO 1 [1]. Zn + 2 H + Zn 2+,. K Ca Na Mg Al Zn Fe Ni Sn Pb H Cu Hg Ag Pt Au H (H + ),,. [2] ( ) ( ) CO 2, S, SO 2, NH 3 () + () () + () FeS Fe S ( ) + ( ) ( ) + ( ) 2 NH 4 Cl + Ca(OH) 2 Ca O + 2 NH 3,.,,.,,.,.

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

Gaussian09ユーザーマニュアル

Gaussian09ユーザーマニュアル 目次 1 Gaussian09 について... 2 2 Gaussian09 インストール概要... 3 2.1 UNIX/Linux バイナリコード版のインストール... 3 2.2 UNIX/Linux ソースコード版のインストール... 3 3 Gaussian09 実行環境... 4 3.1 環境設定ファイル... 4 3.2 ユーザー作成... 4 4 Gaussian09 実行方法...

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 神奈川県川崎市川崎区殿町三丁目

登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 神奈川県川崎市川崎区殿町三丁目 登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS0061 1995 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 210-0821 神奈川県川崎市川崎区殿町三丁目 25 番 20 号法人番号 7010005018674 研究開発課 Tel: 044-589-5494

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

4 1 Ampère 4 2 Ampere 31

4 1 Ampère 4 2 Ampere 31 4. 2 2 Coulomb 2 2 2 ( ) electricity 2 30 4 1 Ampère 4 2 Ampere 31 NS 2 Fleming 4 3 B I r 4 1 0 1.257 10-2 Gm/A µ 0I B = 2πr 4 1 32 4 4 A A A A 4 4 10 9 1 2 12 13 14 4 1 16 4 1 CH 2 =CH 2 28.0313 28 2

More information

リサイクルデータブック2017

リサイクルデータブック2017 AppendixEU SDGs2159EU 21512UNEPOECD2165G7 2165 214 Appendix 1 EU 2 EU EU( EU EU EU EU 3 217 i CONTENTS i 1 214 1 214 2 1 4 2 2 6 3 3 6 4 214 7 4 5 9 6 214 9 5 7 1 8 214 1 9 11 1 214 11 11 214 11 6 6.1

More information

untitled

untitled 254nm UV TiO 2 20nm :Sr 5 Ta 4 O 15 3 4 KEY-1 KEY-2 (Ti,Nb,Ta) 5 KEY-1 KEY-2 6 7 NiO/ Sr 2 Ta 2 O 7 mmol h -1 g -1 20 15 10 5 H 2 O 2 H 2 O 2 0 0 2 4 6 8 10 12 NiO/Sr 2 Ta 2 O 7 The synthesis of photocatalysts

More information

大規模共有メモリーシステムでのGAMESSの利点

大規模共有メモリーシステムでのGAMESSの利点 Technical white paper GAMESS GAMESS Gordon Group *1 Gaussian Gaussian1 Xeon E7 8 80 2013 4 GAMESS 1 RHF ROHF UHF GVB MCSCF SCF Energy CDFpEP CDFpEP CDFpEP CD-pEP CDFpEP SCF Gradient CDFpEP CDFpEP CDFpEP

More information

資料4 小型電気電子機器リサイクル制度及び使用済製品中の有用金属の再生利用について

資料4 小型電気電子機器リサイクル制度及び使用済製品中の有用金属の再生利用について 資料 4 小型電気電子機器リサイクル制度及び使用済製品中の有用金属の再生利用について 環境省大臣官房廃棄物 リサイクル対策部 小型電気電子機器 審議会の検討対象としては 基本的には 家電リサイクル法の対象品目以外の全ての電気電子機器を想定 このうち 基板等有用金属を高濃度で含む部品を有していること 比較的小型で他品目と同時に一括での回収が可能なこと 3 現時点でリサイクルされていないもの を条件として検討対象となる具体的な品目を特定していく予定

More information

リサイクルデータブック2016

リサイクルデータブック2016 AppendixEU SDGs2159EU 21512UNEPOECD2165G7 2165 213 Appendix 1 EU 2 EU 3 215 i CONTENTS i 1 213 1 213 2 1 4 2 2 6 3 3 6 4 213 7 4 5 9 6 213 9 5 7 1 8 213 1 9 11 1 213 11 11 213 11 6 6.1 12 213 14 6.2 13

More information

Agilent 7900 ICP-MS 1 1 Ed McCurdy 2 1 Agilent Technologies, Japan 2 Agilent Technologies, UK

Agilent 7900 ICP-MS 1 1 Ed McCurdy 2 1 Agilent Technologies, Japan 2 Agilent Technologies, UK Agilent 7900 ICP-MS 1 1 Ed McCurdy 2 1 Agilent Technologies, Japan 2 Agilent Technologies, UK Na P K Ca Co Cu Sr Cd Ce Cs Tl 11 [1]18 [2] (FAO) (WTO) (Codex) Pb Cd As Sn Pb 0.3 mg/kg Cd 0.4 mg/kg 0.2 mg/kg

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

CH, CH2, CH3êLèkä¥éÛó¶.pdf

CH, CH2, CH3êLèkä¥éÛó¶.pdf CH CH CH 3 CH SFG 1 1 SFG 4 6 7 SFG 13 14 3-1 16 4-18 1 4 3 GF 8 4 CH 3 C 3v 31 CH CH c CH c µ c α c α cc a b CH α aa = α bb α aa = r α cc µ c α cc α aa CH r CH 1 ( µ c / r CH ) 0 ( α/ r CH ) 0 β 0 = (

More information

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40, 008/0/18 08:40-10:10, 1:50-14:0 14:30-16:00, 16:10-17:40, 1pt A 1911 Leiden Heike Kammelingh-Onnes H.Kammelingh Onnes 1907 He 1 4. K H H c T c T H c Hg:40 mt, Pb:80 mt, Sn:30 mt 100 mt I c H c H c H

More information

HA8000-bdシリーズ RAID設定ガイド HA8000-bd/BD10X2

HA8000-bdシリーズ RAID設定ガイド HA8000-bd/BD10X2 HB102050A0-4 制限 補足 Esc Enter Esc Enter Esc Enter Main Advanced Server Security Boot Exit A SATA Configuration SATA Controller(s) SATA Mode Selection [Enabled] [RAID] Determines how

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

2 6 8 10 12 14 18 20 22 24 26 29 32 34 36 1 40 42 44 39 47 48 50 52 54 56 58 60 62 64 68 70 72 74 76 78 80 67 83 84 86 88 90 92 94 96 97 98 100 102 103 104 106 110 112 114 116 118 120 122 124 126 128 130

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm ZrCr 2 Laves 5633 2009 2 Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harmonic Energy-Volume Phonon-DOS

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Outline 1. 2 / 26 Introduction : (d ) : 4f 1970 ZrZn 2, MnSi, Ni 3 Al, Sc 3 In Stoner-Wohlfarth Moriya-Kawabata (1973) 3 / 26 Properties of Weak

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information