Nevanlinna P. Boutroux 20 Nevanlinna Nevanlinna 1930 Malmquist 1950 H. Wittich Painlevé 2002 Nevanlinna Painlevé 1 Painlevé property Painlevé

Size: px
Start display at page:

Download "Nevanlinna P. Boutroux 20 Nevanlinna Nevanlinna 1930 Malmquist 1950 H. Wittich Painlevé 2002 Nevanlinna Painlevé 1 Painlevé property Painlevé"

Transcription

1 Nevanlinna i

2 Nevanlinna P. Boutroux 20 Nevanlinna Nevanlinna 1930 Malmquist 1950 H. Wittich Painlevé 2002 Nevanlinna Painlevé 1 Painlevé property Painlevé ii

3 Nevanlinna Clunie Riccati Riccati Painlevé (I), (II) Painlevé property Painlevé 47 Painlevé 15. Painlevé Painlevé 56 Painlevé 17. (I) (II) iii

4 ,, 1 log + x 1 m(r, f) 2 N(r, f), N(r, f), N 1 (r, f) 1 n(r, f), n(r, f), n 1 (r, f) 1 S(r, f) 19 T (r, f) 2 δ(, f), δ(α, f) 12 ϑ(, f), ϑ(α, f) 12 µ( ) 17 ϱ(f) 2 iv

5 Nevanlinna Nevanlinna Nevanlinna (1) r > r 0 χ(r), ψ(r) χ(r) = O(ψ(r)) (r ) χ(r) ψ(r) ψ(r) χ(r) χ(r) ψ(r) ψ(r) χ(r) χ(r) ψ(r) (2) x > 0 log + x := max{log x, 0}. 1. C f(z) f(z) a ι(a) n(r, f) := ι(a) a r f(a)= r f(z) (counting function) N(r, f) := r 0 ( n(ρ, f) n(0, f) ) dρ ρ + n(0, f) log r n(r, f) 1 2 n(r, f) := 1, n 1 (r, f) := n(r, f) n(r, f) = (ι(a) 1) a r f(a)= a r f(a)= r ( N(r, f) := ) dρ n(ρ, f) n(0, f) + n(0, f) log r, 0 ρ r ( N 1 (r, f) := n1 (ρ, f) n 1 (0, f) ) dρ 0 ρ + n 1(0, f) log r 1

6 α α- N(r, 1/(f α)) z r α- α- N(r, 1/(f α)), N 1 (r, 1/(f α)) f(z) (proximity function) m(r, f) := 1 2π log + f(re iφ ) dφ 2π 0 z = r f(z) z 0 = re iφ 0 log r(φ φ 0 ) r f(z) f(z) T (r, f) := m(r, f) + N(r, f) f(z) (characteristic function) r T (r, f) f(z) T (r, f) log T (r, f) ϱ(f) := lim sup r log r f(z) (growth order) Example 1.1. f 1 (z) = e z N(r, f 1 ) = 0, m(r, f 1 ) r T (r, f 1 ) r. f 2 (z) = e z N(r, f 2 ) = 0, m(r, f 2 ) r T (r, f 2 ) r. f 3 (z) = 1/(e z 1) N(r, f 3 ) r, m(r, f 3 ) = O(1) T (r, f 3 ) r f 1 (z), f 2 (z) f 3 (z) T (r, f j ) (j = 1, 2, 3) ϱ(f j ) 1 Example 1.2. T (r, e z ) r, T (r, exp(z 2 )) r 2, g(z) T (r, g) = O(log r) ( Proposition 3.1 ). 1, 2, 0 2

7 Example 1.3. f(z) = (exp(z 1/2 ) + exp( z 1/2 ))/2 = k=0 z k /(2k)! T (r, f) = m(r, f) r 1/2 ϱ(f) = 1/2 Example Example 1.1 T (r, e z ) T (r, 1/(e z 1)) Theorem 2.1. f(z) α T (r, f) = T (r, 1/(f α)) + O(1). Remark 2.1. O(1) R(r, f, α) R(r, f, α) C log + α C 0 f(z) Lemma 2.2. Jensen-Poisson R z R f(z) a j (j = 1,..., p), b k (k = 1,..., q) z < R log f(z) = 1 2π log f(re iφ ) R2 z 2 2π 0 Re iφ z dφ 2 p R(z a + log j ) q j=1 R 2 a j z R(z b log k ) k=1 R 2 b k z. Remark 2.2. f(z) z = R Proof. F (z) z < R + ε, ε > 0 F (z) 0, log F (z) log F (z) := log F (0) + 3 z 0 F (ζ) F (ζ) dζ

8 z < R + ε z < R log F (z) = 1 2πi ζ =R log F (ζ) ζ z dζ R 2 /z > R 0 = 1 log F (ζ) 2πi ζ =R ζ R 2 /z dζ ζζ = R 2, 1 ζ z 1 ζ R 2 /z = R 2 z 2 (R 2 zζ)(ζ z) = R2 z 2 ζ z 2 ζ log F (z) = 1 2πi = 1 2π 0 ζ =R 2π log F (ζ) R2 z 2 dζ (2.1) ζ z 2 ζ log F (Re iφ ) R2 z 2 Re iφ z 2 dφ, z < R log F (z) = 1 2π 2π 0 log F (Re iφ ) R2 z 2 dφ (2.2) Re iφ z 2 z = R f(z) 0,, F (z) = f(z) p j=1 R 2 a j z R(z a j ) q k=1 R(z b k ) R 2 b k z (2.3) ε z < R + ε F (z) 0, z = R F (z) = f(z) F (z) (2.2) z = R f(z) a a z a = ε, z < R z = R (2.1) z = R z = R (2.3) F (z) ε 0 4

9 z = R f(z) