( ) ( ) Iverson

Size: px
Start display at page:

Download "( ) ( ) Iverson"

Transcription

1 ( ) ( ) Iverson

2 ( ) ( ) a 1 B α n i = 1 e ( 2.718) π ( 3.14) 1 2 N 0 0 N Z, Q, R, C ϕ N ϕ 1.2 formula, logical formula x + y = 0 x 2 > y atomic formula logical connective,,,,,, A A A B A B A B A B A B A B A B A B x A x A x A x A

3 ( ) ( ) 3 (A) α (B) β Γ γ δ (E) ϵ, ε, (Z) ζ (H) η Θ θ, ϑ (I) ι (K) κ Λ λ (M) µ (N) ν Ξ ξ (O) (o) Π π, ϖ (P) ρ, ϱ Σ σ, ς (T) τ Υ υ Φ ϕ, φ (X) χ Ψ ψ Ω ω 1: A B A B A A A B A A A B A B A B 0 = 1 x > 3 x n x n x

4 ( ) ( ) 4 n N A, x R B n A x B n (n N A), x (x R B),,,,,,,,, x A y B C D E (( x A) (( y B) C)) (D E) x X y X s S x, y X, s S n m (n = m) x < y < z x < y y < z 1.1. a 0, a 1, a 2,... (a) a 0, a 1, a 2,... : a R ϵ R (ϵ > 0 n 0 N n N (n > n 0 a n a < ϵ)) (b) a 0, a 1, a 2,... Cauchy Cauchy : ϵ R (ϵ > 0 n 0 N n, m N (n > n 0 m > n 0 a n a m < ϵ)) (c) a 0, a 1, a 2,... : a R ϵ R (ϵ > 0 n N 0 < a n a < ϵ) (a) a (a R ( ϵ (ϵ R (ϵ > 0 ( n 0 (n 0 N ( n (n N (n > n 0 a n a < ϵ))))))))) (b) ϵ (ϵ R (ϵ > 0 ( n 0 (n 0 N ( n (n N ( m (m N ((n > n 0 m > n 0 ) a n a m < ϵ))))))))) (c) a (a R ( ϵ (ϵ R (ϵ > 0 ( n(n N ((0 < a n a ) ( a n a < ϵ)))))))) 1.2. (a) a 0, a 1, a 2,... (b) A (c) a A i.e. sup A = a (d) f a R (a) M R n 0 N n N (n n 0 a n < M) (b) M R x A x M

5 ( ) ( ) 5 (c) x A x a ( x A x c a c) (d) ϵ R (ϵ > 0 ( δ R (δ > 0 x R ( x a < δ fx fa < ϵ)))) 1.3. (a) a 1, a 2,..., a k R n (b) a 1, a 2,..., a k R n R n (c) R n R n f (a) c 1, c 2,..., c k R (c 1 a 1 + c 2 a c k a k = 0 c 1 = c 2 = = c k = 0) (b) c 1, c 2,..., c k R (c 1 a 1 + c 2 a c k a k = 0 c 1 = c 2 = = c k = 0) v R n c 1, c 2,..., c k R c 1 a 1 + c 2 a c k a k = v (c) x, y R n a, b R f(a x + b y) = af( x) + bf( y) 0 x x x A A x A x A A x x bound variable x N 0 x 0 0 x N 0 x x x Z 0 x x n i=1 i2 i a 0 x2 dx x i 1 n x 0 a free variable x N y x x y y y 1 n i=1 i2 n a 0 x2 dx a n(n + 1)(2n + 1)/6 a 3 /3 n a x x predicate condition closed formula proposition x A x A A scope Every man loves a woman M W x y L(x, y) x M y W L(x, y) y W x M L(x, y) 2 y W L(x, y) y M L(x, y) x y x M x M y W L(x, y) x y x M L(x, y) y W y W x M L(x, y)

6 ( ) ( ) 6 y x Z y Z x < y x y x + 1 x y Z x Z x < y yx Every integer is smaller than an integer 1.4. f f (a) f (b) f (c) f 1, f 2,..., f (d) f 1, f 2,..., f : (a) c R ϵ R (ϵ > 0 δ R (δ > 0 x R ( x c < δ fx fc < ϵ))) (b) ϵ R (ϵ > 0 δ R (δ > 0 c R x R ( x c < δ fx fc < ϵ))) x P Q Q x x P Q Q x x (P Q) 1.5. n (a) 2 n m n n (b) m n m n m n n m n m n prime(m) m n : (a) m N (2 m < n m n) prime(n) (b) m N (m n m n) A = B A B A B A = B B = A A = B A B sufficient condition B A necessary condition A B A B necessary sufficient condtion

7 ( ) ( ) 7 A, B x 1, x 2,..., x n A B x 1, x 2,..., x n (A B) A = B x 1, x 2,..., x n (A B) (A B) A B( A B B A) (A B) A B (A B) A B x X A x X A x X A x X A (1.1-a) a 0, a 1, a 2,... : a R ϵ R (ϵ > 0 n 0 N n N (n > n 0 a n a ϵ)) (1.1-b) a 0, a 1, a 2,... Cauchy : ϵ R (ϵ > 0 n 0 N n, m N (n > n 0 m > n 0 a n a m ϵ)) (1.1-c) a 0, a 1, a 2,... : a R ϵ R (ϵ > 0 n N a n = a a n a ϵ) (1.2-a) f(x) 1 : c R ϵ R + δ R + x R ( x c < δ f(x) f(c) ϵ) (1.2-b) f(x) : ϵ R + δ R + c R x R ( x c < δ f(x) f(c) ϵ) a 0, a 1, a 2,... (a) (b) (a) = (b) : (a) ϵ > 0 n 0 N n, m N (n > n 0 m > n 0 a n a m < ϵ) ϵ/2 > 0 (a) n N (n > n 0 a n a < ϵ/2) (A) n o n 0 n, m N (n > n 0 m > n 0 a n a m < ϵ) n > n 0 m > n 0 n, m a n a m < ϵ (A) a n a < ϵ/2 a m a < ϵ/2 a n a m a n a + a m a < ϵ/2 + ϵ/2 = ϵ (b) = (a) : Weierstrass

