β

Size: px
Start display at page:

Download "β"

Transcription

1 β 01 7

2 s s s d 10 s p s p s p 3 s p 4 s p 5 s p 6 1 1H He Li 4Be 5B 6C 7N 8O 9F 10Ne Na 1Mg 13Al 14Si 15P 16S 17Cl 18Ar K 0Ca 1Sc Ti 3V 4Cr 5Mn 6Fe 7Co 8Ni 9Cu 30Zn 31Ga 3Ge 33As 34Se 35Br 36Kr Rb 38Sr 39Y 40Zr 41Nb 4Mo 43Tc 44Ru 45Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb 5Te 53I 54Xe (98) Cs 56Ba Hf 73Ta 74W 75Re 76Os 77Ir 78Pt 79Au 80Hg 81Tl 8Pb 83Bi 84Po 85At 86Rn (09) (10) () 7 87Fr 88Ra Rf 105Db 106Sg 107Bh 108Hs 109Mt 110Ds 111Rg 11Cn 113Uut 114Uuq 115Uup 116Uuh Uuo (3) (6) (61) (6) (66) (64) (77) (68) (81) (7) (85) (84) (89) (88) (9) (94) * 57La 58Ce 59Pr 60Nd 61Pm 6Sm 63Eu 64Gd 65Tb 66Dy 67Ho 68Er 69Tm 70Yb 71Lu (145) ** 89Ac 90Th 91Pa 9U 93Np 94Pu 95Am 96Cm 97Bk 98Cf 99Es 100Fm 101Md 10No 103Lr (7) (37) (44) (43) (47) (47) (51) (5) (57) (58) (59) (6)

3 iii i I I II Hermite f i II Schrödinger Schrödinger Schrödinger Schrödinger Schrödinger

4 iv β Schrödinger Schrödinger Schrödinger Schrödinger Schrödinger Schrödinger Legendre Schrödinger Schrödinger Schrödinger Schrödinger (7.14) III Schrödinger Schrödinger

5 v (9.18) Stern Gerlach Pauli He He He He Ritz Hartree Fock SCF Slater IV SI Born Oppenheimer

6 vi N HOMO LUMO sp sp sp sp π Hückel π V

7 vii A 390 A A. SI A B 393 C 397 C C. Taylor C C C.5 l Hôpital C C.7 Kronecker C C C D 409 D D D.3 Ψ

8 viii E 41 E E E F

9 95 9 Ze(Z = 1,, 3, ) 1 Z Z = 1 Z =, 3 He + Li + He + Li + Coulomb Coulomb Coulomb 9.1 e, r, Z Z = 1 Z =, 3 He + Li Schrödinger Coulomb U(r) Schrödinger [ 1 m e r sin θ ( r Ψ ) + ( sin θ Ψ sin θ r r θ θ ) + 1 sin θ ] Ψ φ + U (r) Ψ = EΨ (9.1) U (r) r

10 Schrödinger Ψ r R(r) θ Θ(θ) φ Φ(φ) Ψ = R (r) Θ (θ) Φ (φ) (9.) (9.) (9.1) 99 [ sin ( θ d r dr )] R dr dr }{{} [ θ, r ] [ sin θ + Θ ( d sin θ dθ )] dθ dθ }{{} [ θ ] [ me r sin θ + ] {E U (r)} } {{ } [ r, θ ] [ 1 = Φ d ] Φ dφ }{{ } [ φ ] (9.3) (9.3) Ψ Schrödinger 4 φ θ r φ φ φ θ r θ r = Φ (φ) m m 49 (4.11) 1 Φ d Φ dφ = m Φ (φ) = 1 e imφ m = 0, ±1, ±, (9.4) π m = 0, ±1, ± Φ m Φ 0 Φ 0 Φ 0 = 1 π (9.5) Φ ±1 = 1 π e ±iφ Φ ± = 1 π e ±iφ (9.6) (9.7) 1 d Φ Φ dφ = m (9.3) Schrödinger [ sin ( θ d r dr )] [ ( sin θ d + sin θ dθ )] + [ m ] [ me r sin ] θ + R dr dr Θ dθ dθ {E U (r)} = 0 1 Φ d Φ dφ = m

11 9.3 Schrödinger 97 ( sin θ d sin θ dθ Θ dθ dθ ( 1 d sin θ dθ ) m Θ sin θ dθ dθ sin θ } {{ } [ θ ] ) m = sin θ R ( d r dr ) m er sin θ dr dr {E U (r)} = 1 ( d r dr ) m er R dr dr {E U (r)} sin θ } {{ } [ r ] θ r θ r (9.8) Θ (θ) l (l + 1) (9.8) ( 1 d sin θ dθ ) m Θ sin θ dθ dθ sin = l (l + 1) (9.9) θ (5.14) (5.18) Legendre l + 1 (l m )! d m Θ l,m (θ) = (l + m )! sin m θ (d cos θ) P m l (cos θ) (9.10) P l (cos θ) = 1 d l ( cos l l! (d cos θ) l θ 1 ) l (9.11) m = 0, ±1, ±,... ± l (9.1) Φ l = 0, 1, Θ l,m Θ 0,0 = 1 (9.13) 3 Θ 1,0 = cos θ Θ 1,±1 = 5 Θ,0 = ( 3 cos θ 1 ) Θ,±1 = 15 4 sin θ cos θ Θ,± = sin θ (9.14) sin θ (9.15) R (r) Θ (θ) = l(l + 1) l(l + 1) 1 ( d r dr ) m er R dr dr {E U (r)} = l(l + 1) (9.16) R (r) U (r) Coulomb U (r) Coulomb U (r) = 1 Ze 4πɛ 0 r ɛ 0 1 R d dr ( r dr dr (9.17) (9.17) (9.16) ) m er ( E + 1 Ze ) = l(l + 1) (9.18) 4πɛ 0 r

12 n = 1,, 3 n l R n,l ( Z a 0 ) 3/ e Zr/a 0 ( ) 3/ ( 1 Z Z ) r e Zr/a 0 a 0 a 0 ( ) 5/ 1 Z re Zr/a 0 6 a 0 ( ) 3/ ) Z ( Za0 r + Z 3 a 0 a r e Zr/3a 0 0 ( ) 5/ ) 4 Z (6r 81 Za0 r e Zr/3a 0 6 a 0 ( ) 7/ 4 Z 81 r e Zr/3a 0 30 a 0 E n = Z m e e 4 8ɛ 0 h n (9.19) ( ) 3 4 (n l 1)! Z R n,l (ρ) = ρ l n 4 [(n + l)!] 3 e ρ L l+1 n+l (ρ) (9.0) a 0 ρ = Z na 0 r, a 0 = 4πɛ 0 m e e (9.1) n = 1,, 3,, l = 0, 1,, n 1 (9.) L l+1 n+l (ρ) Laguerre L β α (ρ) = dβ dρ β L α (ρ) L α (ρ) = e ρ dα dρ α ( ρ α e ρ) (9.3) n = 1,, 3 R n,l (r) 9.1 (9.18) 9.13 Ψ E ( ) 3 4 (n l 1)! Z Ψ n = ρ l n 4 [(n + l)!] 3 e ρ L l+1 n+l (ρ) a 0 }{{} R n,l (ρ) l + 1 (l m )! d m (l + m )! sin m θ (d cos θ) P m l (cos θ) }{{} Θ l,m (θ) 1 e imφ π }{{} Φ m (φ) (9.4)

13 E n = Z m e e 4 8ɛ 0 h n E n = Z e 8πɛ 0 a 0 n (9.5) n = 1,, 3, l = 0, 1,,, n 1 (9.6) m = l, l + 1,, l 1, l a 0 a 0 = ɛ 0h πm e e (9.7) Bohr a 0 = nm Planck h Ψ = R (r) Θ (θ) Φ (φ) (9.1) (9.3) (9.1) Ψ = R Θ Φ [ 1 m e r sin θ ( r RΘΦ ) + ( sin θ RΘΦ ) + 1 sin θ r r θ θ sin θ [ 1 m e r ΘΦ sin θ d ( r dr ) + RΦ d ( sin θ dθ ) + RΘ sin θ dr dr dθ dθ sin θ sin θ R ( d r dr ) + sin θ dr dr Θ 3 (9.3) ] RΘΦ φ + URΘΦ = ERΘΦ Ψ RΘΦ d Φ dφ ] + (U E) RΘΦ = 0 ( d sin θ dθ ) + 1 d Φ dθ dθ Φ dφ + m er sin θ (E U) = 0 (9.8) m er sin θ RΘΦ n l m *1 n Coulomb U 1/r (9.5) 1 (9.5) E n=1 = J ev ev * ev *1 s p s p * J ev A. A.5

14 Balmer λ k = a(k + ) / [ (k + ) 4 ] (a = nm) Balmer Paschen Lyman Brackett Pfund ( 1 1 λ = R m 1 ) n (9.9) Rydberg R Rydberg R = m 1 9. Rydberg hc c = νλ hc hν = R m R hc n (9.30) hν R hc/m R hc/n E n = R hc/n (9.5) 9. E n E 1 Lyman E n E Balmer E n E 3 Paschen E n = R hc/n (9.5) R hc = m e e 4 /(8ɛ 0h ) R hc = m e e 4 /(8ɛ 0h )

15 R hc = m ee Bohr 8ɛ 0 h = (9.31) Bohr Bohr Coulomb e 4πɛ 0 r = m ev r (9.3) Bohr Bohr m e vr m e vr = n (9.33) Bohr *3 r m ev r = n m e v = n m e r e 4πɛ 0 r = n m e r 3 (9.33) m e v (9.3) r = n ɛ 0h 9.3 Bohr πm e e r *3 = n a 0 a 0 = ɛ 0h (9.34) πm e e m e v / U(r) e +e/(4πɛ 0 r ) E = m ev + r = e 8πɛ 0 r e 4πɛ 0 r = e 8πɛ 0 r +e ( e) 4πɛ 0 r dr = m ev e 4πɛ 0 (9.34) [ ] r 1 r (9.3) 1 (9.35) E n = e πm ee 8πɛ 0 n ɛ 0 h (9.35) r = n ɛ 0h πm e e = m ee 4 8ɛ 1 0 h n (9.36) (9.5) Bohr Schrödinger *3 Bohr

