Size: px
Start display at page:

Download ""

Transcription

1 00 3 9

2

3 log I II III II i

4 ) I II III ii

5 . x n, exp x, sin x, cos x d dx xn = nx n d exp x = exp x dx d sin x = cosx dx d cos x = sin x dx x n x n = x m+n exp(x + y) = exp x exp y sin(x + y) = sin x cos y + cos x sin y cos(x + y) = cos x cos y + sin x sin y = cos x + sin x +x x n = nx n +x exp x = exp x +x sin x = cos x +x cos x = sin x x n, exp x, sin x, cos x x m x n x m+n exp (x + y) = exp x exp y sin (x + y) = sin x cos y + cos x sin y cos (x + y) = cos x cos y sin x sin y cos x + sin x x m x n = x m+n = cos x + sin x )

6 ... df dx (operator) (advanced,forwaord) +x, (central) x, (backward,retarded) x f(x + ɛ) f(x) +x f(x) =, ɛ (.) x = f(x + ɛ ) f(x ɛ ), ɛ (.) f(x) f(x ɛ) x f(x) =. ɛ (.3) ɛ ɛ 0 ( ) lim f(x + ɛ) f(x) +xf(x) = lim ɛ 0 ɛ 0 ɛ = f (x) f(x + ɛ lim xf(x) = lim ) f(x ɛ ) ɛ 0 ɛ 0 ɛ f(x + ɛ = lim ) f(x) + f(x) f(x ɛ ) ɛ 0 ɛ = ɛ lim f(x + ) f(x) + ɛ 0 lim ɛ = f (x) + f (x) = f (x) df f(x + ( ɛ )) f(x) ɛ 0 lim f(x) f(x ɛ) xf(x) = lim ɛ 0 ɛ 0 ɛ = lim ɛ 0 = f (x) f(x + ( ɛ)) f(x) ɛ ɛ dx ( ) (averaging operator)

7 f(x + ɛ) + f(x) M +x f(x) = M x f(x) = f(x + ɛ ) + f(x ɛ ) f(x) + f(x ɛ) M x f(x) = (.4) (.5) (.6) (.7) f(x) ɛ 0 ( ) x = +x x M x = + ɛ 4 x E(shift operator) E +x f(x) = f(x + ɛ) E x f(x) = f(x ɛ) +x = E +x ɛ +x = E +x + f(x) ( ) f(x) f(x) = [x] x = ɛ 0 f(x ɛ ), f(x ɛ) M x f(x), M x f(x) (ɛ 0) f(x) = [ x] x = ɛ 0 f(x + ɛ) M +x f(x) (ɛ 0) f(x) ( ) 3

8 ( ) +x +x f(x) + g(x) f(x + ɛ) + g(x + ɛ) f(x) + g(x) = ɛ f(x + ɛ) f(x) g(x + ɛ) g(x) = + ɛ ɛ = +x f(x) + +x g(x) +x (αf(x)) αf(x + ɛ) αf(x) = ɛ f(x + ɛ) f(x) = α ɛ = α +x f(x) ( ) x, x... +x g(x)h(x) = [ +x g(x)]h(x + ɛ) + g(x)[ +x h(x)] (.8) x g(x)h(x) = [ x g(x)]h(x + ɛ/) + g(x ɛ/)[ x h(x)] (.9) x g(x)h(x) = [ x g(x)]h(x) + g(x ɛ)[ x h(x)] (.0). n n +xg(x)h(x) = n xg(x)h(x) = n xg(x)h(x) = n ( n i i=0 n ( n i i=0 n ( n k i=0 ) [ n i +x g(x)][ i +xh(x + (n i)ɛ)] (.) ) [ n i x g(x iɛ/)][ i xh(x + (n i)ɛ/)] (.) ) [ n i x g(x iɛ)][ i xh(x)] (.3) (.) 4

9 . n = g(x + ɛ)h(x + ɛ) g(x)h(x) +x g(x)h(x) = ɛ g(x + ɛ)h(x + ɛ) g(x)h(x + ɛ) + g(x)h(x + ɛ) g(x)h(x) = ɛ = [ +x g(x)]h(x + ɛ) + g(x)[ +x h(x)] (.). n = k (k =,, 3, ) (.) n +xg(x)h(x) = k i=0 ( ) k [ k i +x g(x)][ i i +xh(x + (k i)ɛ)] +x [ k +xg(x)h(x)] [ k ( ) ] k = +x [ k i +x g(x)][ i i +xh(x + (k i)ɛ)] i=0 k ( ) k [ = +x [ k i +x g(x)][ i i +xh(x + (k i)ɛ)] ] i=0 k ( ) k [[ k+ i = +x g(x)][ i i +xh(x + (k + i)ɛ)] + [ k i +x g(x)][ i+ +x h(x + (k i)ɛ)] ] = i=0 k i=0 [( ) k + i + ( )] k [ +x [ k+ i +x g(x)][ i+ +x h(x + (k + i)ɛ)] ] i k+ ( ) k + = [ k+ i +x g(x)][ i i +xh(x + (k + i)ɛ)] i=0 n = k + (.) (.) n..3 f = f(x), x = x(t) t δ,x ɛ f(x(t)). f(x(t)) +t f(x(t)) = f(x(t + δ)) f(x(t)) δ (.4) 5

10 x(t) (.4) +x x(t) = x(t + δ) x(t) δ +t f(x(t)) = f(x(t) + +xx(t)) f(x(t)) δ = +x x(t) f(x(t) + +xx(t)) f(x(t)) δ +x x(t) x ɛ( 0) ɛ = δ +x x(t) = x(t + δ) x(t) f(x(t) + ɛ) f(x(t)) +t f(x(t)) = +x x(t) (.5) ɛ = +x x(t) +x f(x) (.6) +x f(x). f(x(t)) f(x(t) ɛ) t f(x(t)) = x x(t) (.7) ɛ = x x(t) x f(x) (.8) ɛ = δ x x(t) = x(t) x(t δ) 3. f(x(t)) t f(x(t)) = f(x(t + δ/)) f(x(t δ/)) δ (.9) x(t) x x(t) = x(t + δ/) x(t δ/) δ 6

11 M t x(t) (.9) x(t + δ/) + x(t δ/) M t x(t) = x(t + δ/) x(t δ/) + x(t δ/) = = δ xx(t) + x(t δ/) x(t + δ/) + x(t δ/) M t x(t) = x(t + δ/) (x(t + δ/) x(t δ/)) = = x(t + δ/) δ xx(t) f(x(t + δ/)) f(x(t δ/)) t f(x(t)) = δ = [ ( f M t x(t) + δ ) ( δ tx(t) f M t x(t) δ )] tx(t) = t x(t) f( M t x(t) + δ tx(t) ) f ( M t x(t) δ tx(t) ) δ t x(t) ɛ = δ t x(t) = x(t + δ/) x(t δ/) t f(x(t)) = t x(t) f( M t x(t) + ɛ/ ) f ( M t x(t) ɛ/ ) (.0) ɛ = t x(t) x f(x) (.).3 d dx xn = nx n (.) x 3 +x x 3 = (x + ɛ)3 x 3 ɛ = x3 + 3ɛx + 3ɛ x + ɛ 3 x 3 ɛ = 3x + 3ɛx + ɛ 7

12 ( ɛ x x 3 = 3x + ) x x 3 = 3x 3ɛx + ɛ ɛ 0 3x x (.) x x 3 x 3 = x(x ɛ)(x ɛ) +x x 3 = (x + ɛ)x(x ɛ) x(x ɛ)(x ɛ) ɛ x n = x(x ɛ)(x ɛ) {x (n )ɛ} = 3x(x ɛ) (.3) (.3) +x x 3 = x x 4, x 5 (.) +x x n = nx n (.4) ( x 0 = ) (.4) (.4) Proof. (i) n= = +x x (x + ɛ) x = = ɛ = x 0 =... = (ii) n= = +x x (x + ɛ)x x(x ɛ) = = x ɛ = x = x... = 8

13 (iii) n +x x n = x n n + = +x x n+ = +x {x n (x nɛ)} = [ +x x n ]{x (n )ɛ} + x n [ +x (x nɛ)] = (nx n ){x (n )ɛ} + x n = (n + )x n =... = (.4) x { } { } { } { x ((n)) = x x x + x + (n )ɛ (n 3)ɛ x n = x(x + ɛ)(x + ɛ) {x + (n )ɛ} (.) (n 3)ɛ (n )ɛ x x ((n)) = nx ((n )) n : (.5) x x n = nx n n : (.6) x ((0)) =, x 0 = } n < 0, n = 0 n {x (k )ɛ} (n > 0) k= x n = (n = 0) n (n < 0) (x + kɛ) k= n { ( ) } n + x k ɛ (n > 0) x ((n)) k= = (n = 0) (n < 0) x (( n )) n {x + (k )ɛ} (n > 0) k= x n = (n = 0) n (n < 0) (x kɛ) k= (.7) (.8) (.9) 9

14 n k= F k (x) = F (x) F (x) F 3 (x) F n (x) F n (x) x n, x ((n)), x n d dx xn = nx n +x x n = nx n x n n- n P n (x) = x n n =, n = P (x) = x + a P (x) = x + bx + c +x P (x) = P (x) a, b, c = +x P (x) = (x + ɛ) x ɛ = x + ɛ + b = P (x) = (x + a) = x + a + b x + ɛ x ɛ + c 0... a = ɛ + b 0

15 a, b = a ɛ, c a = c = 0 b = ɛ P (x) = x = x P (x) = x = x(x ɛ) P 3 (x) = x 3 + px + qx + r 8 (.4) p, q, r r = 0 p = 3ɛ, q = ɛ, r P 3 = x 3 = x(x ɛ)(x ɛ) n P n (x) = x n = x(x ɛ)(x ɛ) {x (n )ɛ} (n > 0) n = 0 P 0 (x) = C C +x P (x) = (x ɛ) x ɛ =... C =... P 0 (x) = x 0 = n < 0 P = x + a P = x + bx + c +x P (x) = P (x) a, b, c a, b = a + ɛ, c = a(a + ɛ) (.30) a = ɛ b = 3ɛ, c = 3ɛ P = x = x + ɛ P = x = (x + ɛ)(x + ɛ) P n (x) = x n = n k= (x + kɛ) (n < 0)

16 a = 0 b = ɛ, c = 0 P n (x) = n k= P = x P = x(x + ɛ) {x + (k )ɛ} (n < 0) (.3) n > 0 9 (.7) (.3) (.30) a +x x n = nx n x x ((n)) = x ((n )) x x n = x n.4 log d dx log x = x log (.3) log x log x log +x g(x) = f(x) (.33) g(x + ɛ) g(x) = f(x) ɛ x x = nx (n = 0,,, 3, ) x ɛ g((n + )ɛ) g(nɛ) = ɛf(nɛ)

17 n 0 n g(ɛ) g(0) = ɛf(0) g(ɛ) g(ɛ) = ɛf(ɛ) g(3ɛ) g(ɛ) = ɛf(ɛ). g(nɛ) g((n )ɛ) = ɛf((n )ɛ) n g(nɛ) = g(0) + ɛ f(kɛ) (.34) k=0 (.34) x n g(x) = g(0) + ɛ f(kɛ) (.35) (.33) k=0 (.33) f(x) g(x) (.35) f(x) g(x) f(x) +x g(x) (.35) g(x) = Σ +x f(x), g(0) = C n Σ +x f(x) = C + ɛ f(kɛ) (.36) k=0 C = g(0) C Σ +x f(x) C log dx = C + log x (.37) x x = 0 log x = n Σ +x x = C + ɛ kɛ Σ +x x = C n C n log (x) k= Log (x) = n (.38) (.39) (.40) (.4) 3

18 .5.5. exp x.. 3. d exp x = exp x dx exp x x=0 = exp x = n= n! xn 4. exp(x + y) = exp x exp y,,. exp x exp x = n= n! xn,. exp x d exp x = exp x dx exp x = n= n! xn,,.5. +x exp x exp x.. +x exp x = exp x (.4) exp x x=0 = 4

19 (.4), q +x φ(x) = qφ(x) (.43) x x = mɛ ( m=0,,,3 m ) x φ(mɛ) φ m (.43) φ m+ φ m ɛ = qφ m φ m+ = ( + qɛ)φ m (.44) φ 0 φ = ( + qɛ)φ 0 φ = ( + qɛ)φ φ 3 = ( + qɛ)φ... φ m = ( + qɛ)φ m+ m φm (.43) exp x exp x a k exp x exp x = a k x k (.43), x n k=0 k=0 +x x n = nx n a k kx k = a k x k k=0 [a k+ (k + ) a k ]x k = 0 k=0 x k 0 a k+ (k + ) a k = 0 exp x x=0 = a 0 = a k = k! 5

20 exp x = k=0 k! xk exp x exp x = φ m, x = mx ( φ 0 = ) φ m+ φ m ɛ = φ m (.45) φ m = ( + ɛ)φ m exp x x φ m = ( + ɛ) m exp x = ( + ɛ) x/ɛ exp x (.45 ) x = mɛ, m, exp x ( + ɛ) x/ɛ = k=0 k! xk x = mɛ, y = nɛ, m, n, exp x = φ m exp y = φ n exp x exp y = φ m,n exp x + y = φ m+n. φ m+n n (.44) φ m+n+ φ m+n ɛ = φ m+n proof) +m f(l(m)) = +m l(m) +l f(l) l = n + m +m l(m) = +l f(l) = +m f(m + n) l φ l = φ l = φ m+n 6

21 . φ m,n n (.44 ) φ m+,n φ m,n ɛ = φ m,n ( n m ) 3. φ m+n φ m,n m = 0 φ 0,n = φ 0+n = φ n (.44 ) φ m+n = φ m,n exp x + y = exp x exp y trivial t=0 t! xt s=0 s! ys = k=0 (x + y)k k!.5.3 x q e qx.. x e qx = qe qx (.46) e qx x=0 = x x = mɛ(m = 0,,, 3,...) x m (.46) e qx ϕ m ϕ m ϕ m ɛ = qϕ m ϕ m = ϕ m ( qɛ) 7

22 ϕ 0 ϕ = ϕ 0 ( qɛ) ϕ = ϕ ( qɛ) ϕ m = ϕ m ( qɛ) m ϕ m qɛ (.46) e qx e q x a k e q x e qx = x n k=0 x x n = nx n a k kx k = q a k x k k=0 k=0 [a k+ (k + ) a k q]x k = 0 k=0 x k (k = 0,,,...) 0 a k+ (k + ) a k q = 0 (e x x=0 = ) a 0 = a k = qk k! e qx = k! xk q k e qx e qx = ϕ m, x = mɛ ϕ 0 = k=0 ϕ m ϕ m ɛ = qϕ m 8

23 qɛ ϕ m = ( qɛ) m e qx = ( qɛ) x ɛ e qx x = mɛ, m ( qɛ) x ɛ = k=0 k! xk q k e qx x = mɛ y = nɛ m n e qx = ϕ m, e qy = ϕ n, e qx e qy = ϕ m,n, e qx+y = ϕ m+n. ϕ m+n n (.46) ϕ m+n ϕ m+n ɛ = qϕ m+n. ϕ m,n n (.46) ϕ m,n ϕ m,n ɛ = qϕ m,n 3. ϕ m+n ϕ m,n m = 0 ϕ 0,n = ϕ 0+n = ϕ n (.46) ϕ m+n = ϕ m,n e qx+y = e qx e qy 9

24 .6.7 a) M x x ((k)) = xx ((k )) k > 0 M x x ((k)) =M x ( k {x ( k + s)ɛ}) s= = k { [x + ɛ (k + k s)ɛ] + [x ɛ (k + s)ɛ]} s= s= = {(x + k k ɛ) [x ( k s)ɛ] + (x k k ɛ) [x ( k + s)ɛ]} =xx ((k )) s= b) s= x f(x)g(x) = [ x f(x)][m x g(x)] + [M x f(x)][ x g(x)] = x f(x)g(x) = [ x f(x)]g(x + ɛ ) + f(x ɛ )[ xg(x)] = ɛ (f(x + ɛ )g(x + ɛ ) f(x ɛ )g(x + ɛ ) + f(x ɛ )g(x + ɛ ) f(x ɛ )g(x ɛ )) = ɛ {f(x + ɛ )g(x + ɛ ) f(x ɛ )g(x ɛ )} = [ x f(x)][m x g(x)] + [M x f(x)][ x g(x)] = ɛ {f(x + ɛ ) f(x ɛ )}{g(x + ɛ ) + g(x ɛ )} + ɛ {f(x + ɛ ) + f(x ɛ )}{g(x + ɛ ) g(x ɛ )} = ɛ {f(x + ɛ )g(x + ɛ ) f(x ɛ )g(x ɛ )} = ɛ {f(x + ɛ )g(x + ɛ ) f(x ɛ )g(x ɛ )} = 0

25 c ) kx [ xx ((k)) ] = [x ((k )) ] = kx x[x ((k)) ] = kx {[ xx ((k)) ][M x x ((k)) ] + [M x x ((k)) ][ x x ((k)) ]} = kx x[x ((k)) ][M x x ((k)) ] (a) = kx [kx((k )) ][x x ((k )) ] = [x ((k )) ] =.8 c ) (k + l)x x[x ((k)) x ((l)) ] = x ((k )) x ((l )) = (k + l)x x[x ((k)) x ((l)) ] = (k + l)x {[ xx ((k)) ][M x x ((l)) ] + [M x x ((k)) ] x [x ((l)) ]} = (k + l)x {[kx((k )) ][x x ((l )) ] + [x x ((k )) ][l x ((l)) ]} = x ((k )) x ((l )) = a) = +x (f(x)g(x) f(x ɛ)g(x ɛ) ɛ = (f(x + ɛ)g(x + ɛ) f(x)g(x) f(x)g(x) + f(x ɛ)g(x ɛ)) ɛ = {(f(x + ɛ) f(x) + f(x ɛ))g(x) ɛ f(x + ɛ)g(x) + f(x ɛ)g(x)f(x + ɛ)g(x + ɛ) + f(x ɛ)g(x ɛ)} = [ +x x f(x)]g(x) + (f(x + ɛ)g(x + ɛ) f(x + ɛ)g(x) f(x ɛ)g(x) + f(x ɛ)g(x ɛ)) ɛ = [ +x x f(x)]g(x) + {f(x)(g(x + ɛ) g(x) + g(x ɛ)) ɛ f(x)g(x ɛ) + f(x)g(x) f(x)g(x ɛ) + f(x + ɛ)g(x + ɛ) f(x + ɛ)g(x) f(x ɛ)g(x) + f(x + ɛ)g(x + ɛ)} = [ +x x f(x)]g(x) + f(x)[ +x x g(x)] + {f(x + ɛ)(g(x + ɛ) g(x)) f(x)(g(x + ɛ) g(x)) ɛ + f(x)(g(x) g(x ɛ)) f(x ɛ)(g(x) g(x ɛ))} = [ +x x f(x)]g(x) + f(x)[ +x x g(x)]

26 + {(f(x + ɛ) f(x))(g(x + ɛ)g(x)) + (f(x) f(x ɛ))(g(x) g(x ɛ))} ɛ = [ +x x f(x)]g(x) + [ +x f(x)][ +x g(x)] + [ x f(x)][ x g(x)] + f(x)[ +x x g(x)] b) = [ +x ρ(x) ɛ (y k(x) y k (x ɛ))]y l (x) y k (x)[ +x ρ(x) ɛ (y l(x) y l (x ɛ))] = ɛ {ρ(x + ɛ)(y k(x + ɛ) y k (x)) ρ(x)(y k (x)y k (x ɛ))}y l (x) y k (x) ɛ {ρ(x + ɛ)(y l(x + ɛ) y l (x)) ρ(x)(y l (x)y l (x ɛ))} = ɛ {ρ(x + ɛ)(y k(x + ɛ)y l (x) y k (x)y l (x) y k (x)y l (x + ɛ) + y k (x)y l (x)) ρ(x)(y k (x)y l (x) y k (x ɛ)y l (x) y k (x)y l (x) + y k (x)y l (x ɛ))} = ɛ {ρ(x + ɛ)(y k(x + ɛ)y l (x) y k (x)y l (x + ɛ)) ρ(x)(y k (x)y l (x ɛ) y k (x ɛ)y l (x))} = +x ɛ ρ(x)(y k(x)y l (x ɛ) y k (x ɛ)y l (x)) = +x ρ(x) ɛ {(y k(x) y k (x ɛ))y l (x) y k (y l (x) y l (x ɛ))} = +x ρ(x){[ +x y k (x)]y l (x) y k (x)[ +x y l (x)]} b) (ρ(x)y k(x)) y l (x) y k (ρ(x)y l(x)) = (ρ y k + ρy k)y l y k (ρ y l + ρy l ) = ρ (y ky l y k y l) + ρ(y ky l y k y l ) = ρ (y ky l y k y l) + ρ(y ky l y k y l) = {ρ(y ky l y k y l)}.7 sin mx, cos mx π π d dx sin mx + m sin mx = 0 d dx cos mx + m cos mx = 0 0, m n, m, n cos mx cos nx dx = π, m = n, m π, m = n = 0

27 π π 0, m n, m, n sin mx sin nx dx = π, m = n 0, m π π cos mx sin nx dx = 0, m, n W N (m, k) = e imk π N N m, k i N k=0 0, m n mod N W N (m, k)w N ( n, k) = N, m = n mod N W N (m, k) k.7. sin x,cos x. d dx sin x = cos x (.47) d dx cos x = sin x sin x x=0 = 0 cos x x=0 = ( ) k sin x = (k + )! xk+ k=0 ( ) k cos x = (k)! xk k=0 (.48) (.49) sin x + cos x = (.50) sin (x + y) = sin x cos y + cos x sin y cos (x + y) = cos x cos y sin x sin y (.5) (.49), (.50), (.5) (.47) (.48) 3

28 (.49) (.47) a k, b k (k = 0,,, ) sin x = a k x k k=0 (.5) cos x = b k x k k=0 (.47) k=0 d dx xk = kx k a k kx k = b k x k, k=0 k=0 b k kx k = a k x k k=0 x (a k+ (k + ) b k )x k = 0, (.53) k=0 (b k+ (k + ) + a k )x k = 0 (.54) k=0 x 0 k = 0,,, a k+ (k + ) b k = 0, b k+ (k + ) + a k = 0 a k, b k b k a k+ = (k + ), a k b k+ = (k + ) sin x x=0 = 0, cos x x=0 = (.5) a 0 = 0, b 0 = k = 0,,, a k+ = ( )k (k + )!, a k = 0 b k+ = 0, b k = ( )k (k)! 4

29 (.5) (.49) ( ) k sin x = (k + )! xk+ k=0 ( ) k cos x = (k)! xk k=0 (.50) (.50) x () d dx (sin x + cos x) = d sin x dx sin x + d cos x dx cos x = (cos x sin x sin x cos x) = 0 sin x + cos x = const. const. = (.50) sin x + cos x = (.5) (.47) sin x cos x d φ(x) + φ(x) = 0 (.55) dx φ(x) φ(x) x=0 = c 0, d dx φ(x) x=0 = c φ(x) x=0 = sin y, d dx φ(x) x=0 = cos y (.56) φ (x, y) = cos y sin x + sin y cos x φ (x, y) = sin (x + y) φ (x, y) φ (x + y) (.55) (.56) φ (x, y) = φ (x, y) sin (x + y) = cos y sin x + sin y cos x (.57) sin x (.57) y cos x cos (x + y) = cos y cos x sin y sin x 5

30 (.47) (.48) sin (x + y) = sin x cos y + cos x sin y cos (x + y) = cos x cos y sin x sin y d φ(x) + φ(x) = 0 dx φ(x) φ(x) x=0 = c 0, d dx φ(x) x=0 = c ( ) y + y = 0, y(0) = c 0, y (0) = c z + z = 0, z(0) = c 0, z (0) = c (y z ) + (y z) = 0, (y z)(0) = 0, (y z )(0) = 0 ω = y z ω + ω = 0, ω(0) = ω (0) = 0 d dx (ω + ω ) d dx (ω + ω ) = ω ω + ωω = ω (ω + ω) = 0 ω (x) + ω(x) = ω (0) + ω(0) = 0 ω + ω = 0 ω = 0, ω = 0 y z = 0 y = z ( ).8.8. x x = nɛ, n x, x n, x n, x n+,,( n ) f(x) ɛ n = x n+ xn n ( n ) +n, n, M +n +n f(x n ) = f(x n+ ) f(x n ) n f(x n ) = f(x n ) f(x n ) M +n f(x n ) = [f(x n+) + f(x n )] 6

31 f(x n+ ) f(x n ) x n+ x n = ɛ n +n f(x n ) f(x n ) f(x n ) = x n x n ɛ n n f(x n ) exp < iλ, x n > ɛ n +n exp < iλ, x n > = iλm +n exp < iλ, x n > (.58) exp < iλ, x n > n=0 = exp < iλ, x n > n=n = (.59) λ exp < iλ, x n+ > exp < iλ, x n > = iλɛ n [exp < iλ, x n+ > + exp < iλ, x n >] ( ) ( λɛ n exp < iλ, x n+ > = + ) λɛ n exp < iλ, x n > exp < iλ, x n+ > = + λɛ n λɛ exp < iλ, x n > n exp < iλ, x n > = + λɛ n λɛ exp < iλ, x n > n = + λɛ n + λɛ n λɛ n λɛ exp < iλ, x n > n = + λɛ n λɛ + λɛ 0 n λɛ exp < iλ, x 0 > 0 = n j=0 + λɛ j λɛ j exp < iλ, x n > exp < iλ, x n >, exp < iλ, x n > +n exp < iλ, x n > exp < iλ, x n > +n exp < iλ, x n > exp < iλ, x n > = [ +n exp < iλ, x n >][M +n exp < iλ, x n >] + [M +n exp < iλ, x n >][ +n exp < iλ, x n >] = i(λ λ )ɛ n [M +n exp < iλ, x n >][M +n exp < iλ, x n >], ( (.58) ) 7

32 n 0 N exp < iλ, x n > exp < iλ, x n > N n=0 N = i(λ λ ) ɛ n [M +n exp < iλ, x n >][M +n exp < iλ, x n >] n=0 (.59) λ λ N n=0 θ j (λ) ɛ n [M +n exp < iλ, x n >][M +n exp < iλ, x n >] = 0 tan θ j(λ) = λɛ j exp < iλ, x n > exp < iλ, x n > = = = n j=0 n j=0 n j=0 cos θ j(λ) + i sin θ j(λ) cos θ j(λ) sin θ j(λ) exp [i θ j(λ)] exp [ i θ j(λ)] exp [iθ j (λ)] n = exp i θ j (λ) j=0 exp < iλ, x n > sin < λ, x n >, cos < λ, x n > n exp < iλ, x n > = exp i θ j (λ) n sin < λ, x n > = sin i θ j (λ) j=0 j=0 n cos < λ, x n > = cos i θ j (λ) j=0 (.58) +n sin < λ, x n > = λɛ n M +n cos < λ, x n > +n cos < λ, x n > = λɛ n M +n sin < λ, x n > 8

33 +n sin < λ, x n > = λɛ n M +n cos < λ, x n > +n cos < λ, x n > = λɛ n M +n sin < λ, x n > +n sin < λ, x n > = λɛ n M +n cos < λ, x n > +n cos < λ, x n > = λɛ n M +n sin < λ, x n > +n [sin < λ, x n > cos < λ, x n > + cos < λ, x n > sin < λ, x n >] = [ +n sin < λ, x n >] [M +n cos < λ, x n >] + [M +n sin < λ, x n >] [ +n cos < λ, x n >] + [ +n cos < λ, x n >] [M +n sin < λ, x n >] + [M +n cos < λ, x n >] [ +n sin < λ, x n >] = (λ + λ )ɛ n [M +n cos < λ, x n >] [M +n cos < λ, x n >] (λ + λ )ɛ n [M +n sin < λ, x n >] [M +n sin < λ, x n >] (.60) λ λ +n [sin < λ, x n > cos < λ, x n > cos < λ, x n > sin < λ, x n >] = (λ λ )ɛ n [M +n cos < λ, x n >] [M +n cos < λ, x n >] + (λ λ )ɛ n [M +n sin < λ, x n >] [M +n sin < λ, x n >] (.6) (.60) (.6) n 0 N sin < λ, x n > n=0 = 0, sin < λ, x n > n=n = 0 sin < λ, x n > n=0 = 0, sin < λ, x n > n = N = 0 λ = λ N n=0 N n=0 ɛ n [M +n sin < λ, x n >] [M +n sin < λ, x n >] ɛ n [M +n cos < λ, x n >] [M +n cos < λ, x n >] 9

34 .8. sin qx, cos qx +x sin qx, cos qx { +x sin qx = q cos qx +x cos qx = q sin qx (.6) { sin qx x=0 = 0 cos qx x=0 = (.63) a k, b k sin qx, cos qx sin qx = a k x k q k k=0 cos qx = b k x k q k (.6) k=0 +x x n = nx n a k kx k q k = q b k x k q k k=0 k=0 b k kx k q k = q a k x k q k k=0 k=0 a k, b k a k+ = b k (k + ) b k+ = a k (k + ) sin qx, cos qx { a 0 = 0 b 0 = a k+ = ( )k (k + )!, a k = 0 b k+ = 0, b k = ( )k (k)! 30

35 sin qx, cos qx ( ) k sin qx = (k + )! xk+ q k+ cos qx = k=0 k=0 ( ) k (k)! xk q k sin qx cos qx +xϕ(x) + q ϕ(x) = 0 (.64) x = nɛ (n = 0,,, ) ϕ((n + )ɛ) = ϕ((n + )ɛ) ( + q ɛ )ϕ(nɛ) ϕ(x) ϕ(x) x=0 = c, ϕ(x + ɛ) x=0 = c +x ϕ(x) x=0 = [(ϕ(x + ɛ) ϕ(x))/ɛ] x=0 = (c c )/ɛ ϕ(x), ϕ(x + ɛ) ϕ(x), +x ϕ(x) ϕ (x, y) = cos qy sin qx + sin qy cos qx ϕ (x, y) = sin q(x + y) ϕ (x, y), ϕ (x, y) +xϕ (x, y) = +x [ +x {cos qy sin qx + sin qy cos qx} ] = q +x [ cos qy cos qx sin qy sin qx ] = q [ cos qy sin qx + sin qy cos qx ] = q ϕ (x, y) ] +xϕ (x, y) = +x [ +x sin q(x + y) = q +x cos q(x + y) = q sin q(x + y) = q ϕ (x, y) ϕ (x, y), ϕ (x, y) (.64) ϕ (x, y) x=0 = ϕ (x, y) x=0 = sin qy +x ϕ (x, y) x=0 = +x ϕ (x, y) x=0 = q cos qy 3

36 x = mɛ, y = nɛ, m, n ϕ (x, y) = ϕ (x, y) sin q(x + y) = cos qy sin qx + sin qy cos qx (.65) cos q(x + y) = cos qy cos qx sin qy sin qx (.66) sin qx + cos qx = (.67) +x = 0 0 +x (sin qx + cos qx) = [ +x sin qx] sin q(x + ɛ) + sin qx[ +x sin qx] +[ +x cos qx] cos q(x + ɛ) + cos qx[ +x cos qx] = q cos qx sin q(x + ɛ) q sin qx cos q(x + ɛ) 0 sin qx + cos qx (.66) cos q(x + y) = cos qy cos qx sin qy sin qx y = x = sin qx + cos qx (.66) m, n y = x.8.3 y = x sin qx, cos qx ( ) k sin qx = (k + )! xk+ q k+ k=0 cos qx = k=0 ( ) k (k)! xk q k 3

37 x x ( ) k sin q( x) = (k + )! ( x)k+ q k+ k=0 cos q( x) = k=0 sin q( x) = k=0 cos q( x) = k=0 ( ) k (k)! ( x)k q k ( ) k (k + )! xk+ q k+ ( ) k (k)! xk q k sin qx, cos qx ( ) k sin qx = (k + )! xk+ q k+ k=0 cos qx = k=0 ( ) k (k)! xk q k sin q( x) = sin qx cos q( x) = cos qx x x n = nx n sin qx, cos qx x sin qx = q cos qx x cos qx = q sin qx (.68) sin qx x=0 = 0 cos qx x=0 = (.68) sin qx sin q(x ɛ) = qɛ cos qx cos qx cos q(x ɛ) = qɛ sin qx x ɛ sin q(x + ɛ) sin qx = qɛ cos q(x + ɛ) cos q(x + ɛ) cos qx = qɛ sin q(x + ɛ) (.68) +x sin qx = q cos q(x + ɛ) +x cos qx = q sin q(x + ɛ) 33

38 (.67) sin qx + cos qx = (.66) y = x cos q(x + y) = cos qy cos qx sin qy sin qx cos q(x + ( x)) = cos q( x) cos qx sin q( x) sin qx = cos qx cos qx + sin qx sin qx (.67).8.4 e x x ix e x = e ix = k= k= k! xk (i) k k! xk D f(z) D D D f (z) D f(z) = f (z) f (z) f(z) (analytic continuation) f f(x) = c n (x a) n Taylar k=0 f(x) = e x R C R C C f (x) = e x = k= k! xk R f(x) = f (x) f (z) f(z) e ix = cos x + i sin x e ix = cos x i sin x 34

39 sin x = ex e ix cos x = ex + e ix q exp(iqx) = cos qx + i sin qx exp( iqx) = cos qx i sin qx sin qx = [exp(qx) exp( iqx)] cos qx = [exp(qx) + exp( iqx)].9 d sin x = cos x dx d cos x = sin x dx +x sin qx = cos qx +x cos qx = sin qx (.69) sin x + cos x = (.70) sin qx sin qx + cos qx cos x = (.70) (.70) sin, cos (.69) (.70) sin q < x >, cos q < x > (.70) sin q < x > + cos q < x > = g (x) + h (x) ɛ +x [g (x) + h (x)] = g (x + ɛ) + h (x + ɛ) g (x) h (x) = [g(x + ɛ) g(x)][g(x + ɛ) + g(x)] + [h(x + ɛ) h(x)][h(x + ɛ) + h(x)] (.7) 35

40 0 g(x + ɛ) g(x) ɛ h(x + ɛ) + h(x) h(x + ɛ) h(x) ɛ (.7) g(x + ɛ) + g(x) ɛ 0 (.73) +x g(x) M +x h(x) (.73) +x h(x) M +x g(x) (.74) g(x + ɛ) g(x) h(x + ɛ) + h(x) lim lim ɛ 0 ɛ ɛ 0 ɛ g (x) h(x) (.74) h (x) g(x) g(x) = sin q < x >, h(x) = cos q < x > (sin q < x >) cos q < x > (cos q < x >) sin q < x > sin, cos (.73)) (.74) g(x) = sin q < x >, h(x) = cos q < x > +x sin q < x > M +x cos q < x > +x cos q < x > M +x sin q < x > (.75) +x sin q < x > M +x cos q < x > = +x cos q < x > M +x sin q < x > q +x sin q < x > = qm +x cos q < x > (.76) +x cos q < x > = qm +x sin q < x > (.77) +x [sin q < x > + cos q < x >] = +x sin q < x >M +x sin q < x > + +x cos q < x >M +x cos q < x > = qm +x cos q < x >M +x sin q < x > qm +x sin q < x >M +x cos q < x > = 0 36

41 +x [sin q < x > + cos q < x >] = 0 (.78) sin q < x > + cos q < x > = constant constant : (.79) constant sin, cos sin q < x > x=0 = 0 cos q < x > x=0 = (.7) (.7) g(x + ɛ) g(x) + ɛ) h(x) = h(x h(x + ɛ) + h(x) g(x + ɛ) + g(x) = a g(x + ɛ) g(x) = ah(x + ɛ) + h(x) h(x + ɛ) h(x) = ag(x + ɛ) + g(x) a = ɛ g(x + ɛ) g(x) = ɛ h(x + ɛ) + h(x) h(x + ɛ) h(x) = ɛ g(x + ɛ) + g(x) +x g(x) = M +x h(x) +x h(x) = M +x g(x) g(x) = sin q < x >, h(x) = cos q < x > sin, cos d sin q < x > = q cos q < x > dx d cos q < x > = q sin q < x > dx (.75) q, (.76), (.77) sin q < x > + cos < x > = (.80) 37

42 e iθ = cos θ + i sin θ exp(iq < x >), exp( iq < x >) (.80) sin q < x > + cos < x > exp(iq < x >) = cos q < x > +i sin q < x > exp( iq < x >) = cos q < x > i sin q < x > sin q < x >= [exp(iq < x >) exp( iq < x >)] i cos q < x >= [exp(iq < x >) + exp( iq < x >)] = 4 [exp(iq < x >) exp( iq < x >)] + [exp(iq < x >) + exp( iq < x >)] = exp(iq < x >) exp(iq < x >) exp(iq < x >) exp(iq < x >) = (.8) (.8) +x exp(iq < x >) exp( iq < x >) = [ +t exp(iq < x >)][M +t exp( iq < x >)] (.76), (.77) 0 = +[M +t exp(iq < x >)][ +t exp( iq < x >)] +t exp(iq < x >) = iqm +t exp(iq < x >) (.8) +t exp( iq < x >) = iqm +t exp( iq < x >) (.83) exp(iq < x >) x=0 = (.84) exp( iq < x >) x=0 = (.85) φ(n) = exp(iq < x >), φ (n) = exp( iq < x >) (.8), (.83) ( x = nɛ, n ) φ(n + ) φ(n) ɛ φ(n + ) + φ(n) = iq φ(n + ) = + iqɛ iqɛ φ(n) ( + iqɛ = iqɛ φ (n + ) φ (n) ɛ ) n+ = iq φ (n + ) + φ (n) φ (n + ) = iqɛ + iqɛ φ (n) ( iqɛ = + iqɛ ) n+ 38

43 exp(iq < x >) = ( ) +iqɛ n exp( iq ( n iqɛ < x >) = +iqɛ iqɛ) ( x = nɛ, n ), exp(iq < x >), exp( iq < x >) x θ qɛ/ = tan(ɛθ) ( ) n + iqɛ/ exp(iq < x >) = iqɛ/ ( ) n + i tan(ɛθ/) = i tan(ɛθ/) ( ) n cos(ɛθ/) + i sin(ɛθ/) = cos(ɛθ/) i sin(ɛθ/) = (cos(ɛθ/) + i sin(ɛθ/)) n = e iθx ( ) n iqɛ/ exp( iq < x >) = + iqɛ/ ( ) n i tan(ɛθ/) = + i tan(ɛθ/) ( cos(ɛθ/) i sin(ɛθ/) = cos(ɛθ/) + i sin(ɛθ/) ) n = (cos(ɛθ/) + i sin(ɛθ/)) n = e iθx exp(iq < x >) exp( iq < x >) = exp(iq < x >) = e iθx exp( iq < x >) = e iθx (.9), (.9) sin < x > = sin θx cos < x > = cos θx ( qɛ = tan(ɛθ/)) sin q < x > + cos q < x >=.0 3 A = (a, a, a 3 ) B = (b, b, b 3 ) ( A B) ( A B) a b + a b + a 3 b 3. ( A B) 0 A = (a, a, a 3 ) B = (b, b, b 3 ) 3 e, e, e 3, e = (, 0, 0), e = (0,, 0), e 3 = (0, 0, ) ( e e ) = ( e e 3 ) = ( e e 3 ) = 0 39

44 3 A = (a, a, a 3 ) A = a e + a e + a 3 e 3 3 A = a j e j j= A a, a, a 3 e, e, e 3 A a = ( A e )/( e e ), a = ( A e )/( e e ), a 3 = ( A e 3 )/( e 3 e 3 ), a j = ( A e j )/( e j e j ), j =,, 3 3 n (n =,, 3, 4, ) n A = (a, a, a 3,, a n ) B = (b, b, b 3,, b n ) ( A B) ( A B) n a j b j j= ( A B) 0 n A B n n A = (a, a, a 3,, a n ) n e = (, 0, 0,, 0), e = (0,, 0,, 0), e 3 = (0, 0,,, 0),, e n = (0, 0, 0,, ) A = n a j e j j= A a, a, a 3,, a n e, e, e 3,, e n A a j = ( A e j )/( e j e j ), j =,,, n. A = n j= A e j e j e j e j a p k, (k = 0,, ) 3 P 0, = (,, ), P, = (, 0, ), P, = (,, ). 40

45 b P k,3 (k = 0,,, 3) 4 P 0,3 = (,,, ), P,3 = (, 3, 3, ), P,3 = (,,, ), P 3,3 = (, 3, 3, ). N + P k,n N k = 0,,,, N n + n P k,n (n) P k,n (n) k P 0,N (n) =, P,N (n) = n N, P,N (n) = 6 n N P 3,N (n) = n N. + 6 n(n ) N(N ), n(n ) n(n )(n ) N(N ) N(N )(N ), P k,n (n) = k ( )( ) k k + r n(n ) (n r + ) ( ) r r r N(N ) (N r + ) r=0 P k,n P l,n N P k,n (n)p,n (n) = 0, k l n=0 P k,n Legendre N y k,n N k =,,, N n y k,n (n) = sin Knɛ, ɛ = π N y k,n y l,n N n= y k,n (n)y l,n (n) = 0, k l (mod N) y k,n (n) sin kx N ( A B) N a n b n n= 4

46 ɛ = a/n, a nɛ = x Nɛ = a, f n = f(x), ɛ dx lim (a/n) N f n = n n= a 0 f(x)dx. P k,n (n) = k ( )( ) k k + r n(n ) (n r + ) ( ) r r r N(N ) (N r + ) r=0 nɛ = x, Nɛ = lim N n(n ) (n r + ) N(N ) (N r + ) = lim ɛ 0 x(x ɛ) (x (r )ɛ) ( ɛ) ( (r )ɛ) =x r P k,n (n) = k ( )( ) k k + r ( ) r x r r r r=0 k P 0 (x) =, P (x) = x, P (x) = 6x + 6x, P 3 (x) = x + 30x 0 x 3, Pk (x) k Legendre /N lim n n= N P k P l = ( P k P l ) 0 P k (x)p l (x)dx = 0, k l. y k,n (x) = sin knɛ nɛ = x, Nɛ = π lim y k,n (x) = sin kx N 4

47 π/n ( y k y l ) π 0 sin kx sin lxdx = 0, k l, strum-liouvile Pk sin kx(k = 0,,, ) φ k (x)(k =,, 3, ) ω(x)φk (x)φ l (x)dx = 0, k l ω(x) > 0 Legendre ω(x) = N A N e k A = N a k e k k= k a k e k A a k = ( A e k ) ( e k e k ) N f(x) φ k (x) f(x) = a k φ k (x) a k f(x) φ k (x) ω(x)f(x)φk (x)dx a k = ω(x)φk (x)φ k (x)dx k= f(x) f(x) f f k f = {f(ɛ), f(ɛ),, f(nɛ)} P k (x) = k ( )( ) k k + r ( ) r x r (.86) r r Legendre r=0 d d x( x) dx dx P k (x) + k(k + )Pk (x) = 0 (.87) 43

48 k ( )( k k + r (.86) = (x )k(k + ) + ( ) r r r r= k ( )( k k + r + k(k + ) ( ) r r r r= k ( )( k k + r = ( ) r r r = = r= ) x r r{r (r + )x} ) x r x + k(k + ){ k(k + )x} ) x r [r{r (r + )x} + k(k + )x] + k(k + ){x + k(k + )x} k ( )( ) k k + r ( ) r x r [r {r(r + ) k(k + )}x] + k(k + ){ k(k + )}x r r k ( )( ) k k + r ( ) r r x r r r k ( )( ) k k + r ( ) r {r(r + ) k(k + )}x r + k(k + ){ k(k + )}x r r r= r= r= x l ( l k ) ( )( ) k k + r ( )( ) ( ) r r x r r=l+ k k + r ( ) r {r(r + ) k(k + )}x r r=l r r r r [ ( )( ) ( )( ) ] k k + l + k k + l = ( ) l+ (l + ) ( ) l {l(l + ) k(k + )} l + l + l l ( )( ) [ ] k k + l (k l)(k + l + ) = ( ) l+ l l (l + ) (l + ) + l(l + ) k(k + ) x l ( )( ) k k + l = ( ) l [(k l)(k + l + ) + l(l + ) k(k + )]x l l l ( )( ) k k + l = ( ) l [k + (l + )k lk l(l + ) + l(l + ) k(k + )]x l l l = 0 x l x l 0 x ( )( ) k k + ( ) x + k(k + ){ k(k + )}x [ ] k(k ) (k + )(k + ) = 4 + k(k + ){ k(k + )} x = k(k + ){(k )(k + ) + k(k + )}x = k(k + )(k + k + k k)x = 0 44

49 x k (.86) ( )( ) k k ( ) k {k(k + ) k(k + )} = 0 k k N ω(n)φ k (n)φ l (n) = 0, k l (.88) n=0 Strum-Liouville +n p(n) n φ k (n) q(n)φ k (n) + λ k ω(n)φ k (n) = 0, k = 0,,, (.89) φ k (n) φ k (n) φ l (n) (.89) +n p(n) n φ k (n) q(n)φ k (n) + λ k ω(n)φ k (n) = 0 +n p(n) n φ l (n) q(n)φ l (n) + λ k ω(n)φ l (n) = 0 [ +n p(n) n φ k (n)]φ l (n) φ k (n)[ +n p(n) n φ l (n)] = (λ k λ l )ω(n)φ k (n)φ l (n) +n {p(n){[ n φ k (n)]φ l (n) φ k (n)[ +n p(n) n φ l (n)]}} = (λ k λ l )ω(n)φ k (n)φ l (n) n 0 n n p(n){[ n φ k (n)]φ l (n) φ k (n)[ +n p(n) n φ l (n)]} n + n 0 = (λ k λ l )ω(n)φ k (n)φ l (n) 0 φ k (n) φ l (n) φ k (n) P k,n (n) = k ( )( ) k k + r n(n ) (n r + ) ( ) r r r N(N ) (N r + ) r=0 +n n(n + n) n P k,n (n) + k(k + )P k,n (n) = 0 45

50 p(n)[ n φ k (n)]φ l (n) φ k (n)[ n φ l (n)] n+ n 0 (.90) = (λ k λ l ) n n=n 0 ω(n)φ k (n)φ l (n) n(n + n)[ n P k,n (n)]p l,n (n) P k,n (n)[ n P l,n (n)] n+ n 0 = [k(k + ) l(l + )] n n=n 0 P k,n (n)p l,n (n) n 0 = 0, n = N 0 N P k,n (n)p l,n (n) = 0, k l n=0 φ k (n) sin θ k n φ k (n) = sin θ k n, θ k sin θ k (n + ) ( cos θ k ) sin θ k n + sin θ k (n ) = 0 +n n sin θ k n + ( cos θ k ) sin θ k n = 0 () {[ n sin θ k n] sin θ l n sin θ k n[ n sin θ k n]} n + n 0 = (cos θ k cos θ l ) n n=n 0 sin θ k n sin θ l n n 0 = 0, n = N, θ k = kπ/n sin θ k N = sin θ l N = 0(k, l ) 0 N n=0 sin θ k n sin θ l n = 0, k l mod N φ k (n) W N (k, n) = exp(inkπ/n) φ k (n) = exp(inkπ/n) k, n, N 46

51 e i(n+)kπ/n e inkπ/n + e i(n )kπ/n (e ikπ/n + e ikπ/n )e inkπ/n = 0 +n n exp(inkπ/n) + λ k exp(inkπ/n) = 0 λ k = sin kπ/n () {[ exp(inkπ/n)] exp( inlπ/n) exp(inkπ/n)[ n exp( inlπ/n)]} n+ n 0 = (λ k λ l ) n n=n 0 exp(in(k l)π/n) n 0 = 0, n = N exp(ikπ) = exp(ilπ) = (k, l ) 0 N exp(in(k l)π/n) = 0, k l mod N n=0 N n=0 W N (k, n)w N ( l, n) = 0, k l mod N 47

52 .0 ε x v v = x ε (.) ε (.) ε x v = lim ε 0 ε (.) ε t x s t t s s (.) v = lim t 0 s t s = v t t 0 s 0 t dt s ds (.3) s v = lim t 0 t = ds dt (.4) t s a a = dv dt (.5) t v m v mv C = mv 48

53 F t 0 F = lim t 0 F = (mv) t (mv) t = d(mv) dt (.6) (.6) F = m d(v) dt (.7) (.5) F = ma (.8). m 0 κ v(t) q d q(t) dt + ω 0q(t) = 0, ω 0 = κ m 0 (.9) dq(t) p(t) p(t) = m 0 v(t) p(t) = m 0 dt dp(t) d q(t) = m 0 dt dt = κq(t), (.0) dq(t) = p(t) dt m 0 (.) n n 49

54 E (t) E E (t) E (t) = m 0v (t) = m 0 ( dq(t) dt ) = m 0 p (t) (.) E (t) E (t) = m 0κq (t) (.3) H(t) H(t) = E (t) + E (t) = m 0 p (t) + κq (t) (.4) H(t) H(t) = C 0 dh(t) = d ( p (t) + ) dt dt m 0 κq (t) = κ m 0 p(t)q(t) + κ m 0 q(t)p(t) = 0 H(t) q(t) = ( q(t) m 0κq (t) + ) m 0κq (t) = κq(t)... H(t) q(t) = dp(t) dt (.0) H(t) p(t) = ( p (t) + ) p(t) m 0 m 0κq (t) = m 0 p(t)... H(t) p(t) = dq(t) dt (.) (.0) (.) (.9) 50

55 I d q(t) (.9) dt = q(t) (.9) q (t) + ω 0q(t) = 0 (.5) q dq(t) (t) = Q(t) = Q(t) Q(t) q(t) dt Q(q(t)) Q(t) dq(t) dq(t) + ω 0q(t) = 0 Q dq(t) dq(t) dq + q(t) dq = s Q(t) + ω 0q(t) = s Q(t) dq, q (t) + ω 0q(t) = dq(t) dt q(t) dq, = dq(t) dq(t) + ω 0q(t) dq(t) dt + ω 0q(t) = Q(t) dq(t) dq(t) + ω 0q(t) 0 dq q 0 dq Q(t) = ± s ω0 q(t) dq(t) = ± s ω0 dt q(t) dt dq(t) = ± s ω 0 q(t) dt dq(t) dq = ± s ω 0 q(t) dq t + r = ± ω 0 arcsin ω 0q(t) s t ( r dq, dq s ω 0 q(t) (.).. s. q(t) = ± sin ω 0 (t + r) ω 0 dq(t) dt = ± d dt ( ) s sin ω 0 (t + r) ω 0 = ± s cos ω 0 (t + r) = m 0 p(t)... p(t) = ±m 0 s cos ω0 (t + r) 5

56 s ± = A, r = t 0 ω 0 { q(t) = A sin ω0 (t t 0 ) (.6a) p(t) = m 0 ω 0 A cos ω 0 (t t 0 ) (.6b) (.9) (.9) (.6) (.9) d dt A sin ω 0(t t 0 ) + ω 0 A sin ω 0 (t t 0 ) = d dt{ ω0 A cos ω 0 (t t 0 ) } + ω 0 A sin ω 0 (t t 0 ) = ω 0A sin ω 0 (t t 0 ) + ω 0 A sin ω 0 (t t 0 ) = 0 (.6) (.9) (.6) (.9) (.9) u(t) (.5) q (t) + ω 0 q(t) = 0 u (t) + ω 0 u(t) = 0 (.7) (.7),.8 q(0) = C 0 q (t) = C u(t) = C 0 u (t) = C (.8) {q(t) u(t)} + {q(t) u(t)} = 0, q(0) u(0) = 0, {q(0) u(0)} = 0 w(t) = q(t) u(t) w (t) + w(t) = 0, w(0) = 0, w (0) = 0 {w (t) + w(t) } {w (t) + w(t) } = w (t)w (t) + w(t)w (t) = w (t){w (t) + w(t)} = 0... w (t) + w(t) = C C : w (t), w(t) (.8) w (t) + w(t) = w (0) + w(0) = 0 w (t) 0, w(t) 0 5

57 w(t) = q(t) u(t) = 0... q(t) = u(t) (.6) (.9) II q(t) = e at (.9) q(t) = e at d dt eat + ω 0e at = 0 a e at + ω 0e at = 0 (a + ω 0)e at = 0 e at 0 a + ω 0 = 0 a = ±iω 0 q(t) = e ±iω 0t (.9) n n (.9) q(t) = ae iω 0t + be iω 0t (.0) q(t) = a{cos ω 0 t + i sin ω 0 t} + b{cos ω 0 t i sin ω 0 t} = (a + b) cos ω 0 t + i(a b) sin ω 0 t (a + b) cos ω 0 t = (a + b) sin ω 0 (t π ω 0 ) π (a + b) = A, ω 0 = t 0 q(t) = A sin ω 0 (t t 0 ) p(t) = m 0 ω 0 A cos ω 0 (t t 0 ) (.9) (.6) 53

58 III II q(t) = e iω0t z(t) (.) (.9) (.) d dt {eiω 0t z(t)} + ω 0e iω 0t z(t) = 0 {iω 0 e iω0t z(t) + e iω0t z (t)} + ω 0e iω0t z(t) = 0 B {iω 0 z (t) + z (t)}e iω 0t = 0 {iω 0 z (t) + z (t)}e iω 0t = 0 e iω0t z (t) dt, d dt eiω 0t z (t) = 0 d dt {eiω 0t z (t)} dt = e iω 0t z (t) = B 0 dt 0 dt t z (t) = Be iω 0t z (t) dt = B e iω0t dt z(t) = B iω e iω0t + b t b z (t) dt, B (.) e iω0t dt q(t) = e iω 0t z(t) = e iω 0t { B iω 0 e iω 0t } + be iω 0t = B iω 0 e iω0t + be iω0t (.9) ( q(t) = b cos ω 0 t + B ) ( ) B sin ω 0 t + i cos ω 0 t + B sin ω 0 t ω 0 ω 0 a sin x + b cos x = a + b cos (x + α) q(t) = b + b cos ω 0 t + α) 4ω 0 = b + b sin ω 0 (t π α ) 4ω 0 ω 0 54

59 b + b 4ω 0 = A, π α ω 0 = t 0 q(t) = A sin ω 0 (t t 0 ) (.9) p(t) = m 0 ω 0 A cos ω 0 (t t 0 ) (.9) (.6).. t t = mδ m δ (), () +t p(t) δ [p(t + δ) p(t)] +t q(t) δ [q(t + δ) q(t)] +t p(t) = κq(t) +t q(t) = m 0 p(t) t = mδ ( m ) p m+ = p m δκq m (.) q m+ = q m + δ m 0 p m (.3) p m, q m m p, q (.), (.3) c, c Ω 0 Ω m p m = c Ω m (.4) q m = c Ω m (.5) c Ω m+ = c Ω m δκc Ω m c Ω m+ = c Ω m + δ m 0 c Ω m (Ω )c + δκc = 0 δ m 0 c + (Ω )c = 0 p, q m 55

60 c, c 0, c, c 0 Ω δκ δ m 0 Ω = 0 (Ω ) + κ δ = 0 m 0 Ω Ω ( ) / κ Ω = ± i δ m 0 ) / Ω = ( + δ κm0, δ > 0 Ω (.4), (.5) p, q m, H(t) = m 0 p(t) + κq(t) t +t H(t) = m 0 +t p(t)p(t) + κ +tq(t)q(t) = m 0 [ +tp(t)][p(t) + p(t + δ)] + κ[ +t q(t)] [q(t) + q(t + δ)] = [ κq(t)][p(t) δκq(t)] + κ[ p(t)][q(t) + δ p(t) ] m 0 m 0 m 0 = δ κ m 0 H(t) > 0 ( +t f(t)g(t) = [ +t f(t)]g(t + δ) + f(t)[ +t g(t)] ), +t H(t) = 0 (0, 0).. (.0), (.) t p(t) δ [p(t) p(t δ)] t q(t) δ [q(t) q(t δ)] 56

61 t p(t) = κq(t) t q(t) = m 0 p(t) t = mδ ( m ) p m = p m δκq m (.6) q m = q m + δ m 0 p m (.7) p, q (.6), (.7) c, c Ω 0 Ω m p m = c Ω m (.8) q m = c Ω m (.9) c Ω m = c Ω m δκc Ω m c Ω m = c Ω m + δ m 0 c Ω m (Ω )c + δκc Ω = 0 δ m 0 c Ω + (Ω )c = 0 c, c 0, c, c 0 Ω δκω δ m 0 Ω Ω = 0 (Ω ) + κ m 0 δ Ω = 0 Ω Ω ( ) /δ κ ± i m 0 Ω = + δ κ m 0 ) / Ω = ( + δ κm0 Ω δ > 0 (.8), (.9) p, q m, 57

