Size: px
Start display at page:

Download ""

Transcription

1 Research on interference-filter-stabilized external cavity diode lasers with narrow linewidth

2

3 ECDL IFLD ECDL IFLD IFLD Cateye Cateye ABCD Cateye IFLD IFLD PDH

4 Pseudo-Voigt fitting I-P A LD 81 B PD 83 C 85 D IFLD Cateye

5 Bose-Einstein BEC:Bose-Einstein Condensation 1925 Einstein [1] BEC BEC [2, 3] BEC 70 BEC 1960 T. H. Maiman [4] 1975 T. W. Hänsch A. L. Schawlow [5] 1985 S. Chu Na [6] 1987 E. L. Raab [7] 1995 BEC Rb [8] Na [9] Li [10] E. A. Cornell C. E. Wieman W. Ketterle R. G. Hulet E. A. Cornell C. E. Wieman W. Ketterle Sr [11] Yb [12] BEC [13] 2 1 C. A. Regal BCS-BEC [14] Mott [15]

6 6 1 BEC MHz khz MHz [16, 17, 18] 1.2 LD(Laser Diode) AR(Anti Reflection) ECDL(External Cavity Diode Laser) IFLD(Interference-Filter-stabilized external cavity Diode Laser) L D LD khz PZT Piezoelectric Transducer PZT PZT nm PZT 3

7 1.3 7 PZT ECDL IFLD IFLD ECDL BEC BEC ECDL IFLD IFLD ECDL IFLD IFLD IFLD ECDL IFLD 1.4 ECDL IFLD ECDL 1.1 ECDL LD 0 1 LD 1

8 8 1 LD ECDL ECDL LD [16] 1 LD [17] 1.2 ECDL 1.1 ECDL LD PZT 1.2 ECDL 2 LD PZT

9 1.4 ECDL IFLD 9 ECDL PZT 1.3 ECDL [19, 20] LD eagleyard AR LD EYP- RWE SOT Edmund Optics Newport U100-P LD PZT Noliac CMAP09 Agilent Torrseal ECDL LD 1.3 ECDL IFLD 1.3 ECDL ECDL 25mm LD

10 IFLD IFLD IFLD 1.4 IFLD IFLD LD Cateye 2.2 Cateye ECDL LD ECDL ECDL IFLD 1.4 IFLD LD PZT IFLD 2

11 1.4 ECDL IFLD IFLD PZT 65mm

12

13 13 2 IFLD IFLD Cateye 2.1 Cateye Cateye IFLD IFLD [18] 1 LD(Laser Diode) AR(Anti Reflection) eagleyard AR LD EYP-RWE SOT IFLD D 2.1 Cateye Cateye 1 ECDL IFLD 1 Cateye 2.2 Cateye Cateye ECDL

14 14 2 IFLD 2.1 IFLD IFLD L = 65mm FSR Free Spectral Range 2.3GHz 4.1 ν c MHz IFLD = FSR ν c 4.0 Cateye nm 0.3 ( PSM30-15C /800) Cateye Thorlabs AR ( C280TMD-B f = 18.4mm) 2 Cateye Cateye 2 LD ECDL Cateye ECDL Cateye 1 LD ECDL Cateye

15 2.1 Cateye Cateye IFLD Cateye 2 f = 18.4mm ABCD Cateye Cateye Cateye ABCD ABCD θ sinθ θ ( ) r r θ θ ( ) r, θ A B r, θ r 1, θ 1, r 2, θ 2 C D ( r 2 θ 2 ) = ( A C ) ( B D r 1 θ 1 ) (2.1) ( ) A B r, θ C D ABCD d ABCD r 2 = r 1 + d θ 1 θ 2 = θ 1

16 16 2 IFLD ( ) ( ) A B 1 d = C D 0 1 ( ) ( ) A B 1 0 ABCD = C D 1/f 1 r 1 = r 2 1/a+1/b = 1/f ( ) ( ) n 1 n 2 ABCD A B 1 0 = C D 0 n 1 /n 2 Cateye ( ) 3 ABCD r 0 θ 0 ABCD d d r, θ r 0, θ 0 r, θ r = 0 ( r θ ) = ( 1 d 0 1 ) ( /n mir ) ( 1 d 0 1 ) ( 1 0 1/f 1 ) ( r 0 θ 0 ) (2.2) f = 18.4mm 2 n mir = 1.51 d 2 d = 5mm θ 0 = 0 d 15.1mm 2 d + d = 20.1mm 2 1.7mm mm d Cateye 2.5 Cateye SM1TM09 Cateye 2 LD

17 2.1 Cateye ABCD θ 0 = 0, r = 0, f = 18.4mm, d = 5.0mm, n mir = 1.51 PZT 2.4 ABCD PZT 15mm 14mm 10mm Z10H14x15C-SYX(C-82) Agilent TorrSeal IFLD Cateye Cateye 2 780nm ECDL Cateye

