4/8 No. 2

Size: px
Start display at page:

Download "4/8 No. 2"

Transcription

1 4/8 No. 1

2 4/8 No. 2

3 Laser-related Nobel laureates Townes, Basov, Prokhorov (1964-Physics): レーザーの開発 Gabor(1971-Physics) : ホログラフィーの発明と開発 Bloembergen, Schawlow (1981-Physics): レーザー分光 Kroto, Curl, Smalley (1996-Chemistry): フラーレンの合成 Chu, Cohen-Tannoudji, Phillips (1997-Physics): レーザー光を用いた原子の冷却とトラップ Zewail(1999-Chemistry): フェムト秒化学 Wieman, Ketterle, Cornell (2001-Physics): アルカリ元素のボーズアインシュタイン凝縮 Tanaka( 田中耕一 ), Fenn (2002-Chemistry): 生体分子の質量分析のためのイオン化法 Glauber (2005-Physics): 量子光学 Hall, Hänsch (2005 年 -Physics): レーザーによる精密分光学 ( 光周波数コム技術 ) Kao (2009-Physics): optical fiber Haroche, Wineland (2012 Physics) cavity QED Laser is omnipresent from basic science to our daily life. 4/8 No. 3

4 4/8 No. 4

5 4/8 No. 5

6 Advanced Plasma and Laser Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Monochromaticity 単色性 Laser light has a single frequency or wavelength (pure color). 各種のレーザー光は それぞれある特定の波長のみ を含み その波長は時間的に一定である 4/8 No. 6

7 4/8 No. 7

8 Atom Energy level Bohr s condition hν light absorption spontaneous emission stimulated emission E 2 E 1 ν hν = E 2 E 1 frequency h = J s Planck constant Emission of light (photon) upon transition to a lower level Spontaneous emission happens without an incident light Stimulated emission emits a photon induced by the incident light 4/8 No. 8

9 Before After spontaneous" emission photon stimulated" emission photon 2 photons (stimulated)" absorption photon 4/8 No. 9

10 Light Amplification by Stimulated Emission of Radiation highly directional, high-intensity, very pure wavelength by spontaneous emission diverse direction and wavelength, low-intensity 4/8 No. 10

11 Unique properties of a laser Directionality & monochromacity Polarization E = E e ik x iωt+iφ 0 Frequency (wavelength) Phase Direction Laser is an ideal classical electromagnetic wave! 4/8 No. 11

12 Laser wavelength region 4/8 No. 12

13 Argon ion/ 488/514 nm CW/ Krypton ion/ 531/568/647 nm CW/ He-Ne/ 633 nm CW/ CO µm CW or pulse/ Dye/ 450 nm 900 nm CW or pulse/ Diode/ 650 nm 900 nm CW or pulse/ Ruby/ 694 nm µs Nd:YLF 1053 nm 100 ns 250 µs Nd:YAG 1064 nm 100 ns 250 µs Ho:YAG 2120 nm 100 ns 250 µs Ho:YSGG 2780 nm 100 ns 250 µs Er:YAG 2940 nm 100 ns 250 µs Alexandrite/ 720 nm µs XeCl 308 nm ns XeF エキシマ 351 nm ns KrF レーザー 248 nm ns ArF 193 nm ns Nd:YLF 1053 nm ps Nd:YAG 1064 nm ps Ti:Sapphire/ 700 nm 1000 nm 5 fs 100 ps Short pulse laser Continuous wave laser (CW) Pulse laser Ultrashort pulse laser 4/8 No. 13

14 参考書 (Reference):W. T. Silfvast, Laser Fundamentals 4/8 No. 14

15 Advanced Plasma and Laser Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Einstein A and B coefficients (1916) アインシュタインのA, B係数の理論(1916年) Temporal evolution of population density N1 and N2 占位数密度N1, N2の時間変化 spontaneous" absorption emission Thermal equilibrium (T) 熱平衡状態 温度 T stimulated" emission incident light" ω A 入射光 BW 12 Boltzmann distribution ボルツマン分布 E2,N2 自然放出 吸収 W BW 21 誘導放出 E1,N1 Planck s law for cavity radiation" プランクの黒体放射の法則 4/8 No. 15