16 n, l, m * 4 n n l + 1 l 0 l m m m = 0, ±1, ±, ± l 3 1 0,1,,3 s,p,d,f n =, l = 1 m = 1, 0, 1 3 p p 9.3 n = 1 l = 0 m = 0 1s n = l = 0 m = 0 s l = 1 m = 1 p m = 0 m = 1 n = 3 l = 0 m = 0 3s l = 1 m = 1 3p m = 0 m = 1 l = m = 3d m = 1 m = 0 m = 1 m = 3 s p *4 (9.145) Laguerre (9.119) L(x) n r n l n 1 (5.60) Legendre

17 (9.4) Legendre Laguerre n = 1 l = 0 m = 0 Ψ Ψ = (πa 3 0) 1/ e r/a 0 θ, φ n = 1,, 3 Ψ n,l,m Ψ n,l,m = R n,l Y l,m = R n,l }{{} Θ l,m Φ m }{{} (9.37) R n,l Θ l,m Φ m R n,l n = 1,, 3 R n,l r 0 0 Ψ n,l (n l 1) 3s (n = 3, l = 0) n l 1 = = 9.4 r r + dr P r dr P r Ψ 4 I dv = r sin θdθdφdr Ψ n,l,m (r, θ, φ) dv = R n,l (r) Y l,m (θ, φ) r sin θdθdφdr (9.38) θ φ P r dr P r dr = R n,l (r) r dr π π 0 0 Y l,m (θ, φ) sin θdθdφ (9.39) 9.4 n = 1 3 R n,l (r) Y l,m P r dr = R n,l (r) r dr (9.40) r P r = R n,l (r) r 9.5

18 r r + dr 1s P r r = a R 1,0 (1s) = (Z/a 0 ) 3/ e Zr/a 0 P r P r(1s) = 4 a 3 e r/a0 r 0 (9.41) dp r /dr = 0 dp r(1s) = 4 [ dr a 3 ] e r/a0 r + e r/a0 r 0 a 0 = 8 [ a 3 e r/a0 r r ] + 1 = 0 0 (9.4) 0 a 0 r = 0 r = a 0 P r(1s) *5 P r(1s) r 0 r 0 r 0 a 0 r = a 0 / r > a 0 r = a 0 P r(1s) r = a P r(1s) r 0 a 0 / a 0 a 0 dp r /dr 0 0 P r r r 1s Ψ 1s = e r/a 0 a 3/ 0 } {{ } R 1,0 1 π }{{} Y 0,0 (9.43) *5 P r = R n,l (r) r P r r = 0 P r = 0

19 r F F = π π r sin θdθdφdrψ ˆF Ψ (9.44) ˆr r Ψ 1s Ψ = Ψ θ φ θ φ π 0 sin θdθ π 0 dφ = 4π (1/ π) [ r = e 0] r/a r 3 dr (9.45) 0 a 3/ 0 r = 4 a x n e ax dx = n! (C.74) an+1 r 3 e (/a0)r dr = 4 3! a 3 0 (/a 0 ) 4 = 3 a 0 (9.46) P r r r Bohr Y l,m = Θ l,m Φ m Θ l,m Φ m (9.5) (9.7) (9.13) (9.15) { l = 0, m = 0 Y 0,0 = Θ 0,0 Φ 0 = 1 4π (9.47) 3 Y 1,0 = Θ 1,0 Φ 0 = 4π cos θ l = 1, m = 0, ±1 3 Y 1,±1 = Θ 1,±1 Φ ±1 = sin θe±iφ 8π 5 ( Y,0 = Θ,0 Φ 0 = 3 cos θ 1 ) 16π 15 l =, m = 0, ±1, ± Y,±1 = Θ,±1 Φ ±1 = sin θ cos θe±iφ 8π 15 Y,± = Θ,± Φ ± = 3π sin θe ±iφ (9.48) (9.49) m 0 Y l,m 50 Y 1,1 Y 1, 1 Y 1,1 Y 1, 1 ( ) 1 (Y 1,1 + Y 1, 1 ) = 1 3 8π sin θeiφ + 3 sin θe iφ 8π = 1 3 8π sin θ ( e iφ + e iφ) 3 = sin θ cos φ 4π 3 = 4π x r (C.54) (8.1) (9.50)

20 / 1/ i ( 1 (Y 1,1 Y 1, 1 ) = 1 ) 3 3 i i 8π sin θeiφ sin θe iφ 8π = 1 3 8π sin θ ( e iφ e iφ) 1 3 8π 3 = sin θ sin φ 4π 3 = 4π y r (C.55) sin θ (8.) (9.51) x/r y/r x y 1 3 (Y 1,1 + Y 1, 1 ) = 4π x r Y p x 1 3 (Y 1,1 Y 1, 1 ) = i 4π y r Y p y l = 0, 1,, 3 s,p,d,f p x, d z, f xyz l = 0, 1, { Y s Y 0,0 = 1 4π (9.5) 3 3 Y pz Y 1,0 = 4π cos θ = 4π z r Y px (Y 1,1 + Y 1, 1 ) = sin θ cos φ = 4π 4π Y py (Y 1,1 Y 1, 1 ) = sin θ sin φ = i 4π 4π Y dz Y,0 = Y dyz 1 (Y,1 Y, 1 ) = i Y dxy 1 (Y, Y, ) = i 5 ( 3 cos θ 1 ) 5 = 16π 16π Y dzx 1 15 (Y,1 + Y, 1 ) = 16π 15 sin θ sin φ = 16π x r y r ( ) 3 z r r ( ) 15 zx sin θ cos φ = 16π r ( ) 15 yz 16π r Y dx y (Y, + Y, ) = 16π sin θ cos φ = 16π ( xy 16π sin θ sin φ = 16π r x y r ) (9.53) (9.54)

21 p z Y pz a Y pz = a cos θ Y cos θ = θ θ = θ 9.6(a) θ Y l,m r p z cos θ r = cos θ θ = 0 r = 1 θ = π/3 r = 1/ xy 9.6(b) 9.6 p z (a) Y (b) cos θ (a) θ θ Y pz 3 xz Y pz xz xz φ = 0 φ = π φ = 0 xz 1 4 φ = π φ = Y pz xz xz θ Y pz = cos θ (0 θ π/), cos θ (π/ θ π)

22 Y pz = cos θ θ π/ cos θ θ cos θ cos θ 9.9 Y pz { x = Y pz sin θ z = Y pz cos θ Y pz = Y 1,0 = (9.55) 3 cos θ =: a cos θ (9.56) 4π (9.53) θ 0 θ π cos θ + 0 θ π/ π/ θ π 9.9 Y pz

23 θ π/ cos θ 0 cos θ = cos θ Y pz = a cos θ { x = a cos θ sin θ z = a cos (9.57) θ (x, z) x x = a cos θ sin θ (9.57) = a cos θ a(1 cos θ) sin θ = 1 cos θ = a cos θ(a a cos θ) a 1 = z(a z) a cos θ = z ( = z a ) ( a ) + ( x + z a ) ( a ) = (9.58) (x, z) (0, a/) a/ 9.10 π/ θ π 1 ( x + z + a ) ( a ) = (9.59) (0, a/) a/ φ = π Y pz xz xz 9.10(a) φ (b) 9.11 s p 9.10 (a)y pz xz (b)3

24 Y Y R Ψ s p *6 p 9.11 Y s Y p Y pz = cos θ 0 θ π/ *6 s p x x + x z x Y px Y py Y pz V

25 Ψ = R n,l Y l,m n = 1,, 3 R n,l Y l,m n = 1,, 3 n l m R n,l Y l,m = Φ m (φ)θ m,l (θ) ( ) 3/ Z s e Zr/a 1 0 a 0 π 0 0 s 1 ( Z a 0 ) 3/ ( Z ) r e Zr/a 1 0 a 0 π p z 4π cos θ ( ) 5/ 1 Z re Zr/a 0 3 p x 6 a 0 sin θ cos φ 4π ± s 3 p y sin θ sin φ 4π 81 3 ( ) 3/ ) Z (7 18 Za0 r + Z r e Zr/3a 1 0 π a 0 a p z 4π cos θ ( ) 5/ ) 4 Z (6r 81 Za0 r e Zr/3a 0 3 3p x 6 a 0 sin θ cos φ 4π ±1 0 3d z 3 3p y sin θ sin φ 4π 5 ( 3 cos θ 1 ) 16π ±1 ± 15 3d zx sin θ cos φ 16π ( ) 7/ 4 Z 81 r e Zr/3a d yz 30 a 0 sin θ sin φ 16π 3d x y 15 16π sin θ cos φ 3d xy 15 16π sin θ sin φ

26 s 1s Ψ 1s = 1 πa 3 0 e r/a 0 (9.60) 1s 9.13(a) Ψ 1s Ψ 1s r Ψ 1s 9.13(b) Ψ 1s Ψ 1s xy y x 9.13(c) Ψ 1s 1 s 3s R n,l (r) Ψ p p z Ψ pz = 1 3πa 5 0 re r/a 0 cos θ (9.61) 9.14(a) Ψ pz xz Ψ pz 9.14(b) (a) z s (a)ψ 1s Ψ 1s (b)ψ 1s Ψ 1s xy (c)ψ 1s [17] p z 9.14(c) p x p y p z 1 x y z R(r) p (a)ψ pz (b) Ψ pz xz + (c)p x p y p z 1 +

27 9.9 波動関数の形 等高面 d 軌道 4f 軌道 図 9.15 には 5 つある 3d 軌道について各々 1 つの等高面を 図 9.16 には 7 つある 4f 軌道について各々 1 つの等高面を描いた 図 9.15 水素原子の 3d 軌道 それぞれについて等高面の 1 つを描いた 図 9.16 水素原子の 4f 軌道 それぞれについて等高面の 1 つを描いた

28 U = K (9.6) U K (9.4) n = 1 Ψ 1s = (πa 3 0) 1/ e r/a 0 U = Ψ 1s ( e = e 4π ɛ 0 a 3 0 U 4πɛ 0 r 0 ) Ψ 1s dv = 1 e r/a0 rdr = e πɛ 0 a 3 re r/a 0 dr 0 0 = e 1 πɛ 0 a 3 0 (/a 0 ) πa 3 0 π e 4πɛ 0 e r/a0 1 r dv Ψ 1s = 1 e r/a 0 πa 3 0 π sin θdθ dφ 0 } {{ 0 } 4π dv = r dr sin θdθdφ θ φ (C.74) = e 4πɛ 0 a 0 (9.63) K K = H U H (9.5) e /(8πɛ 0 a 0 ) K K = H U = e 8πɛ 0 a 0 ( e 4πɛ 0 a 0 ) = e 8πɛ 0 a 0 (9.64) (9.63) (9.64) U = K Ψ 1s = (πa 3 0) 1/ e r/a x, y, z 89 (8.30) (8.3) [ ( ˆl = 1 sin θ sin θ θ θ ) + 1 sin θ ] φ (9.65)