18 18 2 IFLD 2.5 Cateye 2 Cateye Cateye PZT 2 f = 18.4mm 0.3 PZT 780nm 1 PZT Cateye Thorlabs 2.6 Cateye Cateye Cateye 2.7 IFLD Cateye LD LD AR LD Cateye

19 Cateye Cateye 2.2 IFLD 1 IFLD LASER OPTIK ( B AR B S ) IFLD

20 20 2 IFLD 2.7 IFLD Cateye LD Cateye mm θ n θ d = 2nd cosθ = 2nd 1 (sinθ/n) 2 mλ = 2nd 1 (sinθ/n) 2 (2.3) m = 1, 2, 3, (2.3) 1 m θ = 0 λ 0 λ = λ 0 1 (sinθ/n) 2 (2.4)

21 IFLD θ = 0 λ 0 = 781.5nm θ = 6 λ = 780.0nm n 1.7 n λ 0 θ λ 2.8 θ θ d n (2.4) LD LD L = 1 mλ L m 1 2 IFLD f L = 1m c 2 f c f = c 2L

22 22 2 IFLD f FSR(Free Spectral Range) IFLD L = 65mm f 2.3GHz 2.3GHz (2.4) f θ f = f (sinθ/n) 2 f 0( (sinθ n )2 ) (2.5) df dθ = f 0 sinθ cosθ (2.6) n2 f 0 = c/λ 0 (2.5) (sinθ/n) 2 1 (2.6) θ sinθ,cosθ 2 df dθ f 0 n θ (2.7) 2 f θ θ Rb D2 f 385THz θ = 6 df/dθ n = 1.7 c = m/s λ 0 = 781.5nm df dθ 14THz/rad 240GHz/ (2.8) 2.3GHz θ = θ Rb D Cateye Torrseal

23 Thorlabs ϕ1/2 20mm TR20/M M4 M IFLD 0.01 MOGLabs IFLD mm θ 3 dl r 2b sinθ θ dl/r (2.9)

24 24 2 IFLD D M6 1 3 M mm 2 2 dl [ ]/360 IFLD r 6mm θ=0.01 dl 1um 0.2mm 1/

25 2.3 IFLD r 3 dl IFLD LD Cateye M6 M IFLD LD LD

26 26 2 IFLD IFLD IFLD Z-MAX FPH AC RS: IFLD TAKACHI BDN IFLD Thorlabs TEMPERATURE CONTROLLER( TED200C) IFLD IFLD TorrSeal IFLD IFLD IFLD A 15.7V 55.6W IFLD

27 2.3 IFLD IFLD IFLD IFLD- IFLD-

28

29 29 3 IFLD IFLD IFLD ECDL 3.1 IFLD Rb D2 3.4 IFLD IFLD ECDL IFLD IFLD IFLD 3.1 λ=780nm ECDL 1 ECDL 1 ECDL 2 ECDL ECDL LD ECDL IFLD IFLD ECDL ECDL ECDL

30 30 3 IFLD ECDL IFLD Power [mw] red:ifld blue:ecdl(p-polarized) green:ecdl(s-polarized) Current [ma] λ=780nm IFLD I = (14.6 ± 0.7)mA ECDL I = (20.5 ± 0.4)mA ECDL I = (42 ± 2)mA IFLD (0.62 ± 0.01)W/A ECDL (0.398 ± 0.005)W/A ECDL (0.51 ± 0.02)W/A 3.2 ECDL IFLD ECDL ECDL IFLD ECDL ECDL IFLD ECDL = 0.8

31 ECDL = 0.97 IFLD ECDL ECDL 3.1 ECDL IFLD ECDL ECDL ECDL IFLD IFLD ECDL ECDL Cateye 2 Cateye LD Cateye ECDL Cateye IFLD ECDL IFLD ECDL IFLD IFLD ECDL 3.3 IFLD I=70.25mA ADVANTEST TQ8325 dλ/dθ

32 32 3 IFLD Power [mw] wavelength [nm] I=70mA LD 3.3 λ 750nm IFLD λ 750nm 2 λ=750nm 28 IFLD 28 0 IFLD λ=781.5nm IFLD 750nm 781.5nm K Rb K D1 D2 λ=770nm 767nm Rb D1 D2 λ=795nm 780nm 1 IFLD 795nm 3.3 LD 3.1.2

33 IFLD 3.4 ECDL ECDL nm 775nm 770nm 3.3 LD

34 34 3 IFLD 0.8 peak 0.84 transmittance FWHM=0.48 nm wave length [nm] nm ( 18 ) peak A y = y 0 + (x x 0 ) 2 +B 0.8 peak 0.83 transmittance FWHM = 0.43 nm wave length [nm] nm ( 13 ) peak A y = y 0 + (x x 0 ) 2 +B

35 peak 0.82 transmittance FWHM = 0.42 nm wave length [nm] nm ( 6 ) peak y = A y 0 + (x x 0 ) 2 +B

36 36 3 IFLD MHz 1MHz ω D = 2 ln2 u c ω 0 (3.1) ω 0 u = u = 2kB T M (3.2) M 1 u Rb T = 300K 500MHz Probe Pump ω 0 Probe Pump v 0 Pump Probe Pump Probe PD Pump Probe Probe v 0 ω ω 0 Probe Pump Probe Probe