8 ( ) ( ) 8 Cauchy 1 > 0 (b) n 0 N m N (m > n 0 a n0+1 a m < 1) a b < 1 a 1 < b < a + 1 M = max{a 1,..., a n0, a n }, L = min{a 1,..., a n0, a n0 +1 1} i N L a i M Cauchy Cauchy Weierstrass a ki (i = 1, 2,...) a ϵ > 0 n N (m > n 0 a km a < ϵ/2) n 0 (b) n, m N (n > n 1 m > n 1 a n a m < ϵ/2) n 1 k i i n 2 = max{n 0, n 1 } m > n 2 a m a a m a km + a km a < ϵ (c) (a) (c) (b) (a) (c): {a n a n = α, n = 1, 2,...} (c) (a): {a n a n = 1/n n, 1 + 1/n n, n = 1, 2,...} f f(x) = x x y A y x A, x y A y x A, x y A = y x A 1.9. fx = 2x f fx = x 2 f(x) = 2x f(x) ϵ δ δ = ϵ/2 x c < δ f(x) f(c) = 2x 2c = 2 x c < 2δ = ϵ

9 ( ) ( ) 9 f(x) = x 2 f(x) : x 2 c 2 = x c x + c = x c (x c) + 2c x c ( x c + 2 c ) ϵ δ = min{1, ϵ/(1 + 2 c )} x c < δ x 2 c 2 < δ(δ + 2 c ) δ(1 + 2 c ) ϵ : 1.4.(b) ϵ 1 δ > 0 x c < δ f(x) f(c) ϵ c x x = 1/δ + δ/4 c = 1/δ δ/4 x c = δ/2 < δ f(x) f(c) = x 2 c 2 = (x + c)(x c) = (2/δ)(δ/2) = 1 ϵ n, m +,, /, = (a) n m n m (b) n > m n m (c) prime n n 1 (d) Goldbach 4 2 (e) : (f) 0 (a) n m p N np = m (b) n > m p N n = m + p + 1 (c) p(n) n 1 m N (m n m = 1 m = n) (d) Goldbach n N l, m N (p(l) p(m) 2n + 4 = l + m) (e) n N m N (p(m) m > n) (f) 0 p N (p 0 m N n N (n m (n p))) 1.3 Iverson Kenneth Iverson [2] P [P ] P [P ] = 0 P

10 ( ) ( ) 10 I n i, j- [i = j] n- x 1 x > 0 sgn x = 0 x = 0 1 x < 0 sgn x = [x > 0] [x < 0] [xy > 0] = [x > 0][y > 0] + [x < 0][y < 0], [xy < 0] = [x > 0][y < 0] + [x < 0][y > 0] sgn(xy) = (sgn x)(sgn y) Iverson n perfect number 2n = n]q q N[q [q n] q 0 n = q N[q n][q < n]q 6 28 m n, amicable number m + n = [q n]q = m]q q N q N[q x [x] x Gauss Iverson x π = 3, e = 3, 1 = 1 π e floor x x ceiling x x x 3 x N x = x x = x x = x x = x x = x x = x x R x x = [x Z] n x x x x x {x} x x R 0 {x} < x, y R x + y = x + y + [1 {x} + {y}] Iverson [1] 2

11 ( ) ( ) reduction to absurdity p n = p!+1 n p 1.5 pigeon-hole principle 2 1 n mn m (Ramsey : 6 ) a 5 (a) 3 (b) 3 (a) b, c, d b, c, d 3 2 a 3 (b) König 1.17 (König ). n 0 n 0 n 1 n 2, n 3,...

12 ( ) ( ) 12 Ramsey 1.18 (Ramsey : ). A A A S S S A a 0 A a 0 B 0 C 0 B 0 C 0 A A a 1 B 1 C 1 i N a i, B i, C i a i+1 B i C i a i+1 B i k > i a k B i a i+1 C i k > i a k C i a i B = {a i a i+1 B i }, C = {a i a i+1 C i } B C S S = B S S = C 1.6 N P [n α] P n α P n n N P P [n 0] k P [n k] P [n k + 1] mathematical induction 0 i P [n i] i k P [n k] P [n k + 1] n Z (n i P ) course of values induction k N (k < n P [n k]) P n N P (a) n N n(n + 1) = n(n + 1)(n + 2)/3 (b) n N (n 2 x R + (1 + x) n > 1 + nx) (c) n N θ R sin θ nθ (n + 1)θ (1 + cos θ + cos 2θ + + cos nθ) = cos sin 2 2 2

13 ( ) ( ) 13 (d) n N θ R sin θ nθ (n + 1)θ (sin θ + sin 2θ + + sin nθ) = sin sin : (c) (d) (a) A(n) n(n + 1) = n(n + 1)(n + 2)/3 n = 0 A(n) 0 A(n) n = k A(n) k(k + 1) + (k + 1)(k + 2) = k(k + 1)(k + 2)/3 + (k + 1)(k + 2) = (k + 1)(k + 2)(k + 3)/3 n = k + 1 A(n) n A(n) (b) A(n) x R + (1 + x) n > 1 + nx n = 2 A(n) (1 + x) 2 = 1 + 2x + x x A(n) n = k A(n) (1 + x) k+1 = (1 + x) k (1 + x) n = k + 1 A(n) > (1 + kx)(1 + x) x R + = 1 + (k + 1)x + kx 2 > 1 + (k + 1)x 2 A(n) (c) 2 A(n) B(n) θ R sin θ 2 (1 + cos θ + cos 2θ + + cos nθ) = 1 2 (sin θ (2n + 1)θ + sin ) 2 2 θ R sin θ 2 (sin θ + sin 2θ + + sin nθ) = 1 2 (cos θ (2n + 1)θ cos ) 2 2 n = 0 sin θ 2 1 = 1 2 (sin θ 2 + sin θ 2 ), sin θ 2 0 = 1 2 (cos θ 2 cos θ 2 ) A(n) B(n)

14 ( ) ( ) 14 n = k A(n) B(n) sin θ (1 + cos θ + + cos(k + 1)θ) 2 = 1 2 (sin θ (2k + 1)θ + sin ) + sin θ cos(k + 1)θ = 1 2 (sin θ 2 = 1 2 (sin θ 2 = 1 2 (cos θ 2 = 1 2 (cos θ 2 = 1 2 (cos θ 2 (2k + 1)θ + sin ) + 1 (2k + 1)θ ( sin + sin (2k + 3)θ + sin ) sin θ (sin θ + + sin(k + 1)θ) 2 2 (2k + 1)θ cos ) + sin θ sin(k + 1)θ 2 2 (2k + 1)θ cos ) + 1 (2k + 1)θ (cos cos (2k + 3)θ cos ) 2 n = k + 1 A(n) B(n) n A(n) B(n) (2k + 3)θ ) 2 (2k + 3)θ ) 2 n N A A N A N A A = n N n A n N k < n k N k A n A n A A n A n N n A n A n N A A n S S = {n N A} S n k < n k A[n k] A n [1] Graham, R. L., Knuth, D. E., and Patashnik, O.: Concrete Mathematics, Addison-Wesley, [2] Iverson, K. E.: A Programming Language, Wiley, APL 1976.

15 ( ) ( ) 15 2 ( ) X = {a 1, a 2,..., a n } ( )a 1 X, a 2 X,..., a n X x X x a 1, a 2,..., a n 1 P x {x P } P x ( ) x x A x z {x P } P [x z] (1) Russell R = {x x x} (1) {x U P } U {x U P } U x P z {x U P } z U P [x z] (2) 2.1 (Russell ). (1) x Q (1) z {x P } (P Q)[x z] (3) (3) R Q[x R] 1 (1) P (x) = x x,. (3) R R, R R R {x P (x)} P (R) R R. R R R {x P (x)} P (R) Q(R) R R Q(R) = R R R R R R (R R Q(R)) R R Q(R) R R Q(R). 1 U ( ) Q x U R U R

16 ( ) ( ) 16 (empty set) {} {x x x} 2.2. (a) {1, 2, 3} (b) {1, 1, 1, 1} (a) {x N 1 x 3} (b) {x C x 4 = 1} 2.3. (a) {x C x 6 = 1} (b) {x R (x + 1) 4 R} (c) {x Q y 3 = 2} (d) {x Z 0.1 < 2 x < 100} (a) {1, 1 + 3, 1 + 3, 1, 1 3, 1 3 } (b) (x + 1) 4 = x x 3 6x 2 4 1x + 1 x R 4x 3 4x = 0 x = 1, 0, 1 { 1, 0, 1} (c) {} (d) { 3, 2, 1, 0, 1, 2, 3, 4, 5, 6} a, b R a < b a, b [a..b] = {x R a x b} (a..b) = {x R a < x < b} (a..b] = {x R a < x b} [a..b) = {x R a x < b} [a..b], (a..b), (a..b], [a..b) a R (..a], (..a), [a.. ), (a.. ) (..a] = {x R x a} (..a) = {x R x < a} [a.. ) = {x R a x} (a.. ) = {x R a < x} {x P } x P {n 2 n Z} = {0, 1, 4, 9, 16, } {m n m, n N, mn = 6} = { 5, 1, 1, 5} 2.4. x {x P }

17 ( ) ( ) 17 (a) {1, 2, 4, 8, 16,...} (b) {..., 5/2, 3/2, 1/2, 1/2, 3/2, 5/2,...} (a) {2 x x N} (b) {x x Z} 2.5. {A M(2, 2; R) det A = 1, A = A 1 } = {( cos θ sin θ ) } sin θ θ R cos θ M(2, 2; R) 2 2 det A A A A A 1 A A M(2, 2; R) det A = 1, A = A 1 A 2 2 A = det A = ad bc = 1 A = ( a b ) ( c = A 1 1 d = d ad bc c ) b = a ( d a = d b = c ad bc = a 2 b 2 = 1 a, b R θ R a = cos θ b = sin θ ( ) cos θ sin θ θ R A = A M(2, 2; R) det A = (cos θ) 2 sin θ cos θ (sin θ) 2 = 1 A = A = A 1 c ) b a ( a c ) b d 2.2 X Y x X x Y X Y ( subset) 2 X Y Y X N Z Q R C {x U P } P U 2 {a, b} = {b, a, a}, {n Z n 0} = N, {n N n < 0} = 2 X X (complement) X C X C U( X) X C = {x U x X} U = R Q C ( ) (X C ) C = X U X C U \ X (difference) X \ Y {x X x Y } 2 Y X x Y Y x

18 ( ) ( ) 18 X Y X Y (intersection) X Y X Y X Y (union) X Y a X Y a X a Y, a X Y a X a Y A B A B (meet, intersect) A B = (disjoint) 2.6 (De Morgan ). U X, Y, Z U (a) (X Y ) C = X C Y C (b) (X Y ) C = X C Y C (c) X Z = X (Y Z) = (X Y ) Z (d) X Z = X Z C = Z X C (a) (b) De Morgan (a) x (X Y ) C (x X x Y ) x X x Y x X C Y C (b) 2.7 (). X Y (symmetric difference) X Y (a) X Y = (X Y ) \ (X Y ) (b) X Y = Y X (c) X = X (d) X X = (e) X (Y Z) = (X Y ) Z (f) (X Y ) Z = (X Z) (Y Z) X Y = (X \ Y ) (Y \ X) x ( ((X 1 X 2 ) X 3 ) X n ) x X 1, x X 2,..., x X n n n = 1 n = k + 1 x ( ((X 1 X 2 ) X 3 ) X k+1 ) x ( ((X 1 X 2 ) X 3 ) X k ) x X k+1 x ( ((X 1 X 2 ) X 3 ) X k ) x X k+1 x ( ((X 1 X 2 ) X 3 ) X k ) x X 1, x X 2,..., x X k x X 1, x X 2,..., x X k, x X k+1 x ( ((X 1 X 2 ) X 3 ) X k+1 ) x X 1, x X 2,..., x X k, x X k+1 (a) x X Y x Y x X x X Y (b)

19 ( ) ( ) 19 (c) x X x x X (d) x X x X 2 2 (e) (f) x y (pair) 3 x, y a, b = c, d a = c b = d (4) 2.8. x, y {{x}, {x, y}} (4) x, y = {{x}, {x, y}} a, b = c, d = a = c b = d. a = b a, b = {{a}} a, b = c, d {c} = {c, d} c = d {{a}} = {{c}} a = c a = c b = d a b a, b = c, d {{a}, {a, b}} = {{c}, {c, d}} a b {a, b} = {c} {a} = {c} {a, b} = {c, d} {a} = {c} a = c {a, b} = {a, d} a b a d b = d a = c b = d X Y (direct product) 4 X Y X x Y y x, y X Y = { x, y x X, y Y } 3 a 1, a 2, a 3 3 a 1, a 2, a 3 a 1, a 2, a 3 a 1, a 2, a 3 4 X 1, X 2,..., X n X 1 X 2 X n = { a 1, a 2,..., a n a 1 X 1, a 2 X 2,..., a n X n } n i=1 X i n i=1 X i x = (x 1,..., x n ) i x i x i (coordinate) X X X X X 2 n X X n X n n R n n 2.9. A, B, C, A, B (a) A (B C) = (A B) (A C) (b) A (B C) = (A B) (A C) 3 {x, y} (ordered pair) 4 (Cartesian product)

20 ( ) ( ) 20 (c) A (B \ C) = (A B) \ (A C) (d) (A B) (A B ) = (A A ) (B B ) (e) (A B) \ (A B ) = ((A \ A ) B) (A (B \ B )) (f) (A B) (A B ) = ((A A ) (B B )) \ (((A \ A ) (B \ B)) ((A \ A) (B \ B ))) 2.3 (family of sets) U = {X i i I} i I X i X i U i I X i U (intersection) X i U i I X i U (intersection) (union) U = i I X i = {x i I x X i }, U = i I X i = {x i I x X i } 2.10 (De Morgan ). {X i i I} U ( ) U \ X i = i I(U ( ) \ X i ), U \ X i = i I(U \ X i ) i I ( ) x U \ X i x U x X i x U ( i I x X i ) x U i I x X i i I i I i I (x U x X i ) i I (x U \ X i ) x i I(U \ X i ) i I {X i i I} {Y j j J} (a) ( ( ) i I X i) j J Y j = i,j I J (X i Y j ) (b) ( ( ) i I X i) j J Y j = i,j I J (X i Y j ) (c) ( ( ) i I X i) j J Y j = i,j I J (X i Y j ) (d) ( ( ) i I X i) j J Y j = i,j I J (X i Y j ) (e) ( ( ) i I X i) j J Y j = i,j I J (X i Y j ) (f) ( ( ) i I X i) j J Y j = i,j I J (X i Y j ) X 2 X X (power set) 2 X = {Y Y X} X Y (c), (e), (g)

21 ( ) ( ) 21 (a) 2 X 2 Y X Y (b) 2 X Y = 2 X 2 Y (c) 2 X Y 2 X 2 Y (d) 2 X Y = 2 X 2 Y X Y Y X (e) 2 X\Y 2 X \ 2 Y (f) 2 X\Y 2 X \ 2 Y (g) 2 X Y {A B A 2 X, B 2 Y } (c) X = {a}, Y = {b} 2 X 2 Y = {, {a}, {b}} 2 X Y = {, {a}, {b}, {a, b}} {A i i I} = (a) i I (2A i ) = 2 ( i I A i) (b) i I ) 2 ( (2Ai i I Ai) (a) x i I ) i x 2 (2Ai Ai i x A i x i I A i x 2 ( i I Ai) (b) x i I (2A i ) i x 2 A i i x A i = x i I A i x 2 ( i I A i) (b) 2.12 (c) 2 X X (family of subsets of X) U X A U A A U A X U U X = = X {a n } n N {b n } n N inf a n = a sup a n = a + inf b n = b sup b n = b + n N n N n N = (a) n N (a n..b n ) = (a..b + ) (b) n N [a n..b n ] [a..b + ] (c) n N (a n..b n ) (a +..b ) (d) n N [a n..b n ] = [a +..b ] A 0, A 1, A 2,..., (limit sup) lima n (limit inf) lima n 5 lima n = n N A k, k n lima n = n N A 0, A 1, A 2,... A n A n lim A n A 0, A 1, A 2,... lim A n (converge) n N k n A k (a) lima n lima n 5 lim sup A n lim inf A n

22 ( ) ( ) 22 (b) lim(a n ) C = (lima n ) C lim(a n ) C = (lima n ) C (c) (lima n ) (limb n ) lim(a n B n ) (lima n ) (limb n ) = lim(a n B n ) (d) (lima n ) (limb n ) = lim(a n B n ) (lima n ) (limb n ) lim(a n B n ) (e) A 1 A 2 = lim A n = n N A n (f) A 1 A 2 = lim A n = n N A n (g) (a) x lima n k N (k n 0 x A k ) n 0 N x lima n n N k n x A k k n k = max{n, n 0 } (b) (c) n A n A n B n B n A n B n lima n lim(a n B n ) limb n lim(a n B n ) lima n limb n lim(a n B n ) (d) A 1 A 2 k n A k = k N A k k n A k = A n (e) lima n = A k = A k = n N k N k N n N A n = lima n (f) A 2n = {a}, A 2n+1 = {}, n N lima n = {a} = lima n = {} (a..b) [a..b) (a..b] [a..b] (a) i=1 ( 1..1/i) (b) i=1 ( 1.. 1/i) (c) n=k (1/n /n) (d) lim(1/n /n) (e) n=k (( 1/n..1/n] (1/n /n)) (f) lim(( 1/n..1/n] (1/n /n))

23 ( ) ( ) 23 3 X Y X Y (function) (mapping) X Y f x X fx Y f (graph) {(x, fx) X Y x X} X Y fx f x (value) f x (image) 3.1 X Y Y X X f x X fx fx Y f Y f Y X x X fx Y x f fx f fx x fx = 3x + 4 f f λx R 3x + 4 λx X P X a X P [x a] (lambda notation) λx X P x x X P (λx X P )a a P [x a] x y R λx R yx + y 1 (0, y 1) y R y y x R λy R yx + y 1 x (λx R yx + y 1)0 = (yx + y 1)[x 0] = y 1 (λy R yx + y 1)0 = (yx + y 1)[y 0] = 1 X Y λx X x X Y (inclusion map) X = Y X (identity funtion) id X a Y λx X a a (constant map) X 2 f g x X x X fx = gx, f = g 3.2 f Y X, g Z Y f g (composition) g f λx X g(fx) (g f) Z X f Y X id Y f = f id X = f

24 ( ) ( ) f Y X, g Z Y, h W Z (h g) f = h (g f) x X ((h g) f)x = h((g f)x) = h(g(fx)) = (h g)(fx) = (h (g f))x (h g) f = h (g f) f Y X A X, B Y f (image) fa (inverse image) f 1 B fa = {fx Y x A}, f 1 B = {x X fx B} 3.2. fx = x(x 4) (a) f[0..3) (b) f 1 ( 3..0] (c) f 1 ( 5..a) ( a > 4 ) 3.3. f X Y A, A X B, B Y = (a) f(a A ) = fa fa, f 1 (B B ) = f 1 B f 1 B (b) f(a A ) fa fa, f 1 (B B ) = f 1 B f 1 B (c) f(a \ A ) fa \ fa, f 1 (B \ B ) = f 1 B \ f 1 B (d) f 1 (Y \ B) = X \ f 1 B (e) f(f 1 B) B, A f 1 (fa) f(x \ A) Y \ fa (a) b f(a A ) fa = b a A A a A A a A a A = b fa b fa b fa fa f(a A ) fa fa b fa fa b fa b fa fa = b a A A a A A b = fa f(a A ) f(a A ) fa fa f(a A ) = fa fa a f 1 (B B ) fa B B fa B fa B a f 1 B a f 1 B a f 1 B f 1 B. f 1 (B B ) = f 1 B f 1 B (b) b f(a A ) fa = b a A A a A A a A a A = b fa b fa b fa fa f(a A ) fa fa f 1 (B B ) = f 1 B f 1 B (a) (e) b f(f 1 B) fa = b a f 1 B fa = b B f(f 1 B) B a A fa faa f 1 (fa) A f 1 (fa) 3.4. f Y X g Z Y (a) A 2 X (g f)a = g(fa) (b) C 2 Z (g f) 1 C = f 1 (g 1 C)

25 ( ) ( ) f Y X x, x X (fx = fx x = x ) f (injection) y Y x X fx = y f (surjection) (bijection) f Y X f (a) f (b) X = h X Y h f = id X (c) A 2 X f 1 (fa) = A (d) Z g, g X Z (f g = f g g = g ) (e) A, A 2 X f(a A ) = fa fa (f) A, A 2 X f(a \ A ) = fa \ fa f (e) (c) 3.3 fa fa f(a A ) f 1 (fa) A b fa fa a A a A b = fa b = fa f a = a A A b f(a A ) a f 1 (fa) fa fa a A fa = fa f a = a A (b) a X y Y fx = y x hy = x hy = a h h h well-ined h f = id X (d) X = X Z = (Z ) X Z = {id } (Z = ) X (b) g = h f g = h f g = g f x x, fx = fx x, x X f({x} {x }) = = {fx} = f({x}) f({x }) x f 1 {fx} = f 1 (f{x}) {x} = f 1 (f{x}) h f = id X x = h(fx) = h(fx ) = x Z = {0} g(0) = x, g (0) = x f g = f g g g (b) (e) 3.7. f Y X f (a) f (b) B 2 Y f(f 1 B) = B (c) h X Y f h = id Y (d) Z g, g Z Y (g f = g f g = g ) f (b) 3.3 B f(f 1 B) b B f f(a) = b a A a f 1 B b = f(a) f(f 1 B) (c) y Y fx = y x hy = x f h = id X (d) (c) g = g f h = g f f = g f y Y f 1 {y} = {y} = f( ) = f(f 1 ({y})) f h = id Y y = f(hy) Z 2 gy g y z Y x y g(z) = g(z ) g, g g f = g f g g (b) (d)

26 ( ) ( ) f X Y f g f = id X f g = id Y g, g X Y g = g = f f X Y f g X Y Y f X Y X Y f f f f X Y f g f = id X f g = id Y g, g X Y g = g = f f X Y 2 X 2 Y f 2 Y 2 X f A 2 X f A = fa, B 2 Y f B = f 1 B (a) f f f (b) f f f A Z 2 X Y f X A Y A f Z Y Z X f f = λg X A f g, f = λg Z Y g f (a) f f f (b) f f f f, f Y X g, g Z Y (a) f g g f (b) f g g f (c) g f g (d) g f f (e) f g f = g f g = g (f) g g f = g f f = f (g) g f g f (h) g f g f (a) f, g x, x X g(fx) = g(fx ) g fx = fx f x = x g f (b) f, g z Z g gy = z y Y f fx = y x X z g(fx) = (g f)x = z x g f.

27 ( ) ( ) 27 A X x [x A] X {0, 1} X A (χ A λx X [x A] X A, B X (a) A B x X [x A] [x B] (b) x X [x A B] = [x A][x B] (c) x X [x A B] = [x A] + [x B] [x A][x B] (d) x X [x X \ A] = 1 [x A] (e) x X [x A \ B] = [x A] [x A][x B]

28 ( ) ( ) X Y 2 ((binary) relation) X Y X 1 X 2 X n n (n-ary relation) X n X n R x, y R xry f Y X { x, fx x X} X Y f (graph) X X = { x, x x X} X X (identity) R X Y xr 1 y yrx Y X R 1 R (inverse rellation) R 1 X Y R 2 Y Z x(r 1 R 2 )z y Y (xr 1 y yr 2 z) X Z R 1 R 2 R 1 R 2 (composition) X 2 R n R } R {{ R } R n R 0 = X n 4.1. R 1 X Y, R 2 Y Z, R 3 Z W (a) X R 1 = R 1 Y = R 1 (b) (R1 1 ) 1 = R 1 (c) (R 1 R 2 ) 1 = R2 1 R1 1 (d) (R 1 R 2 ) R 3 = R 1 (R 2 R 3 ) X (equivalent relation) X (a) : x X x x (i.e. X ) (b) : x, y X (x y y x) (i.e. = 1 ) (c) : x, y, z X (x y y z x z) (i.e. ( ) ) X x X [x] 6 [x] = {y X x y} 4.2. X x 1, x 2 X 4 (a) x 1 [x 2 ] (b) x 1 x 2 (c) [x 1 ] = [x 2 ] 6 [x] x/

29 ( ) ( ) 29 (d) [x 1 ] [x 2 ] X X (quotient set) X/ (X/ ) = {[x] x X} πx = [x] X X/ π (natural mapping) 4.3. f Y X, x y fx = fy f g (X/ ) X h Y X/ f = h g 4.4. R = < 4.5. S = R 2 \ {(0, 0)} λ x, y = λx, λy x, y x, y S ( x 2 + y 2 = 1 ) x, y 1 : () λ = 1 > 0 x, y = λ x, y () x, y = λ x, y, λ > 0 x, y = 1 λ x, y, 1 λ > 0 () x, y = λ x, y, λ > 0 x, y = λ x, y, λ > 0 x, y = λλ x, y, λλ > 0 1 x, y S x, y = λ x, y x 2 + y 2 = 1 1 = x 2 + y 2 = λ 2 (x 2 + y 2 1 ) λ > 0 λ = x2 + y 2 λ x, y = λ x, y x 2 + y 2 = n X 1, X 2,..., X n X 1 X 2 X n {1, 2,..., n} n i=1 X i x i {1, 2,..., n} xi X i {X i i I} (direct product) i I X i I i I X i x i I xi X i xi x i (coordinate) i xi x i i I X = i I X i X i λx X xi i (projection) π i π i x = xi 4.6. {A i i I}, {B i i I} = (a) ( i I A i) ( i I B i) = i I (A i B i )

30 ( ) ( ) 30 (b) ( i I A i) ( i I B i) i I (A i B i ) {X i i I} i I X i = = i I X i = i I X i = i I X i (axiom of choice) 7 i I x x X i = x ( i I X i ) I i I xi X i i I X i ZF 4.7. X Y X Y X Y X X Y : f X Y x 0 X Y X g y Y y f(x) y = f(x) x X 1 g(y) = x y f(x) g(y) = x 0 g g Y X x X g 1 {x} = X x X g 1 {x} = Y f f(x) g 1 {x} f f(x) = f(x ) g(f(x)) = g(f(x )) g(f(x)) {x}, g(f(x )) {x } x = g(f(x)) = g(f(x )) = x 4.8. (a) i I A i π i0 : i I A i A i0 (b) i I A i i I A i i I B i0 i I A i B i 4.9. i I f i : A i B i f : i I A i λ f f = λa i A i λ i I f i (a i ) i I B i f(a) i = f i (a i ) (a) f i I f i (b) f i I f i 7

31 ( ) ( ) X orderpartial order 8 X 2 (a) x X x x i.e. X (b) x, y X (x y y x x = y) i.e. ( 1 ) X (c) x, y, z X (x y y z x z) i.e. ) preorder X X x y x y y x A/ [x] [y] X (a) (b) (c) x x x x x y x y x y y x y x x y y x x y y z (x y y x) (y z z y) (x y y z) (z y y x) = x z z x x z X/ (a) (b) (c) x x [x] [x] [x] [y] [y] [x] x y y x x y [x] = [y] [x] [y] [y] [z] x y y z = x z [x] [z] X < x < y x y x y < (d) (e) x X x x x, y, z X x < y y < z x < z X < < x y x < y x = y : x < y x y x y x < x x x x (d) 8

32 ( ) ( ) 32 x < y y < z x, y, z X x < y y < z (x y x y) (y z y z) = (x y y z) x z x = z x y y z = x y y x = x = y x < y x z x < y y < z = x z x z x < z (e) (d),(e) X < x y x < y x = y (a) x = x = x < x x = x x x (b) x y y x (x < y x = y) (y < x y = x) (x < y y < x) (x < y y = x) (x = y y < x) (x = y y = x) = x = y ( 3 x > x ) (c) x y y z (x < y x = y) (y < z y = z) (x < y y < z) (x < y y = z) (x = y y < z) (x = y y = z) = x < z x = z x z ( 3 x < z ) X 1 < 1 > X X, X N Z Q R X 2 X X X X reverse order : x x y x = y x (a) x = x x x x (b) x x y y x x x = y (c) x x y y x z x = y y = z = x = z x x z X a x x x x (b) x y y x y x x y = x = y (c) x y y z y x z y = z x x z

33 ( ) ( ) R X 2 R i=0 Ri R (refrexive transitive closure) (R R 1 ) R (refrexive transitive simmetric closure) (a) (b) X, X, f x, y X (x y = f(x) f(y)) order-homomorphism 9 f x, y X (x y f(x) f(y)) f order-isomorphism X Y X = Y X, X X X x, y X x y x y extension X, S X x, y S x y x y) S S S X, X X X X X λx X x X, X, R ( 1..1) N Z Q R 2 X S X a S b S (b a) a S maximum, greatest b S(a b b = a) a S maximal S max S minimum, least minimal min S X order-preserving function monotone function, isotone function

34 ( ) ( ) 34 [a..b] (a..b] [a..b) (a..b) X a, b X closed interval [a..b] open interval (a..b) (a..b] [a..b) [a..b] = {x X a x b} (a..b) = {x X a < x < b} (a..b] = {x X a < x b} [a..b) = {x X a x < b} a b b a a b X chain X linear order total orderx antichain X < x, y X (x < y x = y x > y) X < a < b 2 a, b X [a, b] = {a, b} a < c < b c b a a b a b b a a a atom a a coatom 2 a, b a b dense X S s S (s b) b X b S upper bound S b S S least upper bound sup, join b S b 2 S b, a X (S a b a) S b, a X (S a b a) b S sup S lower bound greatest lower bound inf, meet b S S inf S S S b S, a X (a S a b)

35 ( ) ( ) 35 b S, a X (a S a b) X b X S X a S 2 (a) b S b a (b) x X (x < a b S x < b) X Y f Y X f x, y X (x < y fx < fy) X A B X max A max A = sup A max A max B max A max B sup A sup B sup A sup B min A min B inf A inf B X, Y X Y A Y sup A sup x A sup Y A inf (a) sup X A sup Y A sup X sup Y 2 (b) sup X A sup Y A (c) sup Y A sup X A N n m n m (a) N, (b) N, (c) N, S N sup S inf S (d) N, : (b) = 1 = 0 (c) sup S S inf S S (d) m n n m n 0 n n X 2 X U 2 x X sup U inf U X X X X O(X) O(X) O(X)

36 ( ) ( ) Peano N 0 N S N N 3 10 (P1) n, m N (Sn = Sm n = m) (P2) n N Sn 0 (P3) P [n 0] k N (P [n k] P [n Sk]) n N P (P2) 0 S S 1 {0} = (P1) S (P3) P n P [n α] P n α A = {n N P } k A P [n k] (P3) A 2 N ((0 A k A Sk A) A = N) Sx x succesor x + 1 (P1) (P3) (P3) n N P P [n 0] k P [n k] P [n k + 1] 2 2 P [n 0] k N (P [n k] P [n Sk] 1.6 f f0 k fk f(k + 1) n fn 5.1 ( ). x + 0 = x, x + Sy = S(x + y)

37 ( ) ( ) ( ). 5.3 (). x0 = 0, x(sy) = x + xy N (a) (b) (c) (d) 1 = S0 (e) : x, y, z N (x + z = y + z x = y) (f) x, y N (x + y = 0 x = y = 0) 5.4 () x y N z Nx + z = y 1.6 (course of values induction) (P3 ) n N ( k N (k < n P [n k]) P ) = n N P (P3) (P3 ) 5.6. P n (P3) (P3 ) (: n Q k N (k < n P [n k]) n N Q ) 5.7. (a) x, y, z N(x < y = x + z < y + z) (b) x, y, z N(x < y z 0 = xz < yz) (c) : x, y, z N (xz = yz z 0 x = y) n k fk fn 5.8. n i ( ) ( 0 n + 1 = [i = 0], i i ) ( ) n n i ( ) n = + i 1 ( ) n i

38 ( ) ( ) 38 ( ) n (a) i [0..n] = 0 i i n ( ) ( ) n n (b) n N = = 1 n ( 0 ) n + m (n + m)! (c) n, m N = m m!n! m ( ) ( ) n + i n + m + 1 (d) n, m N = n n + 1 i=0 ( ( ) ) n n! (c) A(n) i N 0 i n = i i!(n i)! ( ) 0 n = 0 A(n) = 1 0! = 1 A(n) 0 0!0! n = k A(n) 0 < i < k + 1 ( ) ( ) k + 1 k = + i i 1 ( ) k + 1 (k + 1)! = 1 = 0 0!(k + 1)!, ( ) k = i n = k + 1 A(n) A(n) (d) ( ) k + 1 k + 1 = 1 = (k + 1)! (k + 1)!0! k! (i 1)!(k i + 1)! + k! (k + 1)! = i!(k i)! i!(k i + 1)! 2 P x, y,..., z x, y,..., z P x, y,..., z f(x, y,..., z) n Q x, y,..., z (f(x, y,..., z) = n P ) x, y,..., z P n N Q x, y,..., z (f(x, y,..., z) = 0 P ) k x, y,..., z (f(x, y,..., z) = k P ) x, y,..., z (f(x, y,..., z) = k + 1 P ) k x, y,..., z (f(x, y,..., z) < k P ) x, y,..., z (f(x, y,..., z) = k P ) 2 2 P m, n m, n N P n N P [m 0]

39 ( ) ( ) 39 P [m 0][n 0] k P [m 0][n k] P [m 0][n k + 1] j n N P [m j] n N P [m j + 1] P [m j + 1][n 0] k P [m j + 1][n k] P [m j + 1][n k + 1] Ackermmann 2 A(m, n) n N A(0, n) = n + 1 m N A(m + 1, 0) = A(m, 1) m, n N A(m + 1, n + 1) = A(m, A(m + 1, n)) 2 2 A(m+1, 0) A(m + 1, n + 1) k A(m, k) A(m + 1, n + 1) A(m + 1, n) 5.9. Ackermann A(m, n) (a) A(1, n) = n + 2 (= 2 + (n + 3) 3) (b) A(2, n) = 2n + 3 (= 2(n + 3) 3) (c) A(3, n) = 8 2 n 3 (= 2 n+3 3) A(4, n) A(5, n) n L n (A), (B) L 2 = 4 L 3 = 7 (A) (B) (a) L n (b) L n n (a) L n L 0 = 1 L n = L n 1 + n (n = 1, 2,...) n n 1

40 ( ) ( ) 40 n n 1 n (b) L n = n + (n 1) = n(n + 1)/ n m m n m 1 m 1 m + 1 L(m, n) (2 ) n 3 P n P n P 0 = 1 P n = P n 1 + L n 1 (n = 1, 2,...) L n n n n 1 L n 1 n 1 L n 1 P n n P n = n i=1 {n(n 1)/2 + 1} + 1 = n(n2 + 5)/6 + 1 m L(m, n) L(1, n) = n + 1, L(m + 1, 0) = 1, L(m + 1, n + 1) = L(m + 1, n) + L(m, n) 5.12 (Catalan ). n n A B Catalan C n n = 3 5 C 3 = 5 B Catalan A C 0 = 1 C n+1 = n C i C n i C n = 1 ( ) 2n n + 1 n i=0 5.3 N 2 Z N 2 / p 1, m 1 p 2, m 2 p 1 + m 2 = p 2 + m 1

41 ( ) ( ) N 2 [ p, 0 ] +p [ 0, m ] m +p p p N N Z [ p 1, m 1 ] + [ p 2, m 2 ] = [ p 1 + p 2, m 1 + m 2 ] [ p 1, m 1 ][ p 2, m 2 ] = [ p 1 p 2 + m 1 m 2, p 1 m 2 + m 1 p 2 ] [ p 1, m 1 ] [ p 2, m 2 ] Z (a) well-ined (b) (c) p 1 + m 2 m 1 + p 2 (d) (e) 0 = [ 0, 0 ] +p = [ p, 0 ] p = [ 0, p ] (f) +1 = [ 1, 0 ] (g) x, y Z( x)y = x( y) = (xy) (h) x Zx0 = 0x = Z (a) well-ined (b) p, m N (0 [ p, m ] m p) x Z (0 x x 0) (c) x, y, z Z (x < y x + z = y + z) x, y Z (x > 0 y > 0 xy > 0) Z x, y, z Z (xz = yz z 0 x = y) 5.4 Z (N \ {0}) Q Z (N \ {0})/ n 1, d 1 n 2, d 2 n 1 d 2 = n 2 d 1 [ n, d ] n/d / nd 1 n/1 n n Z Z Z n 1 /d 1 + n 2 /d 2 = (n 1 d 2 + d 1 n 2 )/d 1 d 2 n 1 /d 1 n 2 /d 2 = n 1 n 2 /d 1 d 2 n 1 /d 1 n 2 /d 2 n 1 d 2 d 1 n 2

42 ( ) ( ) Z (N \ {0}) Q (a) well-ined Z (b) (c) (d) (e) 0 = 0/1 n/d ( n)/d (f) 1 = 1/1 (g) 0 = 0/1 Q Q (a) well-ined Z (b) Q (c) x, y, z Q (x < y x + z < y + z) x, y Q (x > 0 y > 0 xy > 0) 5.20 ( ). x, y Q (x < y z Q x < z < y) 5.5 x Q N Cauchy sequence n N i 0 N i, j N (i > i 0 j > i 0 x(i) x(j) < 1/n) Cs(Q) Cs(Q)/ R x y n N i 0 N i N (i > i 0 x(i) y(i) < 1/n) q Q [λi N q] R q Q Q R Q R [x] + [y] = [λi N x(i) + y(i)] [x] [y] = [λi N x(i)y(i)] [x] [y] n N i 0 N i N (i > i 0 x(i) y(i) < 1/n) x R x 0 x x x Cs(Q)

43 ( ) ( ) R x Cs(Q) n N i N x(i) < n (a) well-ined Q (b) (c) (d) (e) 0 = [λi N 0] [x] [x] = [λi N x(i)] (f) 1 = [λi N 1] (g) 0 = [λi N 0] R x R s Cs(Q) x = [s] s x R x = [x] R (a) well-ined Q (b) R (c) x > y n 0 N i 0 N i N (i i 0 x(i) y(i) 1/n 0 ) (d) x, y, z R (x < y x + z < y + z) x, y R (x > 0 y > 0 xy > 0) (a) x y x x y y x y n N x y i 0 N i i 0 x(i) y(i) < 1/(3n) x x y y i 1, i 2 N i i 1 x(i) x (i) < 1/(3n) i i 2 y(i) y (i) < 1/(3n) j = max{i 0, i 1, i 2 } i > j x (i) y (i) = x (i) x(i) + x(i) y(i) + y(i) y (i) < 1/(3n) + 1/(3n) + 1/(3n) = 1/n x y q, r Q R q = [λi N q] r = [λi N r] Q r q n, i N r(i) q(i) = q r 0 < 1/n R r q (b) x x x(i) x(i) = 0 < 1/n x y y x n N i 0, i 1 N i i 0 x(i) y(i) < 1/n i i 1 y(i) x(i) < 1/n j = max{i 0, i 1 } i > j x(i) y(i) < 1/n x y x y y z n N i 0, i 1 N i i 0 x(i) y(i) < 1/(2n) i i 1 y(i) z(i) < 1/(2n) j = max{i 0, i 1 } i > j x(i) z(i) = (x(i) y(i)) + (y(i) z(i)) < 1/(2n) + 1/(2n) = 1/n x z x y y x n 0, n 1 N i N j > i x(j) y(j) 1/n 0 i N k > i y(k) x(k) 1/n 1 n = max{n 0, n 1 } x, y

44 ( ) ( ) 44 i 0, i 1 N j, k > i 0 x(j) x(k) < 1/n j, k > i 1 y(j) y(k) < 1/n j, k > max{i 0, i 1 } x(j) y(j) 1/n 0 y(k) x(k) 1/n 1 1/n 0 + 1/n 1 (x(j) y(j)) + (y(k) x(k)) x(j) x(k) + y(j) y(k) < 1/n + 1/n n = max{n 0, n 1 } (c) ((b) x > y x y n 0 N i N j N (j i x(j) y(j) 1/n 0 ) x y n 0 i 1, i 2 N j, k i 1 x(j) x(k) < 1/(3n 0 ) j, k i 2 y(j) y(k) < 1/(3n 0 ) j max{i 1, i 2 } x(j) y(j) 1/n 0 j k j x(k) y(k) = x(k) x(j) + x(j) y(j) + y(j) x(k) 1/(3n 0 ) + 1/n 0 1/(3n 0 ) = 1/(3n 0 ) (d) i N y(i) x(i) = (y(i) + z(i)) (x(i) + z(i)) x > 0 y > 0 (c) n 0, n 1, i 0, i 1 N j i 0 x(j) 1/n 0 j i 1 y(j) 1/n 1 n = n 0 n 1 i = max{i 0, i 1 } j N j i x(j)y(j) 1/(n 0 n 1 ) = 1/n (c) xy > x R x = [λi N x(i) ] : x(j) x(k) x(j) x(k) x Cs(Q) λi N x(i) Cs(Q) 0 x x = x n N 0 x i 0 N j i 0 0 x(j) < 1/(2n) j i 0 x(j) x(j) x(j) + x(j) < 1/n λi N x(i) x = x 0 > x x = x 5.24 (c) n 0, i 0 N j i 0 0 x(j) 1/n 0 > 0 j i 0 n N x(j) + x(j) = x(j) + x(j) = 0 < 1/n λi N x(i) x = x x R q Q x < q x q i 0 N j N (j i 0 x(j) < q) : 5.24 (c) x < q n 0, i 0 N j i 0 q x(j) 1/n 0 j i 0 x(j) q 1/n 0 < q i 0 N j i 0 x(j) < q m N j i 0 x(i) q < 0 < 1/m x q 5.27 (). x, y R (x < y q Q x < q < y)

45 ( ) ( ) 45 : x, y R x < y 5.24(c) n 0, i 0 N j i 0 y(j) x(j) > 1/n 0 x, y i 1, i 2 N j, k i 1 x(j) x(k) < 1/(4n 0 ) j, k i 2 y(j) y(k) < 1/(4n 0 ) i 3 = max{i 0, i 1, i 2 } q = y(i 3 )/2 + x(i 3 )/2 Q j i 3 j q x(j) = q x(i 3 ) + x(i 3 ) x(j) = y(i 3 )/2 x(i 3 )/2 + x(i 3 ) x(j) > 1/(2n 0 ) 1/(4n 0 ) = 1/(4n 0 ) 5.24(c) x < q j i 3 j y(j) q > 1/(4n 0 ) q < y 5.28 (). x R (x > 0 y R n N y < nx) : x > 0 n 0, i 0 N i i 0 x(i) 1/n 0 y R n 1 N y(i) < n 1 n = n 0 n i i 0 nx(i) y(i) n/n 0 y(i) = n 1 + 1/n 0 y(i) 1/n 0 nx > y x R (x > 0 n N 1/n < x) x R N n N i 0 N i, j N (i i 0 j i 0 x(i) x(j) < 1/n) a n N i 0 N i N (i i 0 x(i) a < 1/n) limit a converge lim i x(i) = a x(i) a (i ) s Cs(Q) s(i) (i N) x i x i = [λj N s(i)] λi N x i x = [s] lim i x i = x : n N i 0 N j i 0 x j x < 1/n 5.25 x x j x j x = [λk N s(j) s(k) ] j i 0 j N i 1 N k i 1 s(j) s(k) < 1/(2n) 5.26 x j x 1/(2n) < 1/n s Cs(Q) j, k i 2 s(j) s(k) < 1/(2n) i 2 N i 0 = i 1 = i () (). R

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0) 0407).. I ) f ) a I 3).) lim x a fx) = fa) a.) 4)5) lim fx) = fa) x a+0 lim x a 0 fx) = fa)). I f I I I I f I a 6) fx) fa) lim x a x a f a f a) I I 7) *) 03 0 8 ) an interval; ) an open a closed) interval.

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information