16 Advanced Plasma and Laser Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Cavity (black body) radiation 4/8 No. 16

17 4/8 No. 17

18 dz I(z) I(z+dz) di dz = B(N 2 N 1 ) c I S Gain coefficient g = B(N 2 N 1 ) c Extended Lambert-Beer law I(z) =I 0 e gz = I 0 e (N 2 N 1 )z = B c 4/8 No. 18

19 Stimulated emission cross section for a variety of lasers Laser λ(nm) σ(m -2 ) He-Ne Argon He-Cd Copper (CVL) CO 2 10, Excimer Dye (Rh6G) Semiconductor Nd:YAG Nd:Glass Ti:Sapphire Cr:LiSrAlF /8 No. 19

20 I(z) >I 0 for z>0 N 2 >N 1 a necessary condition Stimulated emission > absorption At thermal equilibrium N 2 = N 1 exp ω /k B T [ ] << N 1 Energy E 2 E 1 N 2 thermal" equilibrium N 1 Energy E 2 population" inversion e E kt e E kt E 1 N 1 N 2 Population density Population density 4/8 No. 20

21 Solid, liquid, gas Plasma Free electron Pumping energy source is necessary. Flash lump LED Gas discharge Electric current Chemical reaction Another laser, R 1 R 2 Oscillator (resonator) Gain medium Pump Laser light 4/8 No. 21

22 pump Γ spontaneous" emission N 2 A = N 2 stimulated" emission N 2 N 2 B I c steady state N 1 dn 2 dt = N BI c =0 N 2 = 1 + BI c 4/8 No. 22

23 I sat = c B = = B c sufficient condition saturation length gl sat = (N 2 N 1 )L sat = 12 ± 5 e gl sat /8 No. 23

24 gl sat = (N 2 N 1 )L sat = 12 ± 5 g =0.15 m 1 L sat 80 m! one path L =0.2m e gl = 1.03 amplification by one path is small in general L sat L 400 paths is necessary 4/8 No. 24

25 R 1 R 2 The gain medium is put in a cavity (resonator) with two flat mirrors for lasing. Oscillator (resonator) Gain medium Pumping Laser light Amplifier Feedback amplifier βi o I i I o I i I o ( 1 β)i o I o = AI i I o = A 1 Aβ I i Aβ <1 4/8 No. 25

26 I i Advanced Plasma and Laser Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Feedback amplifier R 1 R 2 Oscillator (resonator) Gain medium I o Pumping βi o ( 1 β)i o Laser light I o = Aβ =1 A 1 Aβ I i Infinite amplication Lasing condition exp[2(g a)l]r 1 R 2 =1 A β g =(N 2 N 1 ) Necessary population inversion N 2 N 1 = a ln R 1R 2 2L 4/8 No. 26

27 Laser g (m -1 ) L (m) m He-Ne Argon He-Cd Copper (CVL) CO Excimer Dye (Rh6G) GaAs 100, Nd:YAG Nd:glass /8 No. 27

28 R 1 R 2 Gain medium Laser light Oscillator (resonator) Pumping energy source 4/8 No. 28

Advanced Laser and Photon Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Laser : the greatest invention of the 20th century レーザー 20

Advanced Laser and Photon Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Laser : the greatest invention of the 20th century レーザー 20 4/5 No. 1 Advanced Laser and Photon Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Laser : the greatest invention of the 20th century レーザー 20世紀最大の発明 Industrial and medical application

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 低温科学 A レーザーによる希薄原子気体の冷却と ボース アインシュタイン凝縮 物理第一教室量子光学研究室 http://yagura.scphys.kyoto-u.ac.jp 高橋義朗 yitk@scphys.kyoto-u.ac.jp 5 号館 203 号室 講義予定 1. イントロダクションレーザー冷却からボース アインシュタイン凝縮へ 2. 光と原子の相互作用 3. レーザー冷却 トラップの原理