37 ω 01 ω 02 ω = 1 2 (ω 01 + ω 02 ) Probe Pump Probe δω = +kv Pump δω = kv kv = 1 2 (ω 01 ω 02 )(k ) Probe ω 01 Pump ω 02 Probe EOM EOM 3.8 Rb CH1 CH2 Rb 87 Rb F=2-F =1,2,3 85 Rb F=3-F =2,3,4 CH PDH IFLD PZT PD

38 38 3 IFLD Pound-Drever-Hall PDH [21] 0 PZT PDH Electro-Optic Phase Modulator EOM Probe ( 3.11 ) Probe E = E 0 e iωt (3.3) EOM Mixer V f = V 0 sinω t (3.4) ω 2π 15MHz EOM 3.3 E EOM = E 0 e i(ωt+δ sinω t) = E 0 e iωt (1 + iδ sinω t) = E 0 e iωt (1 + δ 2 (eiω t e iω t )) (3.5) V 0 EOM π δ 1 Rb F (ω) E cell = F (ω)e EOM = E 0 (F (ω)e iωt + δ 2 F (ω + ω )e i(ω+ω )t δ 2 F (ω ω )e i(ω ω )t ) (3.6)

39 PD V E cell 2 V E cell 2 δ 2 (F (ω)f (ω + ω ) e iω t + F (ω) F (ω + ω )e iω t ) δ 2 (F (ω)f (ω ω ) e iω t + F (ω) F (ω ω )e iω t ) + Const δ2 4 g(2ω ) = δ[cosω t Re(F (ω)f (ω + ω ) F (ω) F (ω ω )) + i sinω t Im(F (ω)f (ω + ω ) F (ω) F (ω ω ))] + Const δ2 4 g(2ω ) (3.7) 2ω g(2ω ) 250kHz δ 1 Mixer PD Mixer ϕ Mixer V Mixer = V V 0 sin(ω t + ϕ) δv 0 4i (e2iω t+iϕ e 2iω t iϕ 2i sinϕ)re(f (ω)f (ω + ω ) F (ω) F (ω ω )) iδv 0 4 (e2iω t+iϕ + e 2iω t iϕ 2 cosϕ)im(f (ω)f (ω + ω ) F (ω) F (ω ω ))] (3.8) 5MHz 2ω V lowpass δv 0 2 [sinϕ Re(F (ω)f (ω + ω ) F (ω) F (ω ω )) cosϕ Im(F (ω)f (ω + ω ) F (ω) F (ω ω ))] (3.9) ω ω F (ω)f (ω + ω ) F (ω) F (ω ω ) = ω [F (ω) F (ω + ω ) F (ω) + F (ω) F (ω) F (ω ω ) ] = ω d F ω ω (ω) 2 dω (3.10)

40 40 3 IFLD 3.9 V lowpass δv 0ω sinϕ 2 d dω F (ω) 2 (3.11) V 3.9 CH1 CH2 Rb CH3 PDH Rb F=2-F =1,2,3 PDH IFLD PZT Lock C Lock IFLD PZT Lock Lock 3.9 0

41 CH1 CH2 Rb CH3 PDH 87 Rb F=2-F =3 ( 3.9 ) Ch2 1 IFLD Rb IFLD

42 42 3 IFLD 3.11 Ramp 100Hz 10V EOM Mixer 15MHz 9.6V 5MHz m Rb Rb D2 85 Rb 87 Rb 2 Rb 85 Rb 87 Rb Rb Rb 85 Rb 87 Rb Rb GHz FSR IFLD FSR 2.3GHz 2.3GHz

43 IFLD Rb PD B IFLD PZT Rb D2 Rb D2 87 Rb F=2-F =1,2,3 85 Rb F=3-F =2,3,4 2GHz FSR 2.3GHz IFLD 3.4 IFLD 1 1 IFLD ECDL

44 44 3 IFLD IFLD ECDL IFLD ECDL V/1g g

45 V/1g 3.16 g 30 IFLD 0.05g 0.04g 0.06g

46 46 3 IFLD IFLD 1/2 IFLD ECDL ECDL IFLD 30 g y = 1 1 exp b(x u) +1 u IFLD ECDL MHz MHz Rb 6MHz MHz IFLD THz [22]

47 [23] IFLD B [22] 3.17 B B IFLD PZT IFLD ECDL B 3.18 B PD B PD [24] ν ν = πd2 < V 2 > B (3.12) [24] 0 < f < B Voltage Controlled Oscillator(VCO) <V 2 > B Acousto Optic Modulator(AOM) < e i(ϕ ϕ) > 3.12 D VCO f V B [24]

48 48 3 IFLD 3.12 <V 2 > B RP f RBW R = 50Ω P [W] f RBW D B F V B D PD B FSR B PZT f t B B B V t B f t V t t f = V f (3.13) B D ν = π[ f t ( V t ) 1 ] 2 RP (3.14) f RBW B FSR 1GHz B B PD B 0V B PD