29 Stern Gerlach Stern Gerlach N S Stern Gerlach 19 * Stern Gerlach *1 19 Schrödinger

30 Stern Gerlach q m d µ µ = q m d (10.1) q l µ µ = ± q m l (10.) ± ± d µ B U = µ B z 10. q m F = q m B z F = U/ z q m U U = F dz = q m Bz 10. z = z q m z = z + d cos θ +q m U = q m B(z + d cos θ) + ( ( q)bz) = (q m d)b cos θ = µb cos θ = µ B 10. B µ B U = µ B F F = U/ z z F z = U z = (µ B) z = µ z z B B z z + µ z z µ z B z z U = µ B µ z z 0 (10.3) B z / z µ z / z z mm < nm Stern Gerlach Stern Herschbach Stern D.R. Herschbach, Molecular Dynamics of Elementary Chemical Reactions (Nobel Lecture), Angew. Chem., Int. Ed. Engl., 6, 11 (1987)

31 10.1 Stern Gerlach 137 z (10.3) µ z / z 0 * (10.3) B z / z µ z z 10.1 z B z / z z B z / z = 0 F z = (a) (b) z z µ z µ z µ µ z µ z 10.3(a) 10.3(b) z 1 *3 s p d K L M N {}}{{}}{{}}{{}}{ (1s) (s) (p) 6 (3s) (3p) 6 (3d) 10 (4s) (4p) 6 (4d) 10 (5s) 1 }{{} K N s 5s l = 0 5s z 116 z l, l+1,, 0,, l * µ z *3 1.3

32 , l l + 1 Stern Gerlach z z l + 1 = l = 1/ l Stern Gerlach Stern Gerlach 5s Uhlenbeck Goudsmit Stern Gerlach N S 5s 1 a b α β 1 *4 10. (9.69) (9.70) ŝ ŝ z ŝ z Γ ŝ Γ = s(s + 1) Γ ŝ z Γ = m s Γ s (10.4) m s (10.5) m s s, s + 1,, s 1, s s + 1 Stern Gerlach s + 1 = s = 1/ m s = ±1/ m s = 1/ α m s = 1/ β (10.5) ŝ z α = 1 ŝ z Γ = m s Γ α ŝ z β = 1 (10.6) β *4 Dirac Pauli 4

33 ŝ ŝ α = 3 ŝ Γ = s(s + 1) Γ 4 α ŝ β = 3 4 β (10.7) 10.1 m s Γ s m s Γ 1/ 1/ α 1/ β α β Y m l α = Y 1/ 1/ l = 1/, m = 1/ (10.8) β = Y 1/ 1/ l = 1/, m = 1/ (10.9) l l = 1/ α β 10.3 Ψ(r) σ Ψ(r, σ) Ψ(r, σ) r σ r σ σ = 1/ σ = 1/ α β α(1/) = 1 α( 1/) = 0 β(1/) = 0 β( 1/) = 1 (10.10) σ r ψ orb Ψ(r, σ) = ψ orb (r) α(σ) + ψ orb (r)β(σ) (10.11) 1 Ψ(r, σ) Ψ(r, σ) dvdσ (10.1) σ α β σ = ±1/ 1 0 f(σ)dσ := f(1/) + f( 1/) (10.13)

34 (a) t = 0 1 t = t 1 (b) t = 0 1 t = t 1 1 t = t 1 1 Ψ(r, σ) dvdσ = Ψ(r, 1/) dv + Ψ(r, 1/) dv (10.14) 1 Ψ(r, σ) dvdσ=1 r σ τ Ψ(τ) dτ = 1 (10.15) (10.13) α(σ) dσ = α(1/) + α( 1/) = = 1 (10.16) β α (σ)β(σ)dσ = α (1/)β(1/) + α ( 1/)β( 1/) = = 0 (10.17) α β α(σ) dσ = 1 β(σ) dσ = 1 α (σ)β(σ)dσ = 0 (10.18) (a) 1 1 Newton 10.4(b) 1 q q = p =

35 10.5 Pauli 141 q p h p p = m v 1 1 Ψ(τ 1, τ ) Ψ(τ, τ 1 ) Ψ(τ 1, τ ) = e iθ Ψ(τ, τ 1 ) (10.19) e iθ Ψ(τ, τ 1 ) = e iθ Ψ(τ 1, τ ) (10.0) e iθ = ±1 (10.1) (10.19) Ψ(τ 1, τ ) = ±Ψ(τ, τ 1 ) (10.) Fermi Fermi 0 Bose 10.5 Pauli 1s p 1 1 Pauli Pauli194 Pauli Pauli Pauli Pauli 1 1 α β 1 Pauli Fermi 1 *5 φ 1s (1) 1 1s β () β φ 1s (r 1 ) *5 1 1

36 14 10 β (σ ) φ r α β σ Pauli 1s α Pauli 1s α Ψ(1, ) = φ 1s (1)α(1)φ 1s ()α() (10.3) 1 Ψ Ψ (, 1) = φ 1s ()α()φ 1s (1)α(1) (10.3) 1 = φ 1s (1)α(1)φ 1s ()α() = Ψ(1, ) (10.4) Ψ Pauli Fermi Pauli Pauli 10.5., α α(1) α() β β(1) β() 1 α 1 β α(1) β() 1 1 α(1) β() β(1) α() *6 α(1) β() β(1) α() α(1) β() + β(1) α() α(1) β() β(1) α() Pauli 1 α(1) β() + β(1) α() 1 α() β(1) + β() α(1) = α(1) β() + β(1) α() (10.5) α(1) β() β(1) α() 1 α() β(1) β() α(1) [ ] = α(1) β() β(1) α() (10.6) *

37 10.5 Pauli 143 α(1) β() β(1) α() α(1) β() β(1) α() α(1) α() β(1) β() α (1) α () Γ = β (1) β () (10.7) α (1) β () + β (1) α () Γ = α (1) β () β (1) α () (10.8) case I 1s ψ orb = φ 1s (1) φ 1s () (10.9) Pauli = = (10.30) (10.8) Ψ = ψ orb ψ spin = φ 1s (1) φ 1s () [ ] α (1) β () β (1) α () (10.31) 1 1 Ψ [ ] Ψ = φ 1s () φ 1s (1) α () β (1) β () α (1) [ ] = φ 1s (1) φ 1s () α (1) β () β (1) α () } {{ } =Ψ = Ψ (10.3) case II 1s s φ 1s (1) φ s () φ s (1) φ 1s () ψ orb,s = φ 1s (1) φ s () + φ s (1) φ 1s () (10.33) ψ orb,a = φ 1s (1) φ s () φ s (1) φ 1s () (10.34) ψ s a symmetryasymmetry (10.8) (10.7)

38 [ ][ ] Ψ S (1, ) = φ 1s (1)φ s () + φ s (1)φ 1s () α(1)β() β(1)α() α(1)α() [ ] Ψ T (1, ) = φ 1s (1)φ s () φ s (1)φ 1s () β(1)β() [ ] α(1)β() + β(1)α() (10.35) (10.36) (10.36) (triplet) T Ψ (10.35) (singlet) S Ψ (10.7) (10.8) α (1) α () =: Γ αα Γ = β (1) β () =: Γ ββ (10.37) 1 ] [α (1) β () + β (1) α () =: Γ αβ+ Γ = 1 ] [α (1) β () β (1) α () =: Γ αβ (10.38) Γ αα = α (1) α () Γ αβ = 1 [α (1) β () β (1) ] α () Γ αα dσ 1 dσ = α (σ 1 )α (σ )α(σ 1 )α(σ )dσ 1 dσ = α (σ 1 )α(σ 1 ) dσ 1 α (σ )α(σ ) dσ }{{}}{{} = α(σ 1 ) = α(σ ) = 1 1 = 1 (10.18) (10.39) Γ αβ dσ 1 dσ = 1 [ ] α (σ 1 ) β (σ ) β (σ 1 ) α (σ )][ α(σ 1 ) β(σ ) β(σ 1 ) α(σ ) dσ 1 dσ = 1 α (σ 1 )α(σ 1 )β (σ )β(σ )dσ 1 dσ 1 α (σ 1 )α(σ )β (σ )β(σ 1 )dσ 1 dσ 1 α (σ )α(σ 1 )β (σ 1 )β(σ )dσ 1 dσ + 1 α (σ )α(σ )β (σ 1 )β(σ 1 )dσ 1 dσ = 1 α (σ 1 )α(σ 1 )dσ 1 β (σ )β(σ )dσ 1 α (σ 1 )β(σ 1 )dσ 1 α(σ )β (σ )dσ 1 α(σ 1 )β (σ 1 )dσ 1 α (σ )β(σ )dσ + 1 β (σ 1 )β(σ 1 )dσ 1 α (σ )α(σ )dσ = = 1 (10.18) (10.40) (10.37) (10.38)

39 He 9 Schrödinger He 1 Schrödinger Schrödinger He He dτ dv dτ dv Kepler *1 * *1 [ 1 ] [ ] [ 3 ] * kg

40 He / Ĥ 0 Ĥ0 ψ (0) E (0) Ĥ 0 ψ (0) = E (0) ψ (0) (11.1) 0 0

41 Ĥ ψ 0 E 0 Ĥψ 0 = E 0 ψ 0 1 ϕ E ϕ / E ϕ = ϕ Ĥϕdτ ϕ ϕdτ (11.5) E ϕ Rayleigh E 0 E ϕ E ϕ E 0 ϕ = ψ 0 Slater STO ϕ r n 1 e ζr Gauss GTO ϕ x i y j z k e αr STO GTO 1. ϕ Ĥ {ψ n} ϕ = n c nψ n Ĥ ( ) Ĥ c n ψ n c n ψ n dτ n n m n E ϕ = ( ) c n ψ n c n ψ n dτ n n c nc m ψ nĥψ mdτ c nc m ψne m ψ m dτ c n E n n m n m n = = = c nc m ψnψ m dτ c n c n *3 n n (11.6) *3 1 P n = Z X Ĥ X Z c n ψ n c n ψ n dτ = (c 1ψ1 + c ψ) Ĥ (c 1 ψ 1 + c ψ ) dτ n=1 n=1 Z Z Z Z = c 1 c 1 ψ 1Ĥψ 1dτ + c 1 c ψ 1Ĥψ dτ + c c 1 ψ Ĥψ 1dτ + c c ψ Ĥψ dτ {z } {z } = P m=1 c 1 c R m ψ 1 Ĥψ m dτ = P m=1 c c R m ψ Ĥψ m dτ X Z X Z X X Z = c 1c m ψ 1Ĥψ mdτ + c c m ψ Ĥψ mdτ = c nc m ψ nĥψ mdτ m=1 m=1 n=1 m=1

42 15 11 He E n Ĥ ψ n E 0 E n E 0 c n E n c n E 0 c n c n E n E 0 c n n n n c n E n n E 0 c n (11.7) c n n n (11.6) E ϕ ϕ E ϕ E 0 1 d ψ (x) m dx = Eψ (x) (11.8) ( nπ ) ψ n = a sin a x, E n = n π ma n = 1,, 3, (11.9) 36 (11.8) x = 0 x = a 0 0 < x < a 0 ϕ = Ax(a x) A (11.30) ϕ = p /a sin (πx/a) ϕ = Ax(a x) ϕ = Ax(a x) Ĥ = ( /m)(d /dx ) (11.5) x

43 E ϕ = = ϕĥϕdx / a 0 ϕ dx Ax(a x) ( d ) m dx Ax(a x)dx = m A a = m ( A ( ) ax x ) dx = A 0 m = A ( ) a 3 m a3 = A ( ) a 3 3 m 6 a a 0 [ a x 1 ] a 3 x3 0 a = A x (a x) dx = A ( x 4 ax 3 + a x ) dx 0 0 [ 1 = A 5 x5 a 1 4 x4 + a 1 ] a ( ) a 3 x3 = A E ϕ x(a x) d ( ax x ) } dx dx {{} = (11.31) (11.3) E ϕ = A a 3 /6m A a 5 /30 = ( 10 π ) π ma = π ma }{{} E 1 (11.33) E ϕ = Ax(x a) ϕ = Ax(a x) ϕ = Ax p (a x) p p p = E

44 He 11.3 He He He 11.4 ) Ĥ(1, ) = ( 1 Ze + ( m e 4πɛ 0 r 1 m e Ze 4πɛ 0 r ) + e 4πɛ 0 r 1 (11.34) 1 1 He e /(4πɛ 0 r 1 ) 11.4 He Z = Z Z He N Ĥ(1, ) = Ĥ(1) + Ĥ() Ĥ(1)Φ(1) = E 1Φ(1), Ĥ()Φ() = E Φ() Ĥ(1, ) ψ(1, ) ψ(1, ) = Φ(1)Φ() E(1, ) = E 1 + E

45 11.6 He He He ϕ = 1 π ( ) 3 Z e (Z/a 0)(r 1 +r ) a 0 (11.5) He ( Ĥ(1, ) = ( 1 + ) e ) + e (11.53) m e 4πɛ 0 r 1 r 4πɛ 0 r Z Z E ϕ = ϕ Ĥϕdτ Z ϕ ϕdτ ϕ He (11.53) (11.5) ϕ Ĥ(1, ) ( Ĥ 0 (1, ) = ( 1 + ) Ze ) m e 4πɛ 0 r 1 r (11.54) Ĥ(1, ) Ĥ0(1, ) e /(4πɛ 0 r 1 ) e Ze Ĥ(1, ) Ĥ0(1, ) ( Ĥ(1, ) = Ĥ0(1, ) + Ze ) ( e ) + e 4πɛ 0 r 1 r 4πɛ 0 r 1 r 4πɛ 0 r 1 ( = Ĥ0(1, ( Z)e 1 ) + 1 ) + e 4πɛ 0 r 1 r 4πɛ 0 r 1 }{{} Ĥ (1,) = Ĥ0(1, ) + Ĥ (1, ) Ĥ (1, ) (11.55) E ϕ = ϕ Ĥϕdτ ] = ϕ Ĥ 0 (1, ) + Ĥ (1, ) ϕdτ = ϕ Ĥ 0 (1, )ϕdτ + ϕ Ĥ (1, )ϕdτ } {{ } } {{ } =E 0 =E (11.55) = E 0 + E E 0 E (11.56)

46 He (11.40) E 0 = Z E 1s = Z e /(4πɛ 0 a 0 ) E E E = ϕ Ĥ (1, )ϕdτ [ ( = ϕ ( Z)e ) ] + e ϕdv 4πɛ 0 r 1 r 4πɛ 0 r 1 [ ( Z)e = ϕ 1 ϕdv + ϕ 1 ] ϕdv + e 4πɛ 0 r 1 r 4πɛ 0 ( ( Z)e Z = + Z ) + 5Ze 4πɛ 0 a 0 a 0 3πɛ 0 a 0 ϕ 1 r 1 ϕdv Ĥ (1, ) ( Z)Ze = + 5Ze (11.57) πɛ 0 a 0 3πɛ 0 a ϕ 1 r 1 ϕdv = [ ( ) 3 1 Z e (Z/a 0)(r 1 +r )] π a 0 1 r 1 [ ( ) 3 1 Z e (Z/a 0)(r 1 +r )] dv π a 0 = 1 ( ) 6 Z e (Z/a 0 )(r 1 +r ) π dv 1 dv a 0 r 1 = 1 ( ) 6 Z e (Z/a 0 )r 1 π r a 0 r 1dr 1 sin θ 1 dθ 1 dφ 1 e (Z/a 0)r rdr sin θ dθ dφ 1 = 1 π ( Z a 0 ) 6 = 1 π ( Z a 0 ) 6 r 1 e (Z/a 0)r 1 dr 1 sin θ 1 dθ 1 } {{ } dφ 1 }{{} π dv re (Z/a 0)r dr sin θ dθ dφ } {{ }}{{} π 1! (Z/a 0 ) 4π! (Z/a 0 ) 3 4π = Z (C.74) (11.58) a 0 E ϕ = E 0 + E = Z e ( Z)Ze + 5Ze 4πɛ 0 a 0 πɛ 0 a 0 3πɛ 0 a ( 0 = e Z + 7 ) 4πɛ 0 a 0 8 Z (11.57) (11.59) E/ Z = 0 Z ( E Z = e Z + 7 ) = 0 Z = 7 4πɛ 0 a (11.60) (11.59) E = 77.5 ev ev ev

47 171 1 He 1.1 Hartree Fock SCF H He n n Ψ(1,,, n) H He n Ψ(1,,, n) 1 φ 1 (1)φ () φ n (n) 11 φ i (i) i r ij Ψ(1,,, n) 1 φ 1 (1)φ () φ n (n) *1 1 Hartree Slater 1 Hartree Hartree 1 n Ψ(r 1, r,, r n ) = φ 1 (r 1 )φ (r ) φ n (r n ) (1.1) Hartree φ i (r i ) 1 n = Hartree (1.1) Ψ(r 1, r ) = φ 1 (r 1 )φ (r ) (1.) r 1 r Ψ(r, r 1 ) = φ 1 (r )φ (r 1 ) (1.3) *1

48 17 1 Ψ(r 1, r ) = Ψ(r, r 1 ) Hartree Slater Slater ψ 1 (τ 1 ) ψ 1 (τ ) ψ 1 (τ n ) Ψ(τ 1, τ,, τ n ) = 1 n! ψ (τ 1 ) ψ (τ ) ψ (τ n ) ψ n (τ 1 ) ψ n (τ ) ψ n (τ n ) (1.4) Slater ψ i (τ j ) ψ i (τ j ) = φ i (r j ) α(σ j ) ψ i (τ j ) = φ i (r j ) β(σ j ) n = (1.4) Ψ(τ 1, τ ) = 1 ψ 1 (τ 1 ) ψ 1 (τ ) ψ (τ 1 ) ψ (τ ) = 1 ) (ψ 1 (τ 1 )ψ (τ ) ψ 1 (τ )ψ (τ 1 ) (1.5) (1.6) (1.5) τ 1 τ Ψ(τ, τ 1 ) = 1 ψ 1 (τ ) ψ 1 (τ 1 ) ψ (τ ) ψ (τ 1 ) = 1 (ψ 1 (τ )ψ (τ 1 ) ψ 1 (τ 1 )ψ (τ ) = 1 ) (ψ 1 (τ 1 )ψ (τ ) ψ 1 (τ )ψ (τ 1 ) ) (1.7) = Ψ(τ 1, τ ) (1.6) (1.8) Slater 1s α Pauli Slater Slater ψ 1 = φ 1s αψ = φ 1s α (1.9) (1.9) (1.4) Ψ(τ 1, τ ) = 1! φ 1s (r 1 ) α(σ 1 ) }{{} ψ 1 (τ 1 ) φ 1s (r 1 ) α(σ 1 ) }{{} ψ (τ 1 ) φ 1s (r ) α(σ ) }{{} ψ 1 (τ ) φ 1s (r ) α(σ ) }{{} ψ (τ ) = 1 (φ 1s (r 1 )α(σ 1 ) φ 1s (r )α(σ ) φ 1s (r )α(σ ) φ 1s (r 1 )α(σ 1 ) ) (1.10) = 0 (1.11)

49 1.1 Hartree Fock SCF Pauli Slater 0 0 (1.5) (1.7) (1.5) (1.7) (1.10) 1 Pauli Slater 1.1. Hartree Hartree Hartree n * n n e Ĥ = Ĥ c (i) + Ĥc(i) = i Ze 4πɛ i=1 i>j 0 r ij m e 4πɛ }{{} 0 r }{{ i }}{{} Coulomb (1.1) Ĥc(i) i i Coulomb n Ĥ c (i) i 1 i j Coulomb Hartree Ψ(r 1, r,, r n ) = φ 1 (r 1 )φ (r ) φ i (r i ) φ n (r n ) (1.13) φ i (r i ) E = Ψ ĤΨdτ = n i=1 Ψ Ĥ c (i)ψdτ + n i>j Ψ e 4πɛ 0 r ij Ψdτ (1.14) 1 1 n i=1 [ [ ] Ψ Ĥ c (i)ψdτ = φ 1(r 1 )φ (r ) φ i (r i ) φ n(r n )]Ĥc (i) φ 1 (r 1 )φ (r ) φ i (r i ) φ n (r n ) dv = φ 1(r 1 )φ 1 (r 1 )dv 1 φ i (r i )Ĥc(i)φ i (r i )dv i φ n(r n )φ n (r n )dv n }{{}}{{} =1 =1 = φ i (r i )Ĥc(i)φ i (r i )dv i (1.15) * P i>j 08

50 (a) (b)hartree Hartree (a) Schrödinger Hartree 1 Schrödinger 1 i 1 Ψ e [ ] Ψdτ = φ 4πɛ 0 r 1(r 1 )φ (r ) φ i (r i ) φ e [ ] n(r n ) φ 1 (r 1 )φ (r ) φ i (r i ) φ n (r n ) dv ij 4πɛ 0 r ij = φ 1(r 1 )φ 1 (r 1 )dv 1 φ i (r i )φ e j (r j ) φ i (r i )φ j (r j )dv i dv j 4πɛ }{{} 0 r ij =1 φ n(r n )φ n (r n )dv n }{{} =1 = φ i (r i )φ e j (r j ) φ i (r i )φ j (r j )dv i dv j (1.16) 4πɛ 0 r ij i j 1 n n E = φ i (r i )Ĥc(i)φ i (r i )dv i + i=1 i>j e φ i (r i )φ j (r j ) φ i (r i )φ j (r j )dv i dv j (1.17) 4πɛ 0 r ij φ i φ E *3 n e Ĥ φ j (r j ) c (i) + dv j φ i (r i ) = E i φ i (r i ) i = 1,,, n (1.18) 4πɛ 0 r ij j( i) n Hartree φ j (r j ) dv j φ j j dv j i e φ j (r j ) dv j Coulomb *4 Hartree n *3 177 *7 *4

51 1. Slater E 1 E i E E i E, E i E h ev E h 13 E E 1s E s E p E 3s E 3p E 3d E 4s E 4p H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

52 n n = 1,, 3, 4, K L M N n l nl nl n m(= l, l + 1,, l 1, l) m s (= ±1/) (l + 1) n, l n l n =, l = 1 3 (p) 3 * s < s < p < 3s < 3p <(4s, 3d) < 4p <(5s, 4d) < 5p <(6s, 4f, 5d) < 6p <(7s, 5f, 6d) 1.3. Pauli 3. ns np nd nf ns 0 np nd nf Hund * 11 Hund 1 Hund (1.34) n nl K L (s) (1s) (s) (p) 6 *10 p 3 l (p) 3 [1] [8] [9] p 3 Landau[4] Pauling[19] *11 Hund 0

53 s 5d 4f 6s Ba 5d 1 La 4f 1 Ce Hund Hund (c) (a) (b) 1 Coulomb 1.4 Hund (a) (b) (c) Hund 1 1.4(b) (a) Hartree Fock

54 K L M N O 1s s p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 1 H 1 S 1 1/ He 1 S 0 3 Li 1 S 1/ 4 Be 1 S 0 5 B 1 P 1/ 6 C 7 N 3 3 P 0 S 3/ 8 O 4 3 P 9 F 5 P 3/ 10 Ne 6 1 S 0 11 Na 6 1 S 1/ 1 Mg 6 1 S 0 13 Al 6 1 P 1/ 3 14 Si 6 15 P P 0 S 3/ 16 S P 17 Cl 6 5 P 3/ 18 Ar S 0 19 K S 1/ 0 Ca S 0 1 Sc D 3/ Ti F 3 V F 3/ 4 Cr S 3 5 Mn S 5/ 6 Fe D Co Ni F 9/ F 4 9 Cu S 1/ 30 Zn S 0 31 Ga P 1/ 3 Ge P 0 33 As S 3/ 34 Se P 35 Br P 3/ 36 Kr S 0 37 Rb S 1/ 38 Sr S 0 39 Y D 3/ 40 Zr F 41 Nb D 1/ 4 Mo S 3 43 Tc S 5/ 44 Ru F Rh Pd F 9/ S 0 47 Ag S 1/ 48 Cd S 0 49 In P 1/ 50 Sn P 0 51 Sb S 3/ 5 Te P 53 I P 3/ 54 Xe S 0

55 K L M Bk (5f) 8 (6d) 1 (5f) 9 Cf (5f) 9 (6d) 1 (5f) 10 N O P Q 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 55 Cs S 1/ 56 Ba S 0 57 La D 3/ 58 Ce H 4 59 Pr I 60 Nd I 4 61 Pm H 6 Sm F 0 63 Eu S 7/ 64 Gd D 65 Tb H 17/ 66 Dy I 67 Ho I 68 Er H 69 Tm F 7/ 6 70 Yb S 0 71 Lu D 3/ 7 Hf F 73 Ta F 3/ 74 W D 0 75 Re S 5/ 76 Os D 4 77 Ir F 9/ 78 Pt D 3 79 Au S 1/ 80 Hg S 0 81 Tl P 1/ 8 Pb P 0 83 Bi S 3/ 84 Po P 85 At P 3/ 86 Rn S 0 87 Fr S 1/ 88 Ra S 0 89 Ac D 3/ 90 Th F 91 Pa U Np L 4 94 Pu Am S 7/ 96 Cm Bk (8) 6 (1) 98 Cf (9) 6 (1)

56 * mol Mayer At 86, 87 Rn Fr Einstein 1 hν 1 W 0 E E = W W (> 0) W *1

57 Be, N, Mg, P (ns) (ns) (np) 3 18 (ns) (np) 6 He (1s)

58 Mendeleev Mayer * * 14 Moseley 1913 Mendeleev 1869 Mendeleev * 15 Mendeleev IA VIIA, VIII, IB VIIB, IUPAC * H Be, Mg * *14 Mendeleev Mendeleev Chancourtois Newlands Odling Meyer 4 *15 Mendeleev Mendeleev Ge *16 Mendeleev Li F 7 *17 Ca, Sr, Ba

59 f 5f 1 Sc 39Y 8,9,10 8,9, H 1s He (1s) s p 10 Ne (s) (p) 6 3s 3p 18 Ar (3s) (3p) 6 4s 0 Ca 4s 3 V 3d (3d) 3 (4s) 4 Cr (3d) 4 (4s) (3d) 5 (4s) 1 5 Mn (3d) 5 (4s) 3d 1 8 Ni (3d) 8 (4s) 9 Cu (3d) 9 (4s) (3d) 10 (4s) 1 30 Zn (3d) 10 (4s) 4s 3d 4p 1 Sc 9 Cu Y 47 Ag Ce 4f 57La 71 Lu 57 La 79 Au Pa 5f 89 Ac 103 Lr 93 Np 9 U 38 U 39 U 39 Np β 39 Pu Uus

60 He (1s) Be (1s) (s) Ne (1s) (s) (p) 6 B (1s) (s) (p) 1 C (1s) (s) (p) 1 1 C (1s) (s) (p) p 6 C 6 C = 15 1 * ˆl ŝ * 19 n ˆL = i ˆli 31 (.13) (1.41) Ŝ = i ŝ i (1.4) * 0 l ˆ Y l,m = l(l + 1) Y l,m l = 0, 1,, n 1 (1.43) ˆlz Y l,m = m l Y l,m m = l l, l + 1,, l 1, l ŝ Γ = s(s + 1) Γ s= 1/ ŝ z Γ = m s Γ m = s 1/, 1/ (1.44) L, M L, S, M S L ˆ : L(L + 1) ˆL z : M L M L = L, L + 1,, L 1, L (1.45) *18 9 * *0 ˆl, ˆl z (9.69) (9.70) (9.69) (9.70) Ψ Ψ = R n,l (r) Y l,m (θ, φ) ˆl, ˆl z r Y l,m (θ, φ) ˆl, ˆl z (10.4) (10.5)

61 ˆ S : S(S + 1) Ŝ z : M S M S = S, S + 1,, S 1, S (1.46) z M L z m l z M S M L = i (m l ) i M S = i (m s ) i (1.47) n ˆF (τ 1, τ,, τ n ) ˆL z Ŝz ˆL n z (r 1, r, r n ) = ˆF (τ 1, τ,, τ n ) = ˆf(τ i ) i=1 Ŝ z (σ 1, σ,, σ n ) = n ˆlz (r i ) i=1 n ŝ z (σ i ) i=1 (1.48) ˆF Ψ = ψ 1 ψ ψ n ψ 1, ψ,, ψ n n n Slater ψ 1 (τ 1 ) ψ 1 (τ ) ψ 1 (τ n ) n ˆF Ψ(τ 1, τ,, τ n ) = ˆf(τ i ) 1 ψ (τ 1 ) ψ (τ ) ψ (τ n ) i=1 n! ψ n (τ 1 ) ψ n (τ ) ψ n (τ n ) ˆf(τ 1 )ψ 1 (τ 1 ) ψ 1 (τ ) ψ 1 (τ n ) ψ 1 (τ 1 ) ˆf(τ )ψ 1 (τ ) ψ 1 (τ n ) = 1 ˆf(τ 1 )ψ (τ 1 ) ψ (τ ) ψ (τ n ) n! ψ (τ 1 ) ˆf(τ )ψ (τ ) ψ (τ n ).... n! ˆf(τ 1 )ψ n (τ 1 ) ψ n (τ ) ψ n (τ n ) ψ n (τ 1 ) ˆf(τ )ψ n (τ ) ψ n (τ n ) ψ 1 (τ 1 ) ψ 1 (τ ) ˆf(τn )ψ 1 (τ n ) + 1 ψ (τ 1 ) ψ (τ ) ˆf(τn )ψ (τ n ) n! ψ n (τ 1 ) ψ n (τ ) ˆf(τn )ψ n (τ n ) = ˆfψ 1 ψ ψ n + ψ 1 ˆfψ ψ n + + ψ 1 ψ ˆfψn (1.49) ˆL z n n m l1, m l,, m ln 1 φ ml1, φ ml, φ mln ˆL z Ψ = ˆl z φ ml1 φ ml φ mln + φ ml1 ˆlz φ ml φ mln + + φ ml1 φ ml ˆl z φ mln = m l1 φ ml1 φ ml φ mln + φ ml1 m l φ ml φ mln + + φ ml1 φ ml m ln φ mln (1.43) = m l1 φ ml1 φ ml φ mln + m l φ ml1 φ ml φ mln + + m ln φ ml1 φ ml φ mln (C.85) ( n = (m l ) i ) φ ml1 φ ml φ mln (1.50) i

62 19 1 ˆL z M L M L = n i (m l) i M S n m s1, m s,, m sn 1 φ ms1, φ ms, φ msn Ŝ z Ψ = ŝ z φ ms1 φ ms φ msn + φ ms1 ŝ z φ ms φ msn + + φ ms1 φ ms ŝ z φ msn = m s1 φ ms1 φ ms φ msn + φ ms1 m s φ ms φ msn + + φ ms1 φ ms m sn φ msn (1.43) = m s1 φ ms1 φ ms φ msn + m s φ ms1 φ ms φ msn + + m sn φ ms1 φ ms φ msn (C.85) ( n = (m s ) i ) φ ms1 φ ms φ msn (1.51) i Ŝz M S M S = n i (m s) i (1.47) 1.6. LS Ĥ, ˆL, ˆL z, ˆ S, Ŝz * 1 III 19 n, L, M L, S, M S Ψ (n, L, M L, S, M S ) Ĥ, ˆL, ˆL z, ˆ S, Ŝz n Ψ(n, L, M L, S, M S ) ˆL z, Ŝz M L, M S (L + 1)(S + 1) Schödinger ĤΨ = EΨ E E = E(n, L, S) (1.5) n L S * n, L, S n S+1 {L} (1.53) n S + 1 S + 1 {L} L L {L} S P D F G H I J K L (L + 1)(S + 1) LS LS * Ĥ, ˆL, ˆL z, Ŝ, Ŝz * 1 n l

63 Ψ(n, L, M L, S, M S ) ˆL z, Ŝz M L, M S (L + 1)(S + 1) ĤΨ (n, L, M L, S, M S ) = EΨ (n, L, M L, S, M S ) (1.54) ˆL ± ˆL ± ĤΨ (n, L, M L, S, M S ) = ˆL ± EΨ (n, L, M L, S, M S ) Ĥ ˆL ± Ψ (n, L, M L, S, M S ) = E ˆL ± Ψ (n, L, M L, S, M S ) ĤΨ (n, L, M L ± 1, S, M S ) = EΨ (n, L, M L ± 1, S, M S ) (1.54) ˆL ± ˆL± Ĥ ˆL± M L ± 1 (1.55) ˆL ± Ĥ ˆL ± [ˆLx, Ĥ ] = [ˆLy, Ĥ ] = (1.55) E Ψ (n, L, M L ± 1, S, M S ) E M L = L, L + 1,, L 1, L E L + 1 ˆL ± Ŝ ± := Ŝx ± iŝy (1.56) (1.54) ˆL ± E S + 1 E (L + 1)(S + 1) Russell Saunders LS Ĥ Coulomb Ĥ ls = i ζ iˆli ŝ i (1.57) * 3 ζ i Z 4 Ĥ ˆL ˆ S L S Ĵ Ĥ, ˆ J, Ĵz LS n Ĵ J n J Ĥls Ĥls LS Ĥls LS *3 B l B l B s µ e E = µ e B µ e l µ e s ζ E = ζsl (1.57)

64 194 1 Russell Saunders J LS n S+1 {L} J (1.58) ˆl ŝ ĵ = ˆl + ŝ (1.59) (1.41) (1.4) n n Ĵ = i ĵ i (1.60) (1.59) (1.45) (1.46) Ĵ Ĵ = ) (ˆli + ŝ i = ˆli + ŝ i (1.60) (1.59) i i i = ˆL + Ŝ (1.41) (1.4) (1.61) Ĵz ˆL z Ŝz Ĵ z = ˆL z Ŝz (1.6) ˆL ˆ S L S ˆ J J L M L ψ L,ML S M S φ S,MS ˆL ψ L,ML = L(L + 1) ψ L,ML ˆLz ψ L,ML = M L ψ L,ML (1.63) Ŝ φ S,MS = S(S + 1) φ S,MS Ŝ z φ S,MS = M S φ S,MS (1.64) Ψ = ψ L,ML φ S,MS Ĵz ) Ĵ z Ψ = (ˆLz + Ŝz ψ L,ML φ S,MS ) ) = φ S,MS (ˆLz ψ L,ML + ψ L,ML (Ŝz φ S,MS (1.6) ˆL z ψ L,ML Ŝz φ S,MS = φ S,MS (M L ψ L,ML ) + ψ L,ML (M S φ S,MS ) (1.63) (1.64) = (M L + M S ) }{{} =:M J Ψ = M J Ψ M J = M L + M S (1.65) Ψ Ĵz (M L + M S ) (1.65) M J = (M L + M S ) M J = (M L + M S ) M L = L, L + 1,, L 1, L M S = S, S + 1,, S 1, S M J L + S M L = L L + 1 L 1 L + M S = S S + 1 S 1 S M J = L S, L S + 1, L S +, L + S, L + S 1, L + S

65 M J = J, J + 1,, J 1, J J L + S J = L + S, L + S 1, J J L = 1 S = 1 M L M S M L = 1, 0, 1 M S = 1, 0, 1 3 M J M J =, 1, 0, 1, 5 M L = M S = M J = M J = (M L, M S ) = (1, 1) M J = 1 (M L, M S ) = (1, 0) (M L, M S ) = (0, 1) M J = 0 (M L, M S ) = (0, 0), ( 1, 1), (1, 1) 3 M L = M S = M J = (M L, M S ) ( 1, 1) ( 1, 0) (0, 0) (1, 0) (1, 1) (0, 1) ( 1, 1) (0, 1) (1, 1) L S M L M S (L + 1)(S + 1) M J J J = L + S J = = M J =, 1, 0, 1, 5 9 J = 1 J = 1 M J = 1, 0, 1 3 J = 8 9 J = 0 M J = J = 3,, 1 L S J = L + S, L + S 1, L + S L = 1 S = 1 L S J L S L = 1 S = 1 J = 0 L + S L S Ĵ1 Ĵ Ĵ Ĵ1 Ĵ J 1 J Ĵ J J = J 1 + J, J 1 + J 1,, J 1 J ˆ J : J(J + 1) J = L + S, L + S 1,, L S Ĵ z : M J M J = M L + M S L = S = 1 J L = M L =, 1, 0, 1, S = 1 M S = 1, 0, 1 M J = M L + M S M J M J = 3,, 1, 0, 1,, 3 7 M J M L M S M J = 3 (M L, M S ) = (, 1) M J = (M L, M S ) = (, 0), (1, 1), (0, ) M J = 1 (M L, M S ) = (, 1), (1, 0), (0, 1) M J = 0 (M L, M S ) = (1, 1), (0, 0), ( 1, 1) M J = 1 (M L, M S ) = (0, 1), ( 1, 0), (, 1) M J = (M L, M S ) = (, 0)

66 196 1 M J = 3 (M L, M S ) = (, 1) 15 M J 3 J 3 J = 3 M J = 3,, 1, 0, 1,, J = J = M J =, 1, 0, 1, 5 3 J = 1 M J = 1, 0, L = S = 1 J J = 3,, 1 J 1 1 = 1 = L S n S+1 {L} J 1 n S + 1 {L} J (1s) 1 (1s) 1 1 n = 1 1 l = 0 s m l = l, l + 1,, l 1, l (1.43) m l = 0 1 M L = (m l ) i = m l M L = 0 i=1 M L = L, L + 1,, L 1, L (1.45) L = S 1 S s = 1/ 1 m s = +1/ m s = 1/ 1 M S = (m s ) i = m s M S = +1/ M S = 1/ i=1 M S = S, S + 1,, S 1, S (1.46) S = 1/ S + 1 = 1 S J = L + S, L + S 1,, L S S = 1/ L = 0 J = 1/ 1 S 1/ 1 n = 1 1 l = 0 s m l = l, l + 1,, l 1, l (1.43) m l = 0 M L M S 1.5 M L M L max M L max = 0

67 M L = L, L + 1,, L 1, L (1.45) L = 0 * 4 1 S M L = 0 [1] M S = 1/ [] M S = 1/ L = 0 S = 1/ 1 S J = L + S, L + S 1,, L S S = 1/ L = 0 J = 1/ 1 S 1/ (M L, M S ) (0, 1/) (0, 1/) LS 1 S 1/ 1.5 (1s) m l = 0 M L = (m l ) i M S = (m s ) i i=1 i=1 [1] 0 1/ 1 S 1/ [] 0 1/ 1 S 1/ n = 1 M L max = 0 L = 0 M L = 0 [1] (M S = 1/) M L = 0 [] (M S = 1/) } S = 1/ J = 1/ 1 S 1/ : (0, 1/) (0, 1/) (0, 1/) (0, 1/) (M L, M S ) (s) 1 (s) 1 S 1/ (1s) 1 (s) 1 (3s) 1 n S 1/ He (1s) He M L M S L = 0, S = S He (1s) m l = 0 M L = (m l ) i M S = (m s ) i i=1 i=1 [1] = 1/ + ( 1/) = S 0 M L M S 0 *4

68 198 1 Li (1s) (s) 1 Li M L M S L = 0, S = 1/ S 1/ 1.7 Li (1s) (s) 1 1s m l = 0 s m l = 0 M L = 3 (m l ) i M S = i=1 [1] (0 + 0) + }{{}}{{} 0 1s s [] (0 + 0) + }{{}}{{} 0 1s s 3 (m s ) i i=1 = 0 1/ + ( 1/) }{{} 1s = 0 1/ + ( 1/) }{{} 1s + 1/ = 1/ S }{{} 1/ s + ( 1/) = 1/ S }{{} 1/ s (p) 1 1 (p) 1 1 n = l = 1 p m l = l, l + 1,, l 1, l (1.43) m l = 1, 0, +1 1 M L = (m l ) i = m l M L = 1, 0, +1 i=1 M L = L, L + 1,, L 1, L (1.45) L = 1 * P P s = 1/ 1 m s = +1/ m s = 1/ 1 M S = (m s ) i = m s M S = +1/ M S = 1/ i=1 M S = S, S + 1,, S 1, S (1.46) S = 1/ S + 1 = P J = L + S, L + S 1, L S L = 1, S = 1/ J = 3/, 1/ P 1/, P 3/ *5 L = 0 L = 1 M L = 1, 0, +1 M L = 1 M L = 1 L = 1 M L = 0 L = 1 M L = 0 L = 0 M L = 0 L = 1 M L = 1, 0, (p) 1 L =

69 n = l = 1 p m l = l, l + 1,, l 1, l (1.43) m l = 1, 0, +1 M L M S 1.8 M L M L max M L max = 1 M L = L, L + 1,, L 1, L (1.45) L = 1 P M L = 1, 0, 1 M L = 1 [5] [6] M S = 1/ M S = 1/ M L = 1 [1] [] M S = 1/ M S = 1/ L = 1 S = 1/ P 1.8 (p) 1 m l M L = i (m l ) i M S = i (m s ) i [1] 1 1/ P [] 1 1/ P [3] 0 1/ P [4] 0 1/ P [5] 1 1/ P [6] 1 1/ P J = L + S, L + S 1, L S L = 1, S = 1/ J = 3/, 1/ P 1/, P 3/ (M L, M S ) (1,1/) (1, 1/) (0,1/) (0, 1/) ( 1,1/) ( 1, 1/) LS P P 3/ P 1/ J n = M L max = 1 L = 1 M L = 1, 0, 1 M L = 1 [1] (M S = 1/) [] (M S = 1/) M L = 0 [3] (M S = 1/) [4] (M S = 1/) M L = 1 [5] (M S = 1/) [6] (M S = 1/) S = 1/ J = 1/, 3/ P : ( 1, 1/) ( 1, 1/) (0, 1/) (0, 1/) (1, 1/) (1, 1/)

70 00 1 C (1s) (s) (p) C (1s) (s) (p) (1s) (s) M L = 0 M S = 0 L = 0 S = 0 J = 0 (p) 1 n = l = 1 p m l = l, l + 1,, l 1, l (1.43) m l = 1, 0, +1 M L = (m l ) i M L =, 1, 0, +1, + Hund 1 18 i=1 M L =, + M L = 1, 0, +1 M L = L, L + 1,, L 1, L (1.45) L = P P s = 1/ m s (1/, 1/) ( 1/, 1/) (1/, 1/) ( 1/, 1/) 4 Hund (1/, 1/) ( 1/, 1/) M S = (m s ) i = 1, 1 M S = S, S + 1,, S 1, S (1.46) i=1 S = 1 S + 1 = 3 3 P J = L + S, L + S 1, L S L = 1, S = 1 J =, 1, 0 3 P, 3 P 1, 3 P (1s) (s) (p) Hund 3 P 15 n = l = 1 p m l = l, l + 1,, l 1, l (1.43) m l = 1, 0, +1 M L M S 1.9 M L M L max M L max = M L = L, L + 1,, L 1, L (1.45) L = D M L =, 1, 0, 1, M L = [1] M S = 0 M L = [15] M S = 0 L = S = 0 S + 1 = 1 1 D J = L + S, L + S 1, L S L =, S = 0 J = 1 D

71 (1s) (s) (p) m l M L = i (m l ) i M S = i (m s ) i [1] 0 1 D [] P [3] 1 0 [4] D, 3 P [5] P [6] P [7] 0 0 [8] D, 3 P, 1 S 0 [9] 0 0 [10] P [11] P [1] 1 0 [13] D, 3 P [14] P [15] 0 1 D (M L, M S ) (, 0) ( 1, 0) (0, 0) (1,0) (,0) LS 1 D M L M L max 1 1 [1] [15] [3] [4] (M L, M S ) (1,0) 1 1 D 1 M L max M L max = 1 M L = L, L + 1,, L 1, L (1.45) L = 1 P M L = 1, 0, 1 M L = 1 [] [5] M S = 1, 1 M L = 1 [11] [14] M S = 1, 1 L = 1 S = 1 S + 1 = 3 3 P J = L + S, L + S 1, L S L = 1, S = 1 J =, 1, 0 3 P, 3 P 1, 3 P 0 (M L, M S ) (1,1) (1,0) (1, 1) (0,1) (0,0) (0, 1) ( 1,1) ( 1,0) ( 1, 1) 3 P 3 P 3 P 1 J M L M L max [7][8][9] 1 M L = 0 M S = 0 L = 0 S = 0 1 S 0 [7][8][9] LS 1 S 0

72 0 1 1 st STEP n = M L max = L = M L =, 1, 0, 1, M L = [1] (M S = 0) M L = [15] (M S = 0) } S = 0, J = 1 D : (, 0) ( 1, 0) (0, 0) (1, 0) (, 0) nd STEP M L max = 1 L = 1 M L = 1, 0, 1, M L = 1 [] (M S = 1) [5] (M S = 1) M L = 1 [11] (M S = 1) [14] (M S = 1) 3 rd STEP S = 1, J =, 1, 0 3 P, 3 P 1, 3 P 0 : (1, 1) (1, 0) (1, 1) (0, 1) (0, 0) (0, 1) ( 1, 1) ( 1, 0) ( 1, 1) (M L, M S ) = (0, 0) 1 L = 0, S = 0 1 S 0 : (0, 0) Hund Hund Hund Hund 1.. L Hund J Ĥ ls = i ζ iˆli ŝ i (1.57) 1 LS Ĥls Ĥ ls = λ ˆLŜ (1.66)

73 * 6 ( ) Ĵ = ˆL + Ŝ = ˆL + ˆLŜ + Ŝ ˆL + Ŝ = ˆL + ˆLŜ + Ŝ ˆL Ŝ (1.67) Ĥls Ĥ ls = λ (Ĵ ˆL Ŝ ) (1.68) λ Ψ(J, M J ) E ls = Ψ (J, M J )ĤlsΨ(J, M J )dτ (1.69) Ψ(J, M J ) J L S Ĵ ˆL Ŝ * 7 Ĥ ls Ψ(J, M J ) = λ [J(J + 1) L(L + 1) S(S + 1)] Ψ(J, M J) (1.70) (1.69) E ls = λ [J(J + 1) L(L + 1) S(S + 1)] (1.71) LS L S J(J + 1) λ λ nl (l + 1) i * 8 λ > 0 i < l + 1 λ = 0 i = l + 1 λ < 0 i > l + 1 (1.7) J J (np) a (nd) b a < 6 b < 10 J J J J 1 (1.71) E ls,j E ls,j 1 = λ [J(J + 1) (J 1)J] = λ J (1.73) J Landé *6 *7 Ĥ ls 11.8 Ψ(J, M J ) 0 Ψ(L, M L, S, M S ) *8

74 n l m (s) 1 (p) 1 (3s) 1 (3p) 1 (3d) (p) 1 P 1/ P 3/. (s) 1 (p) 1 P 1/ J P 1/ P 3/ cm 1 * 9 P 3/ P 1/ (p) 1 6 p 1 J J P 3/ P 1/. S 1/ P 1/ 0.03 cm 1 Lamb *9 cm cm 1 1/(0.365 cm 1 ) =.75 cm cm 1 1 cm 1 = J cm 1

75 SI SI a.u. SI m e = kg e = C Planck = h π = J s 4πɛ SI m e 1 e 1 1 4πɛ 0 4πɛ 0 1 Boh a 0 = ɛ 0h πm e e (SI) Bohr = 4πɛ 0 4π = 4πɛ 0 m e e (π ) πm e e h = π 4πɛ 0 a.u. 1 (a.u.) 4πɛ 0 = 1, = 1, m e = 1, e = 1 (13.1) 1 E 1s = m ee 4 8ɛ 0 h (SI) (9.5) Z = 1, n = 1 = m ee 4 8ɛ 0 (π ) = m ee 4 (4πɛ 0 ) h = π 4πɛ 0 a.u. 1 (a.u.) m e = 1, e = 1, 4πɛ 0 = 1, = 1 (13.)

76 1 13 1/ hartree E h 1E h := E 1s (13.3) l = mrv v = l/(mr) = = m e a 0 a.u. 1 (a.u.) = 1, m e = 1, a 0 = 1 (13.4) 1 = a 0 = /(m e a 0 ) a.u. 1 (a.u.) = 1, m e = 1, a 0 = 1 (13.5) SI SI a m m e kg e C J s 4πɛ F m 1 E 1s J 1 m e a 0 a 0 / (m e a 0 ) ms s Ĥ = e m e 4πɛ 0 r (SI) Ĥ = 1 1 r (a.u.) (13.6) ψ 1s = 1 πa 3 0 e r/a 0 (SI) ψ 1s = 1 π e r (a.u.) (13.7) *1 *1 4πɛ 0

77 13 14 H + 1 Coulomb Born Oppenheimer 14.1 Born Oppenheimer * Born Oppenheimer Born Oppenheimer * R R *1 F a = F/m p a = F/m e (F/m p )/(F/m e ) = m e /m p A.1 A.1 1/1000 * Born Oppenheimer

78 ϕ ϕ MO a, b R a, b r a, r b 14.1 ϕ φ a φ b Ĥ = 1 1 r a 1 r b + 1 R (14.1) a a Coulomb φ a b φ b ϕ = c a φ a + c b φ b (14.) LCAO MO LCAO ϕ Ritz *3 Ritz H aa E ϕ S aa H ab E ϕ S ab = 0 (11.68) (14.3) H ba E ϕ S ba H bb E ϕ S bb (14.) φ a φ b S aa = S bb = 1 H aa E ϕ H ab E ϕ S ab H ba E ϕ S ba H bb E ϕ = 0 (14.4) H aa = H bb S ab = φ a φ b dτ = φ b φ a dτ = S ba H ab = φ a Ĥφ b dτ = H ba Ĥ Hermite * 4 (14.5) *3 Ritz

79 H aa E ϕ H ab E ϕ S ab H ab E ϕ S ab H aa E ϕ = 0 (14.6) ϕ E ϕ (14.6) E ϕ E ϕ (H aa E ϕ ) (H ab E ϕ S ab ) = 0 E ϕ E ϕ = H aa ± H ab 1 ± S ab (14.7) c a c b (H aa E ϕ ) c a + (H ab E ϕ S ab ) c b = 0 (H ab E ϕ S ab ) c a + (H aa E ϕ ) c b = 0 (14.8) c a /c b c a = H ab E ϕ S ab c b H aa E ϕ ( ) Haa ± H ab H ab S ab 1 ± S ab = ( ) (14.7) Haa ± H ab H aa 1 ± S ab (14.8) = ±1 (14.9) (14.8) ϕ = c a (φ a ± φ b ) (14.10) ( ) ϕ dv = c a φ adv + φ bdv ± φ a φ b dv (14.) }{{} } {{ } } {{ } =1 =1 S ab c a = = c a ( ± S ab ) = 1 1 ± Sab c a (14.11) *4 H ab = H ba Z «Hab = φ aĥφ bdτ Z = φ bĥφ adτ Ĥ Hermite = H ba φ a φ b Hab = H ab Hab = H ba H ab H ba