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 低温科学 A (5/5, 5/22, 5/29) レーザーによる希薄原子気体の冷却と ボース アインシュタイン凝縮 物理第一教室量子光学研究室 http://yagura.scphys.kyoto-u.ac.jp 高橋義朗 yitk@scphys.kyoto-u.ac.jp 5 号館 203 号室 講義予定. イントロダクション高分解能レーザー分光からボース アインシュタイン凝縮へ 2. 光と原子の相互作用

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

4_Laser.dvi

4_Laser.dvi 1 1905 A.Einstein 1917 A.Einstein 1954 C.H.Townes MASER Microwave Amplification by Stimulated Emission of Radiation 23.9 GHz 1.26 cm 1960 T.H.Maiman LASER Light Amplification by Stimulated Emissin of Radiation

More information

14 2 5

14 2 5 14 2 5 1 1 1-1... 1 1-2... 3 1-3... 3 1-4... 4 2 5 2-1... 5 2-1-1... 5 2-1-2... 6 2-1-3... 8 2-1-4... 8 2-1-5...11 2-1-6... 12 2-1-7... 13 2-1-8... 14 2-2... 16 2-2-1... 16 2-2-2... 17 2-2-3... 18 2-2-4...

More information

輻射の量子論、選択則、禁制線、許容線

輻射の量子論、選択則、禁制線、許容線 Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

観測量と物理量の関係.pptx

観測量と物理量の関係.pptx (I! F! ( (! "! (#, $ #, $!! di! d"! =!I! + B! (T ex T ex : "! n 2 / g 2 = exp(! h! n 1 / g 1 kt ex " I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(!

More information

160GHz

160GHz 2006 11 24 2006 2006/11/24 Seminar-Progresses-A1.ppt 1 Ultrafast Optical Logic Lab., UEC 160GHz 0212014 1 DISC-Loop DISC-Loop 2 DFB-LD DFB-LD 2 WDM 100 Ch OTDM t 3 DISC-Loop 10 160GH 6~100ps 10~160GHz

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 低温科学 A (6/16, 6/3) レーザーによる希薄原子気体の冷却と ボース アインシュタイン凝縮 物理第一教室量子光学研究室 http://yagura.scphys.kyoto-u.ac.jp 高橋義朗 yitk@scphys.kyoto-u.ac.jp 5 号館 03 号室 講義予定 1. イントロダクションレーザー冷却からボース アインシュタイン凝縮へ. 光と原子の相互作用 3. レーザー冷却

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 低温科学 A レーザーによる希薄原子気体の冷却と ボース アインシュタイン凝縮 物理第一教室量子光学研究室 http://yagura.scphys.kyoto-u.ac.jp 高橋義朗 yitk@scphys.kyoto-u.ac.jp 5 号館 203 号室 講義予定 1. イントロダクションレーザー冷却からボース アインシュタイン凝縮へ 2. 光と原子の相互作用 3. レーザー冷却 トラップの原理

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

hν 688 358 979 309 308.123 Hz α α α α α α No.37 に示す Ti Sa レーザーで実現 術移転も成功し 図 9 に示すよ うに 2 時間は連続測定が可能な システムを実現した Advanced S o l i d S t a t e L a s e r s 2016, JTu2A.26 1-3. 今後は光周波 数比計測装置としてさらに改良 を加えていくとともに

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

Microsoft PowerPoint - 島田美帆.ppt

Microsoft PowerPoint - 島田美帆.ppt コンパクト ERL におけるバンチ圧縮の可能性に関して 分子科学研究所,UVSOR 島田美帆日本原子力研究開発機構,JAEA 羽島良一 Outline Beam dynamics studies for the 5 GeV ERL 規格化エミッタンス 0.1 mm mrad を維持する周回部の設計 Towards user experiment at the compact ERL Short bunch

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

untitled

untitled - i - - i - Application of All-Optical Switching by Optical Fiber Grating Coupler Yasuhiko Maeda Abstract All-optical switching devices are strongly required for fast signal processing in future optical

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

4 MKSA

4 MKSA 2013 2013 3 7 4 MKSA 2013 3 ii 1 1............................................ 2 2 4 2.1.......................................... 4 2.1.1................................... 4 2.1.2....................................

More information

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru 1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9 No.7, No.8, No.9 email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Introduction (Critical Behavior) SCR ( b > 0) Arrott 2 Total Amplitude Conservation (TAC) Global Consistency (GC) TAC 2 / 25 Experimental

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

TAMA --> CLIO ---> LCGT TAMA 300m基線長 三鷹(NAOJ) CLIO 100m 神岡 低温鏡 年5月17日火曜日

TAMA --> CLIO ---> LCGT TAMA 300m基線長 三鷹(NAOJ) CLIO 100m 神岡 低温鏡 年5月17日火曜日 LCGT LCGT 2011/5/17, 1 TAMA --> CLIO ---> LCGT TAMA 300m基線長 三鷹(NAOJ) CLIO 100m 神岡 低温鏡 2 2011年5月17日火曜日 LCGT (Large-scale Cryogenic Gravitational wave Telescope) Underground in Kamioka, Japan Silent & Stable

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

Microsoft PowerPoint - 阪大XFELシンポジウム_Tono.ppt [互換モード]

Microsoft PowerPoint - 阪大XFELシンポジウム_Tono.ppt [互換モード] X 線自由電子レーザーシンポジウム 10 月 19 日大阪大学レーザー研 X 線自由電子レーザーを用いた利用研究 登野健介 理研 /JASRI X 線自由電子レーザー計画合同推進本部 1 科学の基本中の基本 : 光 ( 電磁波 ) による観察 顕微鏡 望遠鏡 細胞の顕微鏡写真 赤外望遠鏡 ( すばる ) で観測した銀河 2 20 世紀の偉大な発明 : 2 種類の人工光源 レーザー LASER: Light

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

2008 2008 4 4 MKSA 2008 3 ii 1 1............................................ 3 2 4 2.1.......................................... 4 2.1.1................................... 4 2.1.2....................................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

偏極ターゲット開発の現状 @ 山形大学 Current status of development of polarized targets @Yamagata Univ. 山形大学松田洋樹 Yamagata Univ. H. MATSUDA Index 1. 偏極標的と偏極度 (Pol. Target and DoP) 2. 能動核偏極 (Dynamic Nuclear Polarization)

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Microsoft Word - ●ipho-text3目次

Microsoft Word - ●ipho-text3目次 国際物理オリンピック 研修用テキスト Ⅲ 熱物理 相対論 量子力学 特定非営利活動法人物理オリンピック日本委員会 1 1.1 1 1. 1.3 3 1.4 4 1.5 6 1.6 7 1.7 9 11.1 11. 0.3 1 6 3.1 6 3. -9 3.3 - -- 31 3.4 --33 39 4.1 39 4. 40 4.3 4 4.4 44 4.5 47 5 5.1 5 5. 5 5.3

More information

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130- L i t r o n T o t a l L a s e r C a p a b i l i t y Nano Series Ultra Compact Pulsed Nd:YAG Lasers Product Range Specification Nano Range Specification Stable & Stable Telescopic Resonators Model Nano

More information

プラズマ核融合学会誌11月【81‐11】/小特集5

プラズマ核融合学会誌11月【81‐11】/小特集5 Japan Atomic Energy Agency, Ibaraki 311-0193, Japan 1) Kyoto University, Uji 611-0011, Japan 2) National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan 3) Central Research

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Drain Voltage (mv) 4 2 0-2 -4 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V) Vds [V] 0.2 0.1 0.0-0.1-0.2-10 -8-6 -4-2 0 Vgs [V] 10 1000 1000 1000 1000 (LSI) Fe Catalyst Fe Catalyst Carbon nanotube 1~2 nm

More information

JSME-JT

JSME-JT Advance Publication by J-STAGE 日本機械学会論文集 Transactions of the JSME (in Japanese) DOI:.299/transjsme.6-23 Received date : 8 May, 26 Accepted date : 5 July, 26 J-STAGE Advance Publication date : 22 July,

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ rjtenmy@ipc.shizuoka.ac.jp ZnO RPE-MOCVD UV- ZnO MQW LED/PD & Energy harvesting LED ( ) PV & ZnO... 1970 1980 1990 2000 2010 SAW NTT ZnO LN, LT IC PbInAu/PbBi Nb PIN/FET LD/HBT 0.98-1.06m InGaAs QW-LD

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

報告書

報告書 (University College Dublin) 22 2 15 22 4 10 宇都宮大学オプティクス教育研究センター はじめに アイルランドのダブリンにあるアイランド国立大学ダブリン校 (University College Dublin) において 約 2 ヶ月間の短期研究留学を行った O Sullivan 教授と Dunne 准教授の研究室に滞 在し 極端紫外光 (XUV) に関する研究に従事させて頂き

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB ,,.,,.,.,,,.,.,.,..,.,,.,.,,..,,. 1 3 2 3 2.1............................................. 3 2.2 CMB............................................... 5 2.3........................................... 7 2.4.............................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy 1 22 22.1 atomic line spectrum emission line absorption line atom proton neutronnuclei electron Z atomic number A mass number neutral atom ion energy level ground stateexcited state ionized state 22.2

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

Gravothermal Catastrophe & Quasi-equilibrium Structure  in N-body Systems 2004/3/1 3 N 1 Antonov Problem & Quasi-equilibrium State in N-body N Systems A. Taruya (RESCEU, Univ.Tokyo) M. Sakagami (Kyoto Univ.) 2 Antonov problem N-body study of quasi-attractivity M15 T Antonov

More information

15H02248 研究成果報告書

15H02248 研究成果報告書 70Gbps ICT 100Tbps LAN 100Gbps 10Gbps 40Gbps TU Berlin 25Gbps 60Gbps (IBM) (APL 2013, APEX 2014) 10 m (Optics Express 2014) 100Gbps 3 VCSEL 4 7 図 10 変調器集積面発光レーザ 8 NRZ 48Gbps 11 図 12 製作した変調器集積 VCSEL の近視野像

More information

飽和分光

飽和分光 3 Rb 1 1 4 1.1 4 1. 4 5.1 LS 5. Hyperfine Structure 6 3 8 3.1 8 3. 8 4 11 4.1 11 5 14 5.1 External Cavity Laser Diode: ECLD 14 5. 16 5.3 Polarization Beam Splitter: PBS 17 5.4 Photo Diode: PD 17 5.5 :

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

ArF, KrF,, CO 2 ) X MFE ITER IFE ns, MJ/ ns, MJ/ ms, MJ/ ELM JT60-SA, ITER, DEMO [µm] W 65kV 2.3A [ ] Simple estimation of the threshold thermal load on divertor surface with ELM For Carbon Divertor Case

More information

130301_OITDA_Taira

130301_OITDA_Taira 15:25-16:05, March 28th, 2013 taira@ims.ac.jp 33 2013 1 28 10:30-14:30 670-0932 43 Q 1 η th = Q 1 Q 2 Q 1 =1 1 ε κ 1 Q2 ε κ EGR NOx 2,000 Quenching by cold cylinder wall 50% for grand electrode Spark

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

Microsoft PowerPoint - matsuzawa

Microsoft PowerPoint - matsuzawa 第 12 回若手科学者によるプラズマ研究会 29 年 3 月 16-18 日原子力機構那珂核融合研究所 磁場反転配位プラズマにおける 中性粒子数密度計測 松澤芳樹, 田邨尚郎, 山本直樹, 高尾昂平, 日吉まゆ, 浅井朋彦, 高橋努日大理工 磁場反転配位 (FRC) プラズマ コンパクト トーラス (CT) 小型で閉じ込め効率が良い磁場反転配位 (Field-Reversed Configuration:

More information

Description

Description Metal Hybrid Inductor Description Metal Hybrid Inductor Magnetically shielded Suitable for Large Current Size: 4.3 x 4.3 x H2.1 mm Max. Product weight:.18g (Ref.) Halogen Free available Operating temperature

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

untitled

untitled 213 74 AlGaN/GaN Influence of metal material on capacitance for Schottky-gated AlGaN/GaN 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1 1 AlGaN/GaN デバイス ① GaNの優れた物性値 ② AlGaN/GaN HEMT構造 ワイドバンドギャップ半導体 (3.4eV) 絶縁破壊電界が大きい

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information