49 B PD 3.17 B FSR 1.0GHz PD DC B AC PD B DC AC DC B AC DC AC 21 AC 47Ω 50Ω 3.14 P 2 2 A 3.14 A = ( 1 47[Ω] + 50[Ω] H) 2 (3.15) 21 50[Ω] H 200kHz-1MHz H H = 1.15 A A

50 50 3 IFLD 3.14 ν = π[ f t ( V t ) 1 ] 2 RP (3.16) f RBW B PZT B 3.18 t 3.18 PZT PZT [25] 2 PZT t B t 1+ t t 1 = 3.32ms t 2 = 3.76ms t t = t 1+ t 2 2 = (3.5 ± 0.2)ms B FSR 1.0GHz f = 1.0GHz B PZT f t f t = (2.8 ± 0.2) 1011 [Hz/s] V t V t 0V 3.19 ±0.02V 3.20 b = (4200 ± 200)V/s V B t V kHz 3.14 P P P P = ( ± 0.02)dBm = (1.042 ± 0.006) 10 8 W RBW 30kHz R = 50Ω IFLD

51 ν = (2.6 ± 0.4)kHz 3.18 B CH1 B CH2 PD B 2 PZT B 2 2 V = 0 t 1 t = t 1+ t 2 2 Beat 1 IFLD IFLD 1 IFLD ν = (14 ± 2)kHz IFLD 2 IFLD IFLD LD 1 IFLD 2 IFLD 1 IFLD <0.2 µa(10hz 10MHz) 2 IFLD <1.5 µa(10hz 10MHz) 2 1 3kHz

52 52 3 IFLD 3.19 B CH1 B CH2 PD B 2 ch2 0V 0V ±0.02V y=a+bx a = ± b = 4200 ± 100 Voltage [V] x x time [s] CH2 0V ±0.02V b V t

53 B 40 RBW 30kHz 200kHz-1MHz IFLD B CH1 B CH2 PD B t 1 = 3.56ms t 2 = 3.16ms B FSR 1GHz f t = (3.0 ± 0.2) 1011 Hz/s

54 54 3 IFLD IFLD B CH1 B CH2 PD B 2 ch2 0V 0V ±0.02V y=a+bx a = 0.57 ± 0.01 b = 3910 ± 90 Voltage [V] x x time [s] CH2 0V ±0.02V b V t

55 IFLD B 40 RBW 30kHz 400kHz-1MHz H = 1.08 P P = ( ± 0.03)dBm = (4.47 ± 0.02) 10 8 W

56 56 3 IFLD THz PD 1 E 1 (t) = E 1 e i(ω 1t+ϕ) (3.17) P (τ) P (τ) =< E(t) E(t + τ) > = E 2 1e iω 1τ < e i(ϕ ϕ) > (3.18) ϕ E(t + τ) <> 3.18 τ < e i(ϕ ϕ) > e τ τ 1 (3.19) P (τ) P (ω) P (ω) = + dτp (τ)e iωτ = E e i(ω 1 ω)τ τ τ 1 = 2 1 τ 1 (ω 1 ω) τ 2 1 (3.20) 2 τ 1 2 PD E(t) = E 1 (t) + E 2 (t) = E 1 e i(ω 1t+ϕ 1 ) + E 2 e i(ω 2t+ϕ 2 ) (3.21) PD PD PD V P D V P D (t) E 1 (t) + E 2 (t) 2 = const + 2E 1 E 2 cos[(ω 2 ω 1 )t + (ϕ 2 ϕ 1 )] (3.22)

57 PD V P D V P D(t) 2E 1 E 2 cos[(ω 2 ω 1 )t + (ϕ 2 ϕ 1 )] (3.23) V P D (t) < V P D(t) V P D(t + τ) > 4E 2 1E 2 2 < cos[(ω 2 ω 1 )t + (ϕ 2 ϕ 1 )] cos[(ω 2 ω 1 )(t + τ) + (ϕ 2 ϕ 1)] > = 2E 2 1E 2 2 < cos[(ω 2 ω 1 )(2t + τ) + (ϕ 2 ϕ 1 ) + (ϕ 2 ϕ 1)] + cos[(ω 2 ω 1 )τ + (ϕ 2 ϕ 1) (ϕ 2 ϕ 1 )] > (3.24) < cos[(ω 2 ω 1 )τ + (ϕ 2 ϕ 1) (ϕ 2 ϕ 1 )] > = 1 2 [ei(ω 2 ω 1 )τ < e i(ϕ 2 ϕ 2) e i(ϕ 1 ϕ 1) > + e i(ω 2 ω 1 )τ < e i(ϕ 2 ϕ 2) e i(ϕ 1 ϕ 1) >] (3.25) e i(ϕ 2 ϕ 2) e i(ϕ 1 ϕ 1) < e i(ϕ 2 ϕ 2) e i(ϕ 1 ϕ 1) > =< e i(ϕ 2 ϕ 2) >< e i(ϕ 1 ϕ 1) > = e τ τ 2 e τ τ 1 (3.26) < e i(ϕ 2 ϕ 2) e i(ϕ 1 ϕ 1) > =< e i(ϕ 2 ϕ 2) >< e i(ϕ 1 ϕ 1) > 3.24 = e τ τ 2 e τ τ 1 (3.27) < V P D(t) V P D(t + τ) > 2E 2 1E 2 2cos(ω 2 ω 1 )τ e ( 1 τ τ 2 ) τ (3.28) S(ω) S(ω) = + + dτ < V P D(t) V P D(t + τ) > e iωτ dτ(e i( ω ω)τ ( 1 τ τ 2 ) τ + e i( ω+ω)τ ( 1 τ τ 2 ) τ ) (3.29)