80 ϕ g = (φ a + φ b ) E g = H aa + H ab + Sab 1 + S ab ϕ u = 1 Sab (φ a φ b ) E u = H aa H ab 1 S ab (14.1) ϕ E g u gerade ungerade ϕ ϕ 14.. H aa (11.63) (14.1) H aa [ H aa = φ a ] φ a dv r a r b R [ = φ a 1 1 ] φ φ a dv a dv + 1 φ r a r b R adv φ a = φ a }{{} E 1s φ a = E 1s φ adv E aa + 1 φ φ R adv E aa := a dv r b = E 1s E aa + 1 R E 1s 1/R E 1s 1s 1 Coulomb R E aa φ a dv φ adv b Coulomb φ a b Coulomb H ab φ a (14.13) Z 14. E aa = `φ a/r b dv φ a b Coulomb H ab [ H ab = φ a ] φ b dv r b r a R [ = φ a 1 1 ] φa φ a φ b dv dv + 1 φ a φ b dv r b r a R }{{} E 1s φ b = E 1s φ a φ b dv E ab + 1 φa φ b φ a φ b dv E ab := dv R = E 1s S ab E ab + S ab R r a (14.14)

81 E ab E aa φ a φ b φ a φ b a Coulomb φ a φ b a Coulomb H aa H ab E aa, E ab, S ab φ a, φ b 1s (13.7) Ψ = 1 π e r a.u. ) S ab = (1 + R + R e R 3 E aa = 1 [ 1 (1 + R)e R ] R E ab = (1 + R)e R (14.15) 14.3 Z E ab = (φ a φ b /r a ) dv φ a φ b a Coulomb 14.3 (14.13) (14.14) H aa H ab R *5 H aa = 1 ( ) 1 + R + 1 e R ( 1 H ab = S ab R 1 ) (14.16) (1 + R)e R H aa H ab S ab R > a 0 H ab < 0 R 14.4 S ab H aa H ab R S ab > 0 (14.1) S ab > 0 H ab < 0 E g < E u S ab H ab E g ϕ g H ab H ab (14.13) (14.14) (14.1) [ 1 E g = E 1s (1 + S ab ) (E aa + E ab ) + 1 ] 1 + S ab R (1 + S ab) = E 1s + 1 R E aa + E ab (14.17) 1 + [ S ab 1 E u = E 1s (1 S ab ) (E aa E ab ) + 1 ] 1 S ab R (1 S ab) = E 1s + 1 R E aa E ab 1 S ab (14.18) (14.15) (14.17) (14.18) E g E u R 14.5 E h hartree E u E g E u E 1s R E 1s E u R E u E 1s *5 E 1s = 1/

82 E u E g E u E g [1] [1] E u R 0 E g R 0 R/a 0 =.50 R e = 0.13 nm E u E 1s E u E 1s ϕ u R E u E g 14.6 a b H aa (= H bb ) a b MO E g E u E g E g ϕ g ϕ u ϕ u 14.6 ϕ g ϕ u 14.7 Bohr Bohr.5

83 ϕ g ϕ u a b 14.7 a b 1 4 *6 a b 1/9 b Feynmann *6 Coulomb 97 (9.17) Coulomb r Coulomb

84 S ab, H aa, H ab * (a) F(a, 0) F ( a, 0) xy x 3 x 14.8 ξ := (r a + r b )/a η := (r a r b )/a ξ, η x ϕ (a) xy (b) x F P + P F = r a + r b = a 1 (14.19) F P P F = r a r b = ±a (14.0) r a r b b 1 = a 1 a, b = a a (14.1) x a 1 x a + y b 1 y b = 1 = (14.) (14.3) *7 [10] Daudel[0] [1] 1999

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

元素分析

元素分析 : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります (PET) 1 18 1 18 H 2 13 14 15 16 17 He 1 2 Li Be B C N O F Ne 3 4 5 6 7 8 9 10 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

RN201602_cs5_0122.indd

RN201602_cs5_0122.indd ISSN 1349-1229 No.416 February 2016 2 SPECIAL TOPIC113 SPECIAL TOPIC 113 FACE Mykinso 113 SPECIAL TOPIC IUPAC 11320151231 RI RIBFRILAC 20039Zn30 Bi83 20047113 20054201283 113 1133 Bh107 20082009 113 113

More information

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合 1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合の実効線 務従事者 区域外の 区域外の 量係数 量係数 の呼吸す 空気中の 水中の濃 る空気中 濃度限度

More information

2_R_新技術説明会(佐々木)

2_R_新技術説明会(佐々木) % U: 6.58%, Np, Am:.5%, Pu:.% 5.8% Cs 6.5% Sr %.9%Mo 8.74% Tc.9% TODA C 8 H 7 C 8 H 7 N CH C CH N CH O C C 8 H 7 O N MIDOA C 8 H 7 DOODA NTA + HN(C 8 H 7 ) + H O DCC + SOCl + HN(C 8 H 7 ) + Cl TODA (TODA)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2004 3 3 2 3 4 5 6 7 8 9 10 T. Ito, A. Yamamoto, et al., J. Chem. Soc., Chem. Commun., 136 (1974) J. Chem. Soc., Dalton Trans., 1783 (1974) J. Chem. Soc., Dalton Trans., 1398 (1975) 11 T.Ito, A. Yamamoto,

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

RAA-05(201604)MRA対応製品ver6

RAA-05(201604)MRA対応製品ver6 M R A 対 応 製 品 ISO/IEC 17025 ISO/IEC 17025は 試験所及び校正機関が特定の試験又は 校正を実施する能力があるものとして認定を 受けようとする場合の一般要求事項を規定した国際規格 国際相互承認 MRA Mutual Recognition Arrangement 相互承認協定 とは 試験 検査を実施する試験所 検査機関を認定する国際組織として ILAC 国際試験所認定協力機構

More information

MP-AES ICP-QQQ Agilent 5100 ICP-OES Agilent 5100 (SVDV) ICP-OES (DSC) 1 5100 SVDV ICP-OES VistaChip II CCD Agilent 7900 ICP-MS 7700 / 10 7900 ICP-MS ICP-MS FTIR Agilent 7900 ICP-MS Agilent Cary 7000 (UMS)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A IS(A3)- 284 - No.e1 核種核種半減期エネルギー放出割合核種通番数値単位 (kev) (%) 1 1 1 MG-28 20.915 H 29.08 27.0000 β-/ce K Al-28 2 1 2 MG-28 20.915 H 30.64 2.6000 β-/ce L Al-28 3 2 1 SC-44M 58.6 H 270.84 0.0828 EC/CE CA-44 4 2

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード] 化学結合と分 の形 なぜ原 と原 はつながるのかなぜ分 はきまった形をしているのか化学結合の本質を理解しよう 分子の形と電子状態には強い相関がある! 原子 分子 基礎化学 ( 化学結合論 構造化学 量子化学 ) 電子配置分子の形強い相関関係 ( 電子状態 ) ( 立体構造 ) 分子の性質 ( 反応性 物性 ) 先端化学 ( 分子設計 機能化学 ) 機能 分子の形と電子配置の基礎的理解 基礎 ( 簡単

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

hv (%) (nm) 2

hv (%) (nm) 2 HOLLOW CATHODE LAMPS hv 1 2 1 8 5 3 4 6 (%) 6 4 7 8 2 16 2 24 28 32 36 4 44 (nm) 2 1 328.7 346.5 Ag 47-47NB(AG) 338.28 1 2 Re 75-75NB(RE) 346.47 2 25 39.27 343.49 Al 13-13NB(AL) 396.15 1 2 Rh 45-45NB(RH)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

希少金属資源 -新たな段階に入った資源問題-

希少金属資源 -新たな段階に入った資源問題- H 耐用 TMR 占有増大 Li 94.5 4CL 0 Na 56 0 K 800 6CA 99 Rb 0. Cs 0.0 Fr Be.5 86US 4 Mg 5500 0.07 8CN 5 Ca 0.09 7 Sr 0.5 48ES Ba 0.5 47 Ra Sc. Y 6.7 7 (Ln) 800-97CN 6 (An) Center for Strategic Material NIMS,Japan

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

物理化学I-第12回(13).ppt

物理化学I-第12回(13).ppt I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

K 吸収端 XAFS 用標準試料 Ti Ti-foil 金属箔 縦 1.3 cm 横 1.3 cm 厚さ 3 µm TiO2 anatase ペレット φ 7 mm 厚さ 0.5 mm 作製日 TiO2 rutile ペレット φ 7 mm 厚さ 0.5 mm 作製日 2017.

K 吸収端 XAFS 用標準試料 Ti Ti-foil 金属箔 縦 1.3 cm 横 1.3 cm 厚さ 3 µm TiO2 anatase ペレット φ 7 mm 厚さ 0.5 mm 作製日 TiO2 rutile ペレット φ 7 mm 厚さ 0.5 mm 作製日 2017. あいち SR BL5S1 硬 X 線 XAFS ビームライン Ⅰ 標準試料リスト 周期表のリンクをクリックすると 各元素の標準試料リストに飛びます 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

理工学部無機化学ノート

理工学部無機化学ノート 2 周期表と元素の性質の周期性 電子配置 通常の長周期型周期表 非金属元素と金属元素 e Cs Ba f Ta W Re Os Ir Pt Au g Tl Pb Bi Po At Rn Fr Ra Rf Db Sg Bh s Mt Ds Rg Cn Fl Lv 元素の大半は金属元素である 14 族や 15 族は 周期が下がるにつれ 性質が大幅に変化することが分かる La Ce Pr Nd Pm Sm

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

2 1 7 - TALK ABOUT 21 μ TALK ABOUT 21 Ag As Se 2. 2. 2. Ag As Se 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 Sb Ga Te 2. Sb 2. Ga 2. Te 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Microsoft Word - Jmol リソースの使い方-2.doc

Microsoft Word - Jmol リソースの使い方-2.doc Moodle での Jmol リソースの 使 い 方 1. 表 示 例 分 子 構 造 データファイルを 指 定 して 分 子 の 3 次 元 構 造 と 分 子 軌 道 などを 表 示 することができます 1.1. DNA PDB 形 式 データファイル 1.2. タンパク 質 の 表 示 GFP の 一 種 1 1.3. 波 動 関 数 の 表 示 -アセトアルデヒド 2. リソースの 追 加

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Planck Bohr

Planck Bohr I 30 7 11 1 1 5 1.1 Planck.............................. 5 1. Bohr.................................... 6 1.3..................................... 7 9.1................................... 9....................................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

4 1 Ampère 4 2 Ampere 31

4 1 Ampère 4 2 Ampere 31 4. 2 2 Coulomb 2 2 2 ( ) electricity 2 30 4 1 Ampère 4 2 Ampere 31 NS 2 Fleming 4 3 B I r 4 1 0 1.257 10-2 Gm/A µ 0I B = 2πr 4 1 32 4 4 A A A A 4 4 10 9 1 2 12 13 14 4 1 16 4 1 CH 2 =CH 2 28.0313 28 2

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information