Microsoft Word - 水資源工学_講義資料1,2,4_.docx

Size: px
Start display at page:

Download "Microsoft Word - 水資源工学_講義資料1,2,4_.docx"

Transcription

1 水資源工学 ( 立川担当分 1 回目 :12 月 21 日資料 ) 流況評価の方法 (1) 講義の目標 :1 年を通じた河川流量の特徴を河川流況という 流況を評価することは 河川による水資源を把握することである 今日の講義では 流況を評価する基本的な手法と流況の量的な特性を表す物理量 ( 水文量 ) を理解する 次に 水資源確保の基本量である 平均して 10 年に 1 回程度の割合で発生する渇水流量 ( 基準渇水流量 ) を推定する手法を理解する 1) 河川流量の時間変化 ( 流量ハイドログラフ ) 河川流量の時間変化を図示したものを流量ハイドログラフという 流量データは水位流量曲線を用いて水位データを変換して得られることが大半である 連続的な流量データから時間平均したデータを時間流量 日平均したデータを日流量 月平均した流量を月流量という 水位 流量曲線の例 2) 様々な河川のハイドログラフ 最上川の年間の日流量変化 吉野川年間の日流量変化 3) ハイドログラフから得られる河川流況の情報 4) 流況曲線一年間の日流量ハイドログラフを流量の多い順に並べ替えて 大きい順に左から図示したものを流況 1

2 曲線という 流況曲線から得られる流況の特徴量として 豊水流量 ( 一年間を通じて 95 日はこれを下 らない流量 ) 平水流量 ( 一年を通じて 185 日はこれを下らない流量 ) 低水流量 ( 一年通じて 275 日は これを下らない流量 ) 渇水流量 ( 一年を通じて 355 日はこれを下らない流量 ) が得られる 流況曲線の例 5) 基準渇水流量平均的に 10 年に 1 回の頻度で発生する渇水流量を基準渇水流量という 新たに取水を予定する場合は 基準渇水流量 から 河川維持流量と他の水利使用者の双方を満足する水量 ( 正常流量 ) を差し引いた水量の範囲内として決定される 河川維持流量 とは 塩害防止 各種排水の希釈浄化 河道の維持 河口埋塞防止 水生動植物の生存繁殖等 河川に関する公利の確保 公害の除去若しくは軽減のため流水の果す機能を確保するための流量をいう 6) 水文頻度解析手法を用いた基準渇水流量の設定 10 年確率渇水流量 ( 基準渇水流量 ) の求め方は以下の通りである 1 数十年以上の日流量データを収集する 2 毎年の渇水流量を抽出する 3 水文頻度解析手法 * により 渇水流量が適合する確率分布モデルとその母数を推定する 確率分布モデルは 渇水流量についてはワイブル分布を用いることが多い 4 非超過確率が 1/10 となる渇水流量を基準渇水流量とする * 参考図書 : 工学のための確率 統計 : 北村 堀 ( 編著 ) 朝倉書店 例題で学ぶ水文学 : 椎葉 立川 市川 森北出版

3 水資源工学 ( 立川担当分 2 回目 :1 月 4 日資料 ) 流況評価の方法 (2) 講義の目標 : 流況の特性として 量的な特性と時間的な特性がある 量的な特性として 流況曲線や基準渇水流量がある 時間的な特性としては 降水量や水位 流量の時系列的な特性がある 今日の講義では流量データの時系列特性と時系列モデルの基礎を理解することを目的とする 1) 水文時系列時間の経過とともに変動する現象の記録を時系列 (time series) といい 時間変化する降雨強度や河川の水位 流量などの水文量を総称して水文時系列という 2) 水文時系列解析の目的と手順 1 水文時系列データの確率 統計的な特性を分析する 2 時系列データの確率 統計的な特性を再現する時系列モデルを構成する 3 構成した時系列モデルを用いて 観測時系列と同じ確率 統計的な特性を有する長期間の時系列を模擬発生させ 水工施設の設計に利用する あるいは 時系列モデルを用い 現在までに得られた観測時系列から将来の水文量の変動を予測する 3) 定常時系列と非定常時系列時系列は その時間的は変動によって定常時系列と非定常時系列に分類される 時間とともに時系列の確率的特性が変化しない時系列を定常時系列という 一方 ある期間で見た時系列の平均値が時間とともに変動したり 平均値の周りのばらつきが時間とともに変化したりする場合など 時間とともに時系列の確率 統計的特性が変化する時系列を非定常時系列という 4) 定常時系列とその特性値離散的な時系列を,,, とし これらの変量の同時確率分布関数を考える 時系列を表す確率分布関数が 時間をずらしても変化しない場合 すなわち,,, を時系列の同時確率分布関数とし を任意の時間間隔を表すインデックスとして,,,,,, が成り立つ場合 その時系列は強定常であるという 特に 二次までのモーメントについて μe E Var Var Cov, E Cov, E が成り立つ場合 弱定常あるいは二次定常という E は期待値 Var は分散 Cov は共分散を求める演算記号である これらをもとに自己共分散関数 自己相関関数 が定義される Cov, E Cov, Var Var 3

4 5) 時系列モデル (AR モデル ) 定常時系列 を過去の時系列の値と白色ノイズの線形和で表現したモデル を次数 の自己回帰モデルあるいは AR モデル (AutoRegressive model) といい AR() と表す また AR モデルに従う時系列を AR 過程という 1,2,, は自己回帰係数 は平均値 0 で分散 σ の正規分布に従う白色雑音であり はそれより前の時系列 とは無相関とする もっとも簡単な 1 次の自己回帰モデル AR(1) は である AR(1) のモデルパラメータは,, となる の観測時系列が得られており それが AR(1) 過程で表現できるとして モデルパラメータを求める まず μe である また の分散を とすれば 2 となるので 11 という条件のもとに 1 が得られる 次に 時間差が 1 の自己共分散関数 は 時間差が 2 の自己共分散関数 は となる 一般に時間差 k > 0 について の関係が得られるので 時間差 k > 0 の自己相関関数 は / となる 観測時系列データから標本自己相関関数を求めれば の推定値 を定めることができる が 定まれば 観測時系列データから得られる標本分散 用いて 1 となり 1 次の自己回帰モデル AR(1) のパラメータが定まる 4

5 3 : 1 11 AR III AR(1) AR(1) AR(1) y n 3 { 1 f Y (y n ) = (y n c)ζ 2π exp 1 2 cλζ 3 y n ( ) } 2 ln(yn c) λ ζ (1) x n = ln(y n c) λ ζ (2) x n N(0, 1) y n 1 ρ y x n 1 ρ x ρ y = exp(ζ2 ρ x ) 1 exp(ζ 2 ) 1 (3) 1) 1 ρ y (3) ρ x 2) (2) y n x n σ 2 v = (1 a 2 )σ 2 x v n a = ρ x 3) AR(1) x n = ax n 1 + v n x n 4) (2) x n y n (3) X 1 N(m X1, σ 2 X 1 ), X 2 N(m X2, σ 2 X 2 ) Y 1 = e X1 Y 2 = e X2 C Y1,Y 2 Y 1,2 m Y1,2 σ 2 Y 1,2 m Yi ( ) = exp m Xi + σ2 X i, i = 1, 2 (4) 2 σ 2 Y i = m 2 Y i {exp(σ 2 X i ) 1}, i = 1, 2 (5) 5

6 X 1 X 2 C X1,X 2 X 1 + X 2 N(m X1 + m X2, σ 2 X 1 + σ 2 X 2 + 2C X1,X 2 ) (6) C Y1,Y 2 = E[Y 1 Y 2 ] E[Y 1 ]E[Y 2 ] = exp{m X1 + m X (σ2 X1 + σx C X1,X 2 )} m Y1 m Y2 = m Y1 m Y2 {exp(c X1,X 2 ) 1} (7) ρ(x 1, X 2 ) = C X1,X 2 /(σ X1 σ X2 )ρ(y 1, Y 2 ) = C Y1,Y 2 /(σ Y1 σ Y2 ) ρ(y 1, Y 2 ) = C Y 1,Y 2 = m Y 1 m Y2 (exp(c X1,X 2 ) 1) σ Y1 σ Y2 σ Y1 σ Y2 exp(c X1,X = 2 ) 1 = exp(σ X 1 σ X2 ρ(x 1, X 2 )) 1 exp(σx 2 1 ) 1 exp(σx 2 2 ) 1 exp(σx 2 1 ) 1 exp(σx 2 2 ) 1 (8) (3) AR(1) n y n x n = (y n µ n )/σ n (9) x n µ n σ n n x n N(0,1) AR(1) x n = a n,n 1 x n 1 + v n (10) a n,n 1 n n 1 x n σ 2 x 1 σ 2 v = (1 a n,n 1 2 )σ 2 x v n N(0, 1 a 2 n,n 1) (10) x n (9) y n a n,n 1 v n Thomas Fiering Thomas-Fiering n y n 3 { 1 f Y (y n ) = exp 1 ( ) } 2 ln(yn c n ) λ n (y n c n )ζ n 2π 2 ζ n y n (11) x n = ln(y n c n ) λ n ζ n (12) (11) (8) y n ρ y,n,n 1 x n ρ x,n,n 1 exp[ζ n 1 ζ n ρ x,n,n 1 ] 1 ρ y,n,n 1 = exp(ζn 1 2 ) 1 exp(ζn) 2 1 (13) 6

7 水資源工学 ( 立川担当分 4 回目 :1 月 18 日資料 ) 流況予測のためのモデル (2) 講義の目標 : 河川流量をシミュレーション発生させる手法は 前回の講義で示した確率 統計的な時系列モデルによる方法だけでなく 物理的なモデルを用いて降雨を発生させ それを流出モデルを介して河川流量に変換することが考えられる 地球温暖化によって将来の降水量が予測され 流出モデルや河川流モデルを介して河川流量の変化が分析されている 今日の講義では 温暖化時の流量変化予測を例として 河川流況のシミュレーション手法を理解することを目標とする 時系列モデルは 観測された時系列データに内在する確率 統計的な特性を分析して その特性を再現する時系列を模擬発生させることに主眼が置かれる 時系列データが生み出される物理的背景よりも 結果としての観測データを分析して 現象の確率的な変動を再現しようとする 一方で 自然現象を物理的な方程式で表現するモデルも時系列データを発生させるために用いられる たとえば 気候変動にともなう将来の気候推計データは 物理法則にしたがう支配方程式を解いて 将来の気温や降水量などの時系列データを生成し それを流出モデルを介して河川流量に変換して将来の流況が評価されている 1) 全球大気大循環モデル将来の気候を推計する大気大循環モデル (GCMs, General Circulation Models) の空間分解能が著しく高解像度化し その出力データはわが国の河川流域を対象とする水工シミュレーションモデルの入力データとしてそのまま利用できる解像度を有するようになってきている 気象庁気象研究所の全球大気モデルの空間分解能は約 20km であり アメダス観測網に匹敵する空間分解能となっている 全球を対象とする気候モデルとしては 現時点では世界最高の空間分解能を有する気候モデルである 将来気候の推計計算は 温室効果ガス排出量の変化シナリオに従って温室効果ガスの濃度の時間変化が設定され その条件のもとで将来の気候が予測される 気象庁気象研究所の全球 20km 格子大気モデルは A1B シナリオに従って温室効果気体の濃度変化が設定されており 以下の期間のデータが提供されている 1979 年 1 月 ~2003 年 12 月 : 現在気候実験 2015 年 1 月 ~2039 年 12 月 : 近未来気候実験 2075 年 1 月 ~2099 年 12 月 : 21 世紀末気候実験 図 1: 全球大気大循環気候モデルの模式図 ( 左 ) とそれが出力するデータ ( 右 ) 7

8 2) 流域モデルと流出モデル地球上の任意全域を対象とする 1km 空間分解能のグリッド型の分布型流出モデルを構成し, キネマティックウェーブモデルを用いて大気大循環モデルによる出力データを河川流量に変換する 標高データを用いて グリッドごとに周り 8 方向のうちの最急勾配方向を流水方向と定め それに従って一次元的に流れを追跡する 図 2( 左 ) は流水方向データを標高データから定める模式図であり 右図はこれに従って関東地方の流域モデルを示したものである 図 2: 標高データを用いた流下方向の決定と流域モデル ( 左 ) と関東地方の流域モデル ( 右 ) 3) 大気大循環モデルの出力を流出モデルを介して河川流量に変換した結果最上川 ( 砂越地点 6500km2) での計算流量の時系列データを以下に示す 左から順に現在気候実験 近未来気候実験 将来気候実験の結果であり 一つの図に 25 年間の河川流量を重ねて示している 4) 分析結果の例 図 3:100 年確率年最大流量の変化 ( 左 ) と基準渇水流量 (10 年確率渇水流量 ) の変化 ( 右 ) : 現在気候に対する 21 世紀末気候の比率を示している 参考文献 : 立川康人, 滝野晶平, 藤岡優子, 萬和明, キムスンミン, 椎葉充晴 : 気候変化が日本の河川流量に及ぼす影響の予測, 土木学会論文集, 67(1), pp. 1-15,

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

Microsoft PowerPoint - 時系列解析(10)_講義用.pptx

Microsoft PowerPoint - 時系列解析(10)_講義用.pptx 時系列解析 () 季節調整モデルと成分分解 信号抽出 東京 学数理 情報教育研究センター 北川源四郎 東京 学北川源四郎数理 法 VII ( 時系列解析 ) 季節調整とは.5 WHARD 月次データ.3..9.7 5 49 73 97 45 何らかの原因で特定の周期で繰り返す成分を除去して本質的な現象を抽出する方法 東京 学北川源四郎数理 法 VII ( 時系列解析 ) 季節調整モデル 観測モデル

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション データ解析 第 7 回 : 時系列分析 渡辺澄夫 過去から未来を予測する 観測データ 回帰 判別分析 解析方法 主成分 因子 クラスタ分析 時系列予測 時系列を予測する 無限個の確率変数 ( 確率変数が作る無限数列 ){X(t) ; t は整数 } を生成する情報源を考える {X(t)} を確率過程という 確率過程に ついて過去の値から未来を予測するにはどうしたらよいだろうか X(t-K),X(t-K+1),,X(t-1)

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

<4D F736F F D2091E E8FDB C588ECE926E816A2E646F63>

<4D F736F F D2091E E8FDB C588ECE926E816A2E646F63> 第 13 地象 (1 傾斜地 ) 1 調査の手法 (1) 調査すべき情報ア土地利用の状況傾斜地の崩壊により影響を受ける地域の住宅等の分布状況 その他の土地利用の状況 ( 将来の土地利用も含む ) イ傾斜地の崩壊が危惧される土地の分布及び崩壊防止対策等の状況既に傾斜地の崩壊に係る危険性が認知 危惧されている土地の分布当該傾斜地の崩壊防止対策等の状況ウ降水量の状況当該地域の降雨特性の把握に必要な対象事業の実施区域等の降水量の状況エ地下水及び湧水の状況傾斜地の安定性に影響を与える地下水の水位及び湧水の分布

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

SAP11_03

SAP11_03 第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 20150528 信号処理システム特論 本日の内容 適応フィルタ ( 時間領域 ) 適応アルゴリズム (LMS,NLMS,RLS) 適応フィルタの応用例 適応処理 非適応処理 : 状況によらずいつでも同じ処理 適応処理 : 状況に応じた適切な処理 高度な適応処理の例 雑音抑圧, 音響エコーキャンセラ, 騒音制御など 時間領域の適応フィルタ 誤差信号 与えられた手順に従ってフィルタ係数を更新し 自動的に所望の信号を得るフィルタ

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

Microsoft PowerPoint - 01_内田 先生.pptx

Microsoft PowerPoint - 01_内田 先生.pptx 平成 24 年度 SCOPE 研究開発助成成果報告会 ( 平成 22 年度採択 ) 塩害劣化した RC スラブの一例 非破壊評価を援用した港湾コンクリート構造物の塩害劣化予測手法の開発 かぶりコンクリートのはく落 大阪大学大学院鎌田敏郎佐賀大学大学院 内田慎哉 の腐食によりコンクリート表面に発生したひび割れ ( 腐食ひび割れ ) コンクリート構造物の合理的な維持管理 ( 理想 ) 開発した手法 点検

More information

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード]

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード] S11_1 計量経済学 一般化古典的回帰モデル -3 1 図 7-3 不均一分散の検定と想定の誤り 想定の誤りと不均一分散均一分散を棄却 3つの可能性 1. 不均一分散がある. 不均一分散はないがモデルの想定に誤り 3. 両者が同時に起きている 想定に誤り不均一分散を 検出 したら散布図に戻り関数形の想定や説明変数の選択を再検討 残差 残差 Y 真の関係 e e 線形回帰 X X 1 実行可能な一般化最小二乗法

More information

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研 CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育

More information

<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074>

<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074> 市街化区域外の地価推定に関する研究 不動産 空間計量研究室 筑波大学第三学群社会工学類都市計画主専攻宮下将尚筑波大学大学院システム情報工学研究科社会システム工学専攻高野哲司 背景 日本の国土の区域区分 都市計画区域 市街化区域 市街化を促進する区域 市街化調整区域 市街化を抑制する区域 非線引都市計画区域 上記に属さない区域 非線引き市街化調整区域市街化区域 都市計画区域 本研究での対象区域 都市計画区域外

More information

<4D F736F F D2089CD90EC8C7689E689DB5F91E58ADB5F8EA190858C7689E68C9F93A282C982A882AF82E92E646F63>

<4D F736F F D2089CD90EC8C7689E689DB5F91E58ADB5F8EA190858C7689E68C9F93A282C982A882AF82E92E646F63> 治水計画検討における を用いた流出解析への取り組みについて 内藤和久 1 斎藤充 1 本田敏也 2 大丸歩 2 1 河川部 ( 950-8801 新潟県新潟市中央区美咲町 1-1-1) 2 河川部河川計画課 ( 950-8801 新潟県新潟市中央区美咲町 1-1-1) 2010 年 3 月, これまで構築されてきたデータの有効活用及び共有促進のためのツールとして が開発された. これにより, 河川技術者自らが流出解析や洪水流解析を行うことが可能となった.

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

OpRisk VaR3.2 Presentation

OpRisk VaR3.2 Presentation オペレーショナル リスク VaR 計量の実施例 2009 年 5 月 SAS Institute Japan 株式会社 RI ビジネス開発部羽柴利明 オペレーショナル リスク計量の枠組み SAS OpRisk VaR の例 損失情報スケーリング計量単位の設定分布推定各種調整 VaR 計量 内部損失データ スケーリング 頻度分布 規模分布 分布の補正相関調整外部データによる分布の補正 損失シナリオ 分布の統合モンテカルロシミュレーション

More information

Microsoft PowerPoint - LectureB1_17woAN.pptx

Microsoft PowerPoint - LectureB1_17woAN.pptx 本講義の範囲 都市防災工学 後半第 回 : 導入 確率過程の基礎 千葉大学大学院工学研究院都市環境システムコース岡野創 http://oko-lb.tu.chib-u.c.jp/oshibousi/. ランダム振動論 地震動を不規則波形 ( 確率過程 ) と捉えて, 構造物の地震応答を評価する理論. 震源モデルによる地震動評価 断層の動きを仮定して, 断層から発せられる地震動を評価する方法 ( 運動学的モデル

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し

風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し 風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し 2000kW 定格風車の設備利用率として表示させたものです 数値は風車の定格出力 (2000kW)

More information

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - 時系列解析(11)_講義用.pptx

Microsoft PowerPoint - 時系列解析(11)_講義用.pptx 時系列解析 () ボラティリティ 時変係数 AR モデル 東京 学数理 情報教育研究センター 北川源四郎 概要. 分散 定常モデル : 線形化 正規近似. 共分散 定常モデル : 時変係数モデル 3. 線形 ガウス型状態空間モデル 分散 共分散 定常 3 地震波 経 5 定常時系列のモデル 4. 平均 定常 トレンド, 季節調整. 分散 定常 線形 ガウスモデル ( カルマンフィルタ ) で推定するためには

More information

平成21年度実績報告

平成21年度実績報告 持続可能な水利用を実現する革新的な技術とシステム 平成 21 年度採択研究代表者 平成 21 年度実績報告 鼎信次郎 東京工業大学大学院情報理工学研究科 准教授 世界の持続可能な水利用の長期ビジョン作成 1. 研究実施の概要 世界の持続可能な水利用の実現に貢献するために 未来の世界の水需給を算定し 水資源逼迫に対する Critical Level の設定とその回避のための長期ビジョンの作成を行おうとするのが

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy 技術資料 176 OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiyoshi ITO 1. はじめに自動車排出ガスの環境影響は, 道路沿道で大きく, 建物など構造物が複雑な気流を形成するため, 沿道大気中の自動車排出ガス濃度分布も複雑になる.

More information

Excel で学ぶ 実験計画法データ処理入門 坂元保秀 まえがき 本テキストは, 大学の統計解析演習や研究室ゼミ生の教育の一環として, 実験計画法を理解するための序論として, 工業系の分野で収集される特性データを Microsoft Excel を用いて実践的に処理する方法を記述したものである. 当初は, 完全ランダム実験で二元配置法まで Excel 関数を利用して実施していたが, 企業の皆様から身近に解析ができる

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

IPCC 第 5 次報告書における排出ガスの抑制シナリオ 最新の IPCC 第 5 次報告書 (AR5) では 温室効果ガス濃度の推移の違いによる 4 つの RCP シナリオが用意されている パリ協定における将来の気温上昇を 2 以下に抑えるという目標に相当する排出量の最も低い RCP2.6 や最大

IPCC 第 5 次報告書における排出ガスの抑制シナリオ 最新の IPCC 第 5 次報告書 (AR5) では 温室効果ガス濃度の推移の違いによる 4 つの RCP シナリオが用意されている パリ協定における将来の気温上昇を 2 以下に抑えるという目標に相当する排出量の最も低い RCP2.6 や最大 資料 5 気候変動を踏まえた治水計画の前提となる外力の設定手法 平成 30 年 4 月 12 日 1 IPCC 第 5 次報告書における排出ガスの抑制シナリオ 最新の IPCC 第 5 次報告書 (AR5) では 温室効果ガス濃度の推移の違いによる 4 つの RCP シナリオが用意されている パリ協定における将来の気温上昇を 2 以下に抑えるという目標に相当する排出量の最も低い RCP2.6 や最大排出量に相当する

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt 重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2 1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5

More information

Microsoft PowerPoint - aep_1.ppt [互換モード]

Microsoft PowerPoint - aep_1.ppt [互換モード] 物理計測法特論 No.1 第 1 章 : 信号と雑音 本講義の主題 雑音の性質を理解することで 信号と雑音の大きさが非常に近い状態での信号の測定技術 : 微小信号計測 について学ぶ 講義の Web http://www.g-munu.t.u-tokyo.ac.jp/mio/note/sig_mes/tokuron.html 物理学の基本は実験事実の積み重ねである そして それは何かを測定することから始まる

More information

相関分析・偏相関分析

相関分析・偏相関分析 相関分析 偏相関分析 教育学研究科修士課程 1 回生 田中友香理 MENU 相関とは 相関分析とは ' パラメトリックな手法 ( Pearsonの相関係数について SPSSによる相関係数 偏相関係数 SPSSによる偏相関係数 順位相関係数とは ' ノンパラメトリックな手法 ( SPSS による順位相関係数 おまけ ' 時間があれば ( 回帰分析で2 変数間の関係を出す 曲線回帰分析を行う 相関とは

More information