58 58 3 IFLD ω = ω 2 ω 1 2 ω > 0 S(ω) 2( 1 τ τ 2 ) ( ω ω) 2 + ( 1 τ τ 2 ) 2 (3.30) 2( 1 τ τ 2 ) PD Pseudo-Voigt fitting /f

59 Beat RBW 10kHz 40 [27] Voigt [18, 26, 27, 30] Pseudo-Voigt [28] Pseudo-Voigt Γ G Γ L Γ η 1 η f P V (x) = ηf L (x) + (1 η)f G (x) (3.31) Pseudo-Voigt f P V = y 0 + A[η( 2 πh ( x x ) + (1 η) 2 0 H/2 )2 H ln2 π exp( 4 ln2 (x x 0 H )2 )] (3.32) H H Γ y 0 A Pseudo-Voigt

60 60 3 IFLD 1.0 HL/H, HG/H blue HG/H=(K0+K1x+K2x^2+K3x^3)^0.5 K0 = 1 K1 = ± 0.02 K2 = ± 0.04 K3 = ± 0.03 red HL/H=K1x+K2x^2+K3x^3 K1 = 0.71 ± 0.02 K2 = 0.18 ± 0.04 K3 = 0.12 ± eta Voigt Pseudo-Voigt η Γ G Γ Γ L Γ η 3 H H G H L Γ Γ G Γ L Γ G Γ Γ L Γ 2 H A [29] Γ G Γ Γ L Γ η (1) Voigt (2) Pseudo-Voigt η Γ (3) Γ Γ G Γ Γ L Γ η (4) η 3.28 η η < 1 η 3 η = 0 Γ = Γ G η = 1 Γ = Γ L K0 Γ G Γ 1 Γ L Γ 0 Voigt Pseudo-Voigt η Γ Γ G Γ = (1 0.73η 0.19η2 0.08η 3 ) 1 2 Γ L Γ = 0.71η η η 3 (3.33)

61 Γ G Γ L Pseudo-Voigt 2 IFLD dbm W f beat = 10log[(y 0 + A[η( 2 πh ( x x ) + (1 η) 2 0 H/2 )2 H ln2 π exp( 4 ln2 (x x 0 H )2 )]) ] (3.34) dbm y 0 A 3.33 Γ G Γ L Γ G = (430 ± 6)kHz Γ L = (16.9 ± 0.9)kHz Γ G Γ L 1MHz IFLD Pseudo-Voigt η Pseudo-Voigt < e i(ϕ ϕ) > 2

62 62 3 IFLD dv(lor)=(16.9±0.9)khz dv(gauss)=(430±6)khz A = ± H = 439 ± 6 eta = ± x0 = ± 4 y0 = -4e-11 ± 2e-11 dbm Freq [khz] 35x Pseudo-Voight Beat Pseudo-Voight 3.34 A Pseudo-Voigt H Pseudo-Voigt IFLD IFLD IFLD 4 3

63 PD IFLD ECDL2 IFLD1 ECDL1 ECDL2 2 ECDL ECDL1 (120 ± 20)kHz ECDL2 (13 ± 1)kHz ECDL1 ECDL2 ECDL2 IFLD1 ECDL1 IFLD1 3 3 ECDL Pseudo-Voigt ν(ifld1) ν(ecdl1) ν(ecdl2) 3.33 ν(ifld1) + ν(ecdl1) = (128 ± 3)kHz (3.35) ν(ecdl1) + ν(ecdl2) = (142 ± 4)kHz (3.36) ν(ecdl2) + ν(ifld1) = (15.6 ± 0.6)kHz (3.37)

64 64 3 IFLD IFLD 1 ECDL2

65 IFLD1 ECDL1 ECDL2 3 3 ECDL1 ECDL2 ECDL2 IFLD ECDL1 IFLD IFLD1 ECDL1 ECDL2 IFLD1 ECDL1 (796 ± 5)kHz 128 ± 3kHz

66 66 3 IFLD IFLD1 ECDL1 ECDL2

67 IFLD IFLD IFLD < e i(ϕ ϕ) > < e i( ϕ) > (4.1) t t + τ ϕ g( ϕ) = 1 2π < ( ϕ)2 > e ( ϕ) 2 2<( ϕ) 2 > (4.2)

68 68 4 < e i( ϕ) > = + = e 1 2 <( ϕ)2 > g( ϕ) e i ϕ d( ϕ) (4.3) [32] 3 2 < ( ϕ) 2 > 0 0 [31] ν ν = πhν( ν c) 2 P (4.4) Schawlow-Townes Limit h ν ν c 4.5 P 4.4 ν c ν c = c 2πL ( ln T 2 R 1 R 2 ) (4.5) [32] c R 1 R 2 T 4.4 (1 + α 2 ) [30] ν = πhν( ν c) 2 (1 + α 2 ) (4.6) P (1 + α 2 ) α 2 α

69 [33] n = n r + in i n r n i n r n i α = n r n i (4.7) n i [33] g g = ( 2ω/c) n i n i n r IFLD ν = (2.6 ± 0.4)kHz P = 28mW IFLD ν = 385THz L = 64mm T = 0.83 R 1 = 1 R 2 = 0.3 LD 1 α = (16 ± 3) [30] α 8 IFLD [35] IFLD IFLD Cateye 4.1 IFLD L 2 IFLD 2 IFLD 4.6 ν 4.6 ν P 2 IFLD

70 I-P 130mm LD IFLD IFLD Cateye LD 2 Cateye D Cateye LD Thorlabs LT230P-B Cateye Cateye LD LD LD LD ϕ9.0mm 0.7mm ϕ9.65mm LD LD LD

71 4.2 I-P 71 LD mm LD 1.0mm LD 64mm z r z, r z = 59.5mm r = 1.0mm z = 196.5mm r = 3.5mm LD f = 4.5mm z, r θ θ tanθ = 3.5mm 1.0mm 196.5mm 59.5mm = 2.5 [rad] 1 [ ] (4.8) 137 r r = 2.5 (z[mm] 59.5mm) + 1.0mm (4.9) z = 0 LD r 0.1mm 130mm Cateye z = 107.1mm

72 mm LD 3.5mm LD 201mm r 1.9mm Cateye 5.5mm LD 3mm LD Cateye Cateye Thorlabs C280TMD-B ϕ5.5mm f18.4mm Thorlabs AL2520M-B ϕ20.4mm f20.0mm 154mm Cateye ϕ20.4mm f20.0mm

73 4.2 I-P z LD 4.5mm 4.5 LD r = 0 r = 0, z = 0 LD LD

74 mW IFLD L = 154mm 4.9 L = 154mm L = 154mm Q Q 4.5 ν c Q ν c 4.6 L = 154mm ν c

75 4.2 I-P IFLD y = AL x L = 154mm x = ( 2.1 ± 0.4) L = 154mm LD LD LD LD L = 154mm Cateye L = 180mm IFLD L = 137mm 900Hz

76 y = AL x L = 154mm x = ( 2.1 ± 0.3) 4.9 L = 154mm

77 IFLD 64mm 4.10 LD 4.10

78

79 79 5 IFLD IFLD ECDL 3 IFLD ECDL 8 IFLD ECDL IFLD IFLD IFLD 900Hz IFLD IFLD

80

81 81 A LD A.1 LD

82

83 83 B PD B.1

84

85 85 C C.1 (LM399H) -6.95V

86

87 87 D IFLD IFLD IFLD D.1 IFLD Thorlabs

88 88 D IFLD D.2 IFLD Z-MAX ( RS ) Thorlabs 75mm

89 89 Cateye D.3 Cateye Thorlabs PSM30-15C /800 PZT 15mm 14mm 10mm Working distance 18.4mm Working distance 15.6mm 2.8mm 20.1mm 20.1mm 2.8mm = 17.3mm

90 90 D IFLD Cateye D.4 Cateye IFLD 6.3mm,2.9mm Cateye D.5 Cateye M9 M9 18.4mm Working distance 15.6mm ϕ5.5mm

91 91 S1TM09 D.6 S1TM09 PZT D.7 PZT TorrSeal

92 92 D IFLD PZT D.8 D.9 PZT Cateye

93 93 SM1C6 D.10 SM1C6

94 94 D IFLD D.11 A2017

95 95 D.12 ϕ20mm 8mm D.13 A2017

96 96 D IFLD A2017

97 97 D.14 Thorlabs Laseroptik 2.1 TorrSeal

98 98 D IFLD D.15 A2017 SM1C6

99 99 D.16 A2017 TorrSeal

100 100 D IFLD IFLD D.17 IFLD IFLD TAKACHI BDN mm 140mm 70mm

101 101 D.18

102 102 D IFLD D.19 WBMA-25C /1000 AR AR 780nm 0.5 LD

103 103 D.20 A2017

104 104 D IFLD D.21 A2017

105 105 D.22 D.23 IFLD

106 106 D IFLD LD D.24 LD LD LD LD interlock

107 D.25 IFLD 2.1 D.26

108

109 109 [1] A. Einstein, Quantentheorie des einatomigen idealen gases. zweite abhandlung, Sitzungsber. K. Preuss. Akad. Wiss., Phys. Math. kl. 3 (1925) [2] P. Kapitza, Viscosity of Liquid Helium below the λ-point, Nature, 141, 74 (1938) [3] F. London, The λ-phenomenon of Liquid Helium and the Bose- Einstein Degeneracy, Nature, 141, 643 (1938) [4] T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, 187, (1960) [5] T. W. Hänsch and A. L. Schawlow, Cooling of gases by laser radiation Opt. Commun. 13, (1975) [6] S. Chu, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure, Phys. Rev. Lett 55, 48, (1985) [7] E. L. Raab, et al. Trapping of Neutral Sodium Atoms with Radiation Pressure, Phys. Rev. Lett. 59, (1987) [8] M. H. Anderson, et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science, 269, (1995) [9] K. B. Davis, et al., Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, (1995) [10] C. C. Bradley, et al., Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687 (1995) [11] S. Stellmer, et al., Bose-Einstein Condensation of Strontium, Phys. Rev. Lett. 103, (2009) [12] Y. Takasu, et al., Spin-Singlet Bose-Einstein Condensation of Two- Electron Atoms, Phys. Rev. Lett. 91, (2003) [13] S. Inouye, et al., Observation of Feshbach resonances in a Bose-Einstein condensate, Nature, 392, , (1998) [14] C. A. Regal, et al., Observation of Resonance Condensation of Fermionic Atom Pairs, Phys. Rev. Lett. 92, (2004) [15] M. Greiner, et al., Quantum phase transition from a superfluid to a Mott

110 110 insulator in a gas of ultracold atoms, Nature, 415, (2002) [16] C. E. Wieman, Using diode lasers for atomic physics, Rev. Sci. Instrum. 62, 1 (1991) [17] M. G. Littman and H. J. Metcalf, Spectrally narrow pulsed dye laser without beam expander, Appl. Optics. 17, 2224 (1978) [18] X. Baillard, et al., Interfernce-filter-stabilized externalcavity diode lasers, Opt. Commun. 266, (2006) [19] Preparation of ultracold atomic sources towards ground state polar molecules, (2008) [20] All-optical selective formation of ultracold molecules in the rovibrational ground state, (2011) [21] E. D. Black, An introduction to Pound-Drever- Hall laser frequency stabilization, Am. J. Phys. 69, 79 (2001) [22] Qian Lin, et al., Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth Opt. Lett. 37, (2012) [23] Yb, (2014) [24] D. S. Elliott, et al., Extracavity laser band-shape and bandwidth modification, Phys. Rev. A (1982) [25], < images/product/application/ceramics handbook.pdf> [26] M. Gilowski, et al. Narrow bandwidth interference filterstabilized diode laser system for the manipulation of neutral atoms, Opt. Commun. 280, (2007) [27] Shayne Bennetts, et al., External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55um and methods for linewidth measurement, Opt. Express 22, (2014) [28] T. Ida, et al., Extended pseudo-voigt function for approximating the Voigt profile, J. Appl. Cryst. 33, (2000) [29] J. B. HASTINGS, et al., Synchrotron X-ray Powder Diffraction, J. Appl. Cryst. 17, 85 (1984) [30] Sebastian D. Saliba and Robert E. Scholten, Linewidths below 100kHz with external cavity diode lasers, Appl. Opt. 48, (2009)

111 [31] A. L. Shawlow and C. H. Townes, Infrared and Optical Masers, Phys. Rev. 112, (1958) [32] A. Yariv, QUANTUM ELECTRONICS THIRD EDITION, John Willey & Sons (1989) [33] C. H. Henry, Theory of the Linewidth of Semiconductor Lasers, IEEE J. Quantum Electron. 18, (1982) [34] D. Welford, and, A. Mooradian, Output power and temperature dependence of the linewidth of single-frequency cw (GaAl)As diode lasers, Appl. Phys. Lett. 40, 865 (1982) [35] C. Harder, et al., Measurement of the linewidth enhancement factor α of semiconductor lasers, Appl. Phys. Lett. 42, 328 (1983) 111

112

113 113 IFLD

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

飽和分光

飽和分光 3 Rb 1 1 4 1.1 4 1. 4 5.1 LS 5. Hyperfine Structure 6 3 8 3.1 8 3. 8 4 11 4.1 11 5 14 5.1 External Cavity Laser Diode: ECLD 14 5. 16 5.3 Polarization Beam Splitter: PBS 17 5.4 Photo Diode: PD 17 5.5 :

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

2013 1 7 2013 2 5 1 3 1.1.................................. 3 1.2.................................. 3 2 5 2.1 Fabry-Perot............................... 5 2.2.................. 7 2.3...................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

29 1 6 1 1 1.1 1.1 1.1( ) 1.1( ) 1.1: 2 1.2 1.2( ) 4 4 1 2,3,4 1 2 1 2 1.2: 1,2,3,4 a 1 2a 6 2 2,3,4 1,2,3,4 1.2( ) 4 1.2( ) 3 1.2( ) 1.3 1.3 1.3: 4 1.4 1.4 1.4: 1.5 1.5 1 2 1 a a R = l a l 5 R = l a +

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

1

1 2 Light Source Technologies 2-1 Fourier Synthesis of Optical Pulses HYODO Masaharu, Kazi Sarwar ABEDIN, ONODERA Noriaki, and WATANABE Masayoshi With the rapid progress made recently in the field of optical

More information

untitled

untitled - i - - i - Application of All-Optical Switching by Optical Fiber Grating Coupler Yasuhiko Maeda Abstract All-optical switching devices are strongly required for fast signal processing in future optical

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

Triple 2:1 High-Speed Video Multiplexer (Rev. C

Triple 2:1 High-Speed Video Multiplexer (Rev. C www.tij.co.jp OPA3875 µ ± +5V µ RGB Channel OPA3875 OPA3875 (Patented) RGB Out SELECT ENABLE RED OUT GREEN OUT BLUE OUT 1 R G B RGB Channel 1 R1 G1 B1 X 1 Off Off Off 5V Channel Select EN OPA875 OPA4872

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

160GHz

160GHz 2006 11 24 2006 2006/11/24 Seminar-Progresses-A1.ppt 1 Ultrafast Optical Logic Lab., UEC 160GHz 0212014 1 DISC-Loop DISC-Loop 2 DFB-LD DFB-LD 2 WDM 100 Ch OTDM t 3 DISC-Loop 10 160GH 6~100ps 10~160GHz

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

Bose-Einstein Hawking   Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2, Bose-Einstein Hawking E-mail: moinai@yukawa.kyoto-u.ac.jp Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2, 3] Hawking Hawking 6nK Hawking Hawking 3K Hawking Hawking

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb 1289nm nm nm 3 1: P [3] 1330cm 1 510cm 1 [5

1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb 1289nm nm nm 3 1: P [3] 1330cm 1 510cm 1 [5 1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb (19W@1100nm) 1289nm 1 1380nm 2 1484nm 3 1: P [3] 1330cm 1 510cm 1 [5] 2: 3 2 FBG(Fiber Bragg Gratings) 1 2 R > 99% FBG

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

OPA277/2277/4277 (2000.1)

OPA277/2277/4277 (2000.1) R OPA OPA OPA OPA OPA OPA OPA OPA OPA µ µ ± ± µ OPA ±± ±± ± µ Offset Trim Offset Trim In OPA +In -Pin DIP, SO- Output NC OPA Out A In A +In A A D Out D In D +In D Out A In A +In A A B Out B In B +In B

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

4/8 No. 2

4/8 No. 2 4/8 No. 1 4/8 No. 2 Laser-related Nobel laureates Townes, Basov, Prokhorov (1964-Physics): レーザーの開発 Gabor(1971-Physics) : ホログラフィーの発明と開発 Bloembergen, Schawlow (1981-Physics): レーザー分光 Kroto, Curl, Smalley

More information

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein.

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein. * 1 1 3 5.1.............................. 5............................ 6.3 Bose-Einstein........................ 7 3 Bogoliubov-de Gennes 8 3.1 Bogoliubov-de Gennes.............................. 9 3.

More information

研究室ガイダンス(H28)福山研.pdf

研究室ガイダンス(H28)福山研.pdf 1 2 3 4 5 4 He M. Roger et al., JLTP 112, 45 (1998) A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Born in 2004 (hcp 4 He) E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305,

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> マイクロメカトロニクス サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077331 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1984.10 1986.7 1995 60 1991 Piezoelectric Actuators and Ultrasonic Motors

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

三木研授業2009.key

三木研授業2009.key ( ) 1980 1.54A 1.54A ( ) 1A 0.98A 2.29A ( ) 2dsinθ = λ (2d hkl sinθ hkl = λ) ()? Bragg 2dsinθ = λ 2θ 1 d sinθ = λ 2d Bragg 2dsinθ = λ? Bragg? 2dsinθ = λ? λ 2 I t 3 λ 2 exp( µt) UW Arndt, J. Appl. Cryst.

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

untitled

untitled 161 3-5 Development of an Ultra-Narrow Line-Width Clock Laser LI Ying, NAGANO Shigeo, MATSUBARA Kensuke, KOJIMA Reiko, KUMAGAI Motohiro, ITO Hiroyuki, KOYAMA Yasuhiro, and HOSOKAWA Mizuhiko An optical

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

14 2 5

14 2 5 14 2 5 1 1 1-1... 1 1-2... 3 1-3... 3 1-4... 4 2 5 2-1... 5 2-1-1... 5 2-1-2... 6 2-1-3... 8 2-1-4... 8 2-1-5...11 2-1-6... 12 2-1-7... 13 2-1-8... 14 2-2... 16 2-2-1... 16 2-2-2... 17 2-2-3... 18 2-2-4...

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

BaHfO 3 PLD GdBa 2 Cu 3 O 7 δ 24 2 17 1 1 1.1.................................. 1 1.2............................... 2 1.3............................. 2 1.4................................. 3 1.5.........................

More information

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm 73 7 2017 pp. 447 454 447 * 43.25.Yw; 78.60.Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Department of Physics, Meiji University, Kawasaki, 214 8571)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information