62 H(t) = m 0 p(t) + κq(t) t t H(t) = m 0 t p(t)p(t) + κ tq(t)q(t) = m 0 [ tp(t)][p(t δ) + p(t)] + κ[ t q(t)] [q(t δ) + q(t)] = [ κq(t)][p(t) + δκq(t)] + κ[ p(t)][q(t) δ p(t) ] m 0 m 0 m 0 = δ κ m 0 H(t) < 0, t H(t) = 0,..3 I ( δ ) t p(t) (δ) [p(t + δ) p(t δ)] t q(t) (δ) [q(t + δ) q(t δ)] t p(t) = κq(t) t q(t) = m 0 p(t) t = mδ ( m ) p m+ = p m δκq m (.30) q m+ = q m + δ m 0 p m (.3) p, q p m = c Ω m (.3) q m = c Ω m (.33) 58

63 (.30), (.3) (Ω )c + δκωc = 0 δ m 0 Ωc + (Ω )c = 0 c, c 0, c, c 0 Ω δκω δ m 0 Ω Ω = 0 (Ω ) + 4 κ m 0 δ Ω = 0 Ω Ω ( ) / κ Ω = ± i δ m 0 ) / Ω = ( + δ κm0, δ > 0 Ω (.4), (.5) p, q m,..4 II +t p(t) = kq(t), (.34) t q(t) = m 0 p(t) (.35) (.35) +t q(t) = m 0 p(t) p m+ = p m δkq m q m+ = q m + δ m 0 p m+ p m = c Ω m q m = c Ω m 59

64 ( ) Ω δ k Ω + = 0 m 0 ω 0 ω 0 = k m 0 Ω Ω ( ) ω0δ Ω + = 0 Ω = ω 0δ ± ω 0 δ [ ( ω 0δ ) ] [ ( ) Ω = ( ω 0 δ ) + ω0 δ ω 0δ ] = ω 0δ + 4 ω4 0δ ω4 0δ 4 ω 0δ = ω 0δ + ω4 0δ 4 ω4 0δ 4 ω0δ 4 ω 0δ ω 0δ (ω 0 > 0, δ > 0 ) /δ +t p(t) = kq(t) t m 0 p(t) H(t) = p (t) δk p(t)q(t) + m 0 m 0 kq (t) = m 0 [p(t) δk q(t) ] + k [ ( ) ] ω 0δ q (t) (.36) +t H(t) = 0 [ (.36) ω 0δ ] p(t), q(t) ω 0δ 60

65 t p(t) = kq(t) +t q(t) = m 0 p(t) +t p(t) = kq(t + δ) Ω ( ) ω0δ Ω + = 0..5 III..4 δ +t H(t) = 0 δ H(t) = m 0 P (t) + κq (t) +t H(t) = m 0 [ +t p(t)][p(t + δ) + p(t)] + κ [ +tq(t)][q(t + δ) + q(t)] +t H(t) = 0 +t p(t), +t q(t) +t p(t) = [q(t + δ) + q(t)] (.37) κ +t q(t) = m 0 [p(t + δ) + p(t)] (.38) δ 0 (.0) (.) p m+ = ( δ κ 4m 0 )p m δκq m (.39) + δ κ 4m 0 q m+ = ( δ κ 4m 0 )q m + δ m 0 p m (.40) + δ κ 4m 0 p m = c Ω m q m = c Ω m (.39)(.40) 6

66 c ( + δ κ 4m 0 ( δ κ { 4m 0 ) }ω ( + δ κ 4m 0 c ω = ( δ κ 4m 0 )c δκc (.4) + δ κ 4m 0 c ω = ( δ κ 4m 0 )c + δ m 0 c (.4) + δ κ 4m 0 ) ( c ω = δ κ 4m 0 ) ω = ( δ κ 4m 0 ) c + δ κ c m 0 ( δ κ 4m 0 ) ( + δ κ 4m 0 )ω ) ( δ ) κ { }ω + δ κ 4m 0 m 0 ω ( ) ( + δ κ δ ω ) ( κ { }ω + δ κ δ ) κ δ κ 4m 0 4m 0 4m 0 4m 0 4m 0 ( ) ( + δ κ δ ω ) ( ) κ { }ω + + δ κ = 0 4m 0 4m 0 4m 0 ω { ( δ κ 4m 0 ) } ω + = 0 ( + δ κ 4m 0 ) D/4 = { ( δ κ 4m 0 ) } ( + δ κ 4m 0 ) 4 = ( δ κ 4m 0 ) ( + δ κ 4m 0 ) ( + δ κ 4m 0 ) = 4 δ κ 4m 0 ( + δ κ 4m 0 ) < 0 ω = δ shin..6 II t H(t) = 0 t H(t) = [ t p(t) ] + m 0 κ[ tq(t) ] = [ t p(t)][p(t + ɛ) + p(t ɛ)] + m 0 κ[ tq(t)][q(t + ɛ) + q(t ɛ)] 6

67 t H(t) = 0 t p(t), t q(t) t p(t) = κ[q(t + ɛ) + q(t ɛ)] t q(t) = [p(t + ɛ) + p(t ɛ)] m 0 p m+ p m = δκ(q m+ + q m ) p m+ + p m = m 0 δ (qm+ q m ) p m+, q m+ p m+ = ( δ κ m 0 )p m δκq m + δ κ m 0 q m+ = ( δ κ m 0 )q m δκp m + δ κ m 0 p m = c Ω m q m = c Ω m ( + δ κ ) Ω 4 ( δ4 κ )Ω + ( + δ κ ) = 0 m 0 m 0 m 0 Ω =...5 tanchu ,. 63

68 ..7 δ +t p(t) = κ [q(t + δ) + q(t)] (.43) +t q(t) = [p(t + δ) + p(t)] m 0 (.44) () +t (.44) +tq(t) = m 0 [ +t p(t + δ) + +t p(t)] +tq(t) = ω 0 [q(t + δ) + q(t + δ) + q(t)] 4 (ω0 = κ/m 0 ) +t q(t + δ) q(t) δ = ω 0 [q(t + δ) + q(t + δ) + q(t)] 4 δ [ +tq(t + δ) +t q(t)] = ω 0 [q(t + δ) + q(t + δ) + q(t)] 4 q(t + δ) q(t + δ) + q(t) δ = ω 0 [q(t + δ) + q(t + δ) + q(t)] 4 q(t + δ) q(t + δ) + q(t) = δ ω0 [q(t + δ) + q(t + δ) + q(t)] 4 ( + δ ω 0 4 )q(t + δ) ( δ ω 0 4 )q(t + δ) + ( + δ ω 0 4 q(t) = 0 q(t + δ) δ ω /4 + δ ω q(t) + q(t δ) = 0 /4 φ 0 tan (δφ 0 /) = δω 0 / q(t) δ ω 0/4 + δ ω 0 /4 = cos φ 0δ q(t) q(t + δ) tan ( δφ 0 ) + tan ( δφ + δ) + q(t) = 0 0 )q(t q(t + δ) cos ( δφ 0 )( tan ( δφ 0 ))q(t + δ) + q(t) = 0 q(t + δ) cos ( δφ 0 ( δφ0 )cos ) sin ( δφ 0 ) cos ( δφ 0 ) q(t + δ) cos(φ 0 δ)q(t) + q(t δ) = 0 (.45) (.9) (.45) A, t 0 q = A sin (φ 0 (t t 0 )) (.46) p = m 0 ω 0 A cos (φ 0 (t t 0 ) (.47) 64

69 q(t + δ) + q(t δ) = A(sin (φ 0 (t t 0 ) + φ 0 δ) + sin (φ 0 (t t 0 ) φ 0 δ)) = A cos (φ 0 δ) sin (φ 0 (t t 0 )) = cos (φ 0 δ)q(t) (.45) H H = κa [sin (φ 0 (t t 0 ) + cos (φ 0 (t t 0 ))] (.48) (.46) (.47) (.6), q(t) = A sin (ω 0 (t t 0 ) p(t) = m 0 ω 0 A cos (ω 0 (t t 0 )) t ω 0 ω 0 t = mδ (.46) (.47) (.6a), (.6b) (.43),(.44) tan (δφ 0 /) = δω 0 / δ 0 φ 0 = ω 0 (.46) (.47) (.6a) (.6b). dn dt = αn( λn), α, λ (.49) α λ t dn(t) ( N(t) + dn(t) = αn(t)( λn(t)) dt d N(t) dx N(t)( λn(t)) = α N(t)( λn(t)) = α dt ) λ = α(t + c) λn(t) log N(t) log λn(t) = α(t + c) N(t) = exp α(t + c) λn(t) 65

70 c 0 = exp α(c + t 0 ) exp α(t + c) N(t) = + λ exp α(t + c) exp α(t t 0 ) = c 0 + λ exp α(t t 0 ), (0 < N(t) λ ) N(t 0 ) = c 0 +λ t N( ) = λ N f, g N = g f (.49) d g dt f = α g f ( λ g f ) (.50) dg dt f g df dt f = α g ( λ g ) (.5) f f dg dt f g df = αg(f λg) (.5) dt F (f, g), h s.t F (fh, gh) = F (f, g) h (.5 check dgh fh ghdfh = αgh(fh λgh) ( dt dt dg dt h + g dh ) ( df fh gh dt dt h + f dh ) = h αg(f λg) dt dg dt f g df = αg(f λg) dt (.5) (.5) (.5) ( ) ( ) dg df dt αg f = αg dt αλg (.53) β df αλg = βf dt dg dt αg = βg (.54) 66

71 (.53) f, g t f(t) f(t) exp g(t) g(t) exp (.54) d t t t [f(t) exp βdt] αλg(t) exp βdt = βf(t) exp βdt dt d t t t [g(t) exp βdt] αg(t) exp βdt = βg(t) exp βdt dt t t t df dt exp βdt + f(t) d dt exp βdt αλg(t) exp βdt = βf(t) exp t t t dg dt exp βdt + g(t) d dt exp βdt αg(t) exp βdt = βg(t) exp t [ df dt αλg(t)] exp βdt = 0 0 t [ dg dt αg(t)] exp βdt = 0 0 df dt αλg(t) = 0 dg dt αg(t) = 0 0 t 0 βdt βdt t 0 t 0 βdt βdt f = c 0 + λ exp α(t t 0 ) g = exp α(t t 0 ) (.55) N N = g f = exp α(t t 0 ) c 0 + λ exp α(t t 0 ) (.56).. d N(t) = αn(t)[ λn(t)] dt d dt +t δ +t N(t) = αn(t)[ λn(t)] N(t + δ) N(t) = δαn(t)[ λn(t)] 67

72 N(t + δ) a = + δα δαλ = + δλ t = nδ N(t + δ) = N(t) + δαn(t)[ λn(t)] N(t + δ) = { + δα[ λn(t)]} N(t) N(t + δ) = [ + δα λδαn(t)]n(t) [ N(t + δ) = ( + δα)n(t) λδα ] + δα N(t) N(nδ) = N n N n+ = an n ( N n ) a 4 a (0, y) y a a =.5.4 (0, 0.5) (0, 0.6) (0, 0.8) a =

73 .4 (0,0.5) (0,0.6) (0,0.8) dg(t) f(t) g(t) df(t) = αg(t)[f(t) λg(t)] dt dt d dt +t [ +t g(t)]f(t) g(t)[ +t f(t)] = αg(t)[f(t) λg(t)] [g(t + δ) g(t)]f(t) g(t)[f(t + δ) f(t)] = δαg(t)[f(t) λg(t)] g(t + δ)f(t) g(t)f(t + δ) = δαg(t)[f(t) λg(t)] (.57) f(t) f(t)h(t) h(t) g(t) g(t)h(t) (.57) g(t + δ)h(t + δ)f(t)h(t) g(t)h(t)f(t + δ)h(t + δ) = δαg(t)h(t)[f(t)h(t) λg(t)h(t)] h(t + δ)h(t)[g(t + δ)f(t) g(t)f(t + δ)] = {δαg(t)[f(t) λg(t)]} h (t) h (t) h(t + δ)h(t) δ 0 I (.57) g(t) g(t + δ) g(t + δ)f(t) g(t)f(t + δ) = δαg(t + δ)[f(t) λg(t)] h(t + δ)h(t)[g(t + δ)f(t) g(t)f(t + δ)] = {δαg(t + δ)[f(t) λg(t)]} h(t + δ)h(t) 69

74 II (.57) g(t), f(t) g(t + δ), f(t + δ) g(t + δ)f(t) g(t)f(t + δ) = δαg(t)[f(t + δ) λg(t + δ)] III (.57) g(t + δ)f(t) g(t)f(t + δ) = δαg(t)[f(t) λg(t)] = { } δαg(t)[f(t) λg(t)] + { } δαg(t)[f(t) λg(t)] (t) (t + δ) g(t + δ)f(t) g(t)f(t + δ) = { } δαg(t + δ)[f(t) λg(t)] + { } δαg(t)[f(t + δ) λg(t + δ)] g(t + δ)f(t) g(t)f(t + δ) = δα[g(t + δ)f(t) + g(t)f(t + δ)] δαλg(t)g(t + δ) I II III g(t + δ)f(t) g(t)f(t + δ) (.58) = δαg(t + δ)[f(t) λg(t)] g(t + δ)f(t) g(t)f(t + δ) (.59) = δαg(t)[f(t + δ) λg(t + δ)] g(t + δ)f(t) g(t)f(t + δ) = (.60) δα[g(t + δ)f(t) + g(t)f(t + δ)] δαλg(t)g(t + δ) I I g(t + δ)f(t) g(t)f(t + δ) = [g(t + δ) g(t)]f(t) g(t)[f(t + δ) f(t)] I [g(t + δ) g(t)]f(t) g(t)[f(t + δ) f(t)] = δαg(t + δ)[f(t) λg(t)], [f(tδ) f(t)] = δαλg(t + δ) [g(t + δ) g(t)] = δαg(t + δ) (.6) t = nδ ( n ) f n+ f n = δαλg n+ (.6) g n+ g n = δαg n+ 70

75 (.6) +t f(t) = λ +t g(t) f(t) = c 0 + λg(t) (.6) g n+ = g n = δα g n = ( δα) g n g n δα = = ( δα) n g 0 = ( δα) (t t 0 ) δ g(t) = ( δα) (t t 0 ) δ f, g f(t) = c 0 + λg(t) g(t) = ( δα) (t t 0 ) δ (.63) II II g(t + δ)f(t) g(t)f(t + δ) = [g(t + δ) g(t)]f(t) g(t)[f(t + δ) f(t)] g(t + δ)f(t) g(t)f(t + δ) = [g(t + δ) g(t)]f(t + δ) g(t + δ)[f(t + δ) f(t)] II [g(t + δ) g(t)]f(t) g(t)[f(t + δ) f(t)] = δαg(t)[f(t + δ) λg(t + δ)] [g(t + δ) g(t)]f(t + δ) g(t + δ)[f(t + δ) f(t)] = δαg(t)[f(t + δ) λg(t + δ)] [f(t + δ) f(t)] = δα +δαλg(t + δ) [g(t + δ) g(t)] = δαg(t) 7

76 [f(t + δ) f(t)] = δαλg(t) [g(t + δ) g(t)] = δαg(t) I f(t) = c 0 + λg(t) g(t) = ( δα) (t t 0 ) δ (.64) III III g(t + δ)f(t) g(t)f(t + δ) = [g(t + δ) g(t)]f(t + δ) g(t + δ)[f(t + δ) f(t)] δα[g(t + δ)f(t) + g(t)f(t + δ)] δαλg(t)g(t + δ) = δα[g(t) + g(t + δ)]f(t + δ) g(t + δ)[δαλg(t) δαf(t) + δαf(t + δ)] III [g(t + δ) g(t)]f(t + δ) g(t + δ)[f(t + δ) f(t)] = δα[g(t + δ) + g(t)]f(t + δ) g(t + δ)[δαλg(t) δαf(t) + δαf(t + δ)] [f(t + δ) f(t)]( δα) = δαλg(t) [g(t + δ) g(t)] = δα[g(t) + g(t + δ)] I, II f(t) = c 0 + λg(t) g(t) = [ + δα δα ] (t t0)/δ (.65) I, II, III N(t) = g(t) f(t) I II III N(t + δ) N(t) = δαn(t + δ)[ λn(t)] N(t + δ) N(t) = δαn(t)[ λn(t + δ)] { } N(t + δ) N(t) = δα [N(t) + N(t + δ)] λn(t)n(t + δ) t = nδ 7

77 N n I N n+ = δα( λn n ) II N n+ = ( + δα)n n + δαλn n ) III N n+ = (.63), (.64), (.65) I N(t) = ( + δα)n n δα + δαλn n) ( δα) (t t0)/δ c 0 + λ( δα) (t t 0)/δ ( + δα) (t t0)/δ II N(t) = c 0 + λ( + δα) (t t 0)/δ III N(t) = c 0 + λ ( ) + (t t0)/δ δα δα ( + δα δα ) (t t0 )/δ I = exp (δ ˆα) δα II III + δα = exp (δ ˆα) + δα + = exp(δ ˆα) δα N = g f = exp (ˆα(t t 0 )/δ) c 0 + λ exp(ˆα(t t 0 )/δ) I, II, III, I N n+ N n N n+ N n 0 N n+ N n = N n δα( λn n ) N n = N n N n ( δα( λn n )) δα( λn n ) = N nδα N nδαλ δα( λn n ) = N nδα( N n λ) δα( λn n ) 0 N(t) λ N nδα( N n λ) 0 ( δ α δα( λn n ) 0 δ α( λn 0 N(t) n) λ δ I, II, III 73

78 logistic "logio5" "logio5" "logi3o5" I, III.3 p, q r(x) x d dx y + px d y + qy = r(x). dx r(x) = 0 x d dx y + px d y + qy = 0 (.66) dx (.66) D = x d dx x k k Dx k = x d dx xk = kx k D = x d dx x d d = x dx dx + x d dx (.66) D y + (p )Dy + qy = 0. y = c x k + c x k 74

79 k j + (p )k j + q = 0, j =, (.66) D = x d dx D t t t = log x x d dx y = dy dt x d dx y = d y dt dy dt (.66) d y dt dy dt + pdy dt + qy = 0 y y = c e kt + c e kt p, q r(x). x d y dx x dy 3y = 0, dx D y Dy 3y = 0 (D 3)(D + )y = 0 Dy 3y = 0 x dy dx 3y = 0 y 3 y dx = x log y = log x 3 y = x 3 Dy + = 0 y = x y = ax 3 + b (.67) x 75

80 . x d y dy 4x + 6y = x, dx dx x = r(x) = 0 y = ax + bx 3 + Y Y Y = Ae t d dt (Aet ) 5 d dt (Aet ) + 6Ae t = e t Ae t 5Ae t + 6Ae t = e t Ae t = e t, A = e t = x y = ax + bx 3 + x 3. x d y dx x dy dx + y = 0, y = x D y Dy + y =D x u(x) + Dx Du(x) + x D u(x) Dx u(x) x Du(x)+x u(x) 0 y = x u(x) Du(x) = v(x) Dx v(x) + x Dv(x) x v(x) = 0(Dx = x x ) x Dv(x) = 0 x du dx = b du dx dx = v(x) = c 0 ( ) b x dx u(x) = b log x + a y = (a + b log x)x 4. x d y dx x dy + 5y = 0, dx 76

81 D = ± i R,±I y = ce (R+iI)t + de (R ii)t = (ce iit + de iit )e Rt (â = c + d, ˆb = i(c d) ) = [â cos It + ˆb sin It]e Rt ( R =, I = ) = [âe i log x + ˆbe i log x ]x = [â cos(log x ) + ˆb sin log x ]x..3. D = x d dx D = x d dx D +x = x +x D +x k x k x k = x(x + ɛ)(x + ɛ) (x + (k )ɛ) k D +x x k = kx k. D +x = x +x + x +x D +x D +xy + (p )D +x y + qy = r(x) x +ty + px +x y + qy = r(x) x +ty x +x y3y = 0 D +x D +xy D +x y 3y = 0 (D +x 3)(D +x + )y = 0 77

82 (D +x 3)y a = 0 (D +x + )y b = 0 y a = x 3 y b = x ɛ y = ax 3 + b x ɛ a, b (.67) ɛ 0 (.67).4 dy dx + p(x)y = q(x)ym+ (.68) (p(x), q(x) x ) m =, 0 m m (m, 0) f, g α y ( ) α g y = (.69) f (.68) dg dx α f g df dx f + p(x) g f = q(x) α = m ( ) mα+ g (.70) f (.7) (.70) dg dx f g df dx mp(x)gf = mq(x)f (.7) f(x) f (x)h(x) = f(x) (.73) g(x) g (x)h(x) = g(x) (.74) [ ] [ ] dg df dx + mq(x)f f g dx + mp(x)f = 0 (.75) 78

83 β(x) h(x) df + mp(x)f = β(x)f (.76) dx dg + mq(x)f = β(x)g (.77) dx dh(x) dx (.76) = β(x)h(x) (.78) d(f h) + mp(x)f h = β(x)f h dx df dx h + f dh dx + mp(x)f h = β(x)f h df dx h + f β(x)h + mp(x)f h = β(x)f h df dx + mp(x)f = β(x)f β(x)f df dx + mp(x)f = 0 (.79) β(x) 0 (.77) dg dx + mq(x)f = 0 (.80) (.79) df dx f = mp(x) log f = ( mp(x)) dx (.80) [ f = exp m dg dx = mq(x)f ] p(x) dx (.8) g = m q(x)f dx (.8) (.68) y = u m (.83) 79

84 d dx u m + p(x)u m = q(x)u m du u m m dx + p(x)u m = q(x)u m du + p(x)u = q(x) m dx du mp(x)u = mq(x) (.84) dx du h dx mp(x) = u h (.85) [ u h (x) = exp m ] p(x) dx (.86) u(x) = C(x)u h q(x) u(x) = m dxu h (x) (.87) u h (3.90) dg dx f g df mp(x)gf = mq(x)f dx,. [g(x + ɛ) g(x)]f(x) g(x)[f(x + ɛ) f(x)] ɛmp(x)g(x)f(x + ɛ) = ɛmq(x)f(x)f(x + ɛ). [g(x + ɛ) g(x)]f(x) g(x)[f(x + ɛ) f(x)] ɛmp(x)g(x + ɛ)f(x) = ɛmq(x)f(x)f(x + ɛ) f(x + ɛ) f(x) = ɛmp(x)f(x + ɛ) (.88) g(x + ɛ) g(x) = ɛmq(x)f(x + ɛ) (.89) f(x + ɛ)[g(x + ɛ) g(x)] [f(x + ɛ) f(x)]g(x + ɛ) = ɛmp(x)g(x + ɛ)f(x) ɛmq(x)f(x)f(x + ɛ) 80

85 f(x + ɛ) f(x) = ɛmp(x)f(x) (.90) g(x + ɛ) g(x) = ɛmq(x)f(x) (.9) x = nɛ(n ) f(x), g(x), p(x), q(x) f n, g n, p n, q n (.88) (.89) f n+ = f n + ɛmp n, g n+ = g n ɛmq n f n+ n f n = f 0 k=0 + ɛmp k, n g n = g 0 ɛmq k f k+ (.90) (.9) k=0 f n+ = f n ( ɛmp n ) g n+ = g n ɛmq n f n n f n = f 0 ( ɛmp k ) k=0 n g n = g 0 ɛmq k f k k=0 g(x) = u(x)f(x) +x u(x) mp(x)u(x) = mq(x) +x u(x) mp(x)u(x + ɛ) = mq(x) (3.90) du mp(x)u = mq(x) dx 8

86 u(x) = y m (x) d dx y α = α dy y α+ dx (.9) dy dx + p(x)y = q(x)ym+ (.93) y(x) (.9) (.93) m y m y(x)y(x + ɛ) y(x + (m )ɛ), m y m (x) =, m = 0 y(x ɛ)y(x ɛ) y(x m )ɛ), m m mɛ +x m +mx y(x) = y(x + mɛ) y(x) mɛ y(x m ɛ) y(x) +mx y(x) = m ɛ m +x y m (x) = ɛ [ y(x + ɛ)y(x + ɛ) y(x mɛ) y(x)y(x + ɛ) y(x + (m )ɛ) ] m = [y(x) y(x + mɛ)] y(x)y(x + ɛ) y(x + mɛ) mɛ = m y m+ (x) +mxy(x) m +x y m (x) = [y(x)y(x ɛ) y(x ( m )ɛ) y(x ɛ)y(x ɛ) y(x m ɛ)] ɛ = y(x ɛ)y(x ɛ) y(x ( m )ɛ) m [y(x) y(x m ɛ)] mɛ = m y m+ (x) +mxy(x) 8

87 +x y m (x) = m y m+ (x) +mxy(x) u(x) = y m (x). +x u(x) mp(x)u(x) = mq(x). +x u(x) mp(x)u(x + ɛ) = mq(x). +mx y(x) + p(x)y(x + mɛ) = q(x)y m+ (x). +mx y(x) + p(x)y(x) = q(x)y m+ (x) p(x) =, q(x) = shin ber I, ber II shin ber ber

88 .4... [g(x) g(x ɛ)]f(x) g(x)[f(x) f(x ɛ)] ɛmp(x)g(x)f(x ɛ) = ɛmq(x)f(x)f(x ɛ) (.94). [g(x) g(x ɛ)]f(x) g(x)[f(x) f(x ɛ)] ɛmp(x)g(x ɛ)f(x) = ɛmq(x)f(x)f(x ɛ) (.95) g(x) g(x ɛ) = ɛmq(x)f(x ɛ) (.96) f(x) f(x ɛ) = ɛmp(x)f(x ɛ) (.97) g(x) g(x ɛ) = ɛmq(x)f(x) (.98) f(x) f(x ɛ) = ɛmp(x)f(x) (.99) x = nɛ(n ) f(x), g(x), p(x), q(x) f n, g n, p n, q n. (.96),(.97) f n = ( ɛmp n )f n g n = g n ɛmq n f n n f n = f 0 ( ɛmp k ). (.98) (.99) k= n g n = g 0 ɛmq k+ fk k=0 f n f n = + ɛmp n g n = g n ɛmq(x)f n n f n = f 0 k= n g n = g 0 + ɛmp k ɛmq k+ f k+ k=0 84

89 g(x) = u(x)f(x). x u(x) mp(x)u(x) = mq(x). x u(x) mp(x)u(x ɛ) = mq(x) m y m (x) y(x)y(x ɛ) y(x (m )ɛ), m y m (x) =, m = 0 y(x+ɛ)y(x+ɛ) y(x+ m )ɛ), m m mɛ mx mx = m y(x) y(x mɛ) mɛ y(x) y(x+ m ɛ) mx y(x) = m ɛ m x y m (x) = ɛ [ y(x)y(x ɛ) y(x (m )ɛ) y(x ɛ)y(x ɛ) y(x m ) ] = y(x mɛ) y(x) ɛ y(x)y(x ɛ) y(x mɛ) m = [y(x mɛ) y(x)] y(x)y(x ɛ) y(x mɛ) mɛ = m y m+ (x) mxy(x) m x y m (x) = [y(x + ɛ)y(x + ɛ) y(x+ m ɛ) y(x)y(x + ɛ) y(x+ m )ɛ] ɛ = y(x + ɛ)y(x + ɛ) y(x + ( m +)ɛ)[y(x+ m ɛ) y(x)] ɛ = m y m+ (x) mxy(x) 85

90 x y m (x) = m y m+(x) mxy(x) u(x) = y m (x),,. mx y(x) + p(x)y(x mɛ) = q(x)y m+ (x). mx y(x) p(x)y(x) = q(x)y m+ (x) [g(x + ɛ ) g(x ɛ )]f(x + ɛ ) g(x + ɛ )[f(x + ɛ ) f(x ɛ )] ɛmp(x)g(x + ɛ )f(x ɛ ) = ɛmq(x)f(x + ɛ )f(x ɛ ). [g(x + ɛ ) g(x ɛ )]f(x ɛ ) g(x ɛ )[f(x + ɛ ) f(x ɛ )] ɛmp(x)g(x ɛ )f(x + ɛ ) = ɛmq(x)f(x + ɛ )f(x ɛ ) g(x + ɛ ) g(x ɛ ) = ɛmq(x)f(x + ɛ f(x + ɛ f(x ɛ ) = ɛmp(x)f(x + ɛ (.00) (.0) g(x + ɛ ) g(x ɛ ) = ɛmq(x)f(x + ɛ ) (.0) f(x + ɛ ) f(x ɛ ) = ɛmp(x)f(x + ɛ ) (.03) x = nɛ(n ) f(x), g(x), p(x), q(x) f n, g n, p n, q n. (.00) (.0) f n+ = ( ɛp n )f n g n+ = g n ɛq n f n 86

91 n f 0 ( ɛp k ) (l =,, ) k=l f n = n f ( ɛp k ) (l =,, ) k=l g 0 g n = g k k=l+ ɛq k f k (l =,, ) k ɛq k f k (l =,, ) k=l. (.0) (.03) f n+ = f n ɛmp n f n+ g n+ = g n ɛmq n f n+ n f 0 (l =,, ) ɛmp k k=l+ f n = n f 0 (l =,, ) ɛmp k k=l n g 0 ɛmq k f k (l =,, ) k=l+ g n = n g ɛmq k f k (l =,, ) k=l, g(x) = u(x)f(x) x u(x) mp(x)u(x + ɛ ) = mq(x) m y ((m)) (x) y ((m)) (x) = y(x (m )ɛ )y(x (m 3)ɛ ) y(x + (m 3)ɛ )y(x + (m )ɛ ), m, m = 0 y(x (m )ɛ )y(x (m 3)ɛ ) y(x+ (m 3)ɛ )y(x+ (m )ɛ mx mx y(x) = mɛ mɛ y(x + ) f(x ) mɛ 87, m )

92 m mx y(x) = m x y ((m)) (x) m ɛ m ɛ y(x ) y(x + ) m ɛ = ɛ [ y(x (m )ɛ )y(x (m 4)ɛ ) y(x + (m )ɛ )y(x + mɛ y(x mɛ (m )ɛ )y(x ) y(x + (m 4)ɛ )y(x (m )ɛ ) ] = ɛ y(x mɛ (m )ɛ )y(x ) y(x + (m )ɛ = m y ((m)) (x) mxy(x) m x y ((m)) (x) = ɛ (m )ɛ [y(x )y(x (m )ɛ )y(x y(x mɛ = (m )ɛ y(x )y(x ɛ = m y ((m)) (x) mxy(x) (m 4)ɛ ) y(x + (m 4)ɛ ) y(x + (m 4)ɛ ) y(x + )y(x mɛ ) (m )ɛ )y(x + mɛ ) (m )ɛ )y(x )] (m 4)ɛ )y(x + x y ((m)) (x) = m y ((m)) (x) mxy(x) mɛ mɛ ) y(x + )[y(x )] (m )ɛ )[y(x + mɛ mɛ ) y(x )] u(x) = y ((m)) (x), x u(x) mp(x)u(x + ɛ ) = mq(x) mx y(x) + p(x)y(x mɛ ) = q(x)y((m+)) (x) by.5 du dt = a(t) + b(t)u + c(t)u (.04) 88

93 (Riccati) a(t), b(t), c(t). (.04) u (t) du (t) dt du(t) dt + dv(t) dt dv(t) dt u(t) = u (t) + v(t) = a(t) + b(t)(u (t) + v(t)) + c(t)(u (t) + v(t)) = a(t) + b(t)(u (t) + v(t)) + c(t)(u (t) + u (t)v(t) + v(t) ) = du (t) dt + [b(t) + c(t)u (t)]v(t) + c(t)v(t) = [b(t) + c(t)u (t)]v(t) + c(t)v(t) v(t) d dt v(t) = [b(t) + c(t)u (t)] v(t) c(t) /v(t) u (t) /v(t). (.04) u (t), u (t) u(t) = g(t) f(t) (.05) (.04) dg dt f g df dt = a(t)f + b(t)fg + c(t)g α(t) { } { } dg df a(t)f [b(t) + α(t)]g f g + [b(t) α(t)]f + c(t)g = 0 dt dt β(t) df + [b(t) α(t)]f + c(t)g = β(t)f dt dg a(t)f [b(t) + α(t)]g = β(t)g dt df + b(t)f + c(t)g = [α(t) + β(t)]f dt dg a(t)f b(t)g = [α(t) + β(t)]g dt 89

94 { } f(t) f(t) exp [α(t) + β(t)dt] { } g(t) g(t) exp [α(t) + β(t)dt] df + b(t)f + c(t)g = 0 dt (.06) dg a(t)f b(t)g = 0 dt (.07) {f, g }, {f, g } c, c f = c f + c f g = c g + c g u = g/f c 0 (= c /c ) u = g c 0 g f c 0 f c 0 = uf g uf g (.08) u, u (.05) u = g f u = g f (.08) c 0 = u u f (.09) u u f (.06) df dt = f [ b(t) c(t)u ] df dt = f [ b(t) c(t)u ] f df dt = b(t) c(t)u f df dt = b(t) c(t)u d dt log f = b(t) c(t)u d dt log f = b(t) c(t)u 90

95 [ ] d dt log f = c(t)(u u ) t [ ] f = exp c(t)(u u )dt f f (.09) u(t) c 0 = u u [ ] exp c(t)(u u )dt (.0) u u 3. (.04) u, u, u 3 u(t) u(t) u (t) u 3 (t) u (t) u(t) u (t) u 3 (t) u (t) = C (.) C (.06), (.07) df + b(t)f + c(t)g = 0 dt dg a(t)f b(t)g = 0 dt {f, g }, {f, g } {f, g} c, c f = c f + c f g = c g + c g {f 3, g 3 } c 3, c 4 f 3 = c 3 f + c 4 f g 3 = c 3 g + c 4 g u = g/f c 0 (= c /c ) u = g c 0 g f c 0 f u 3 = g 3 /f 3 ĉ 0 (= c 4 /c 3 ) u 3 = g ĉ 0 g f ĉ 0 f 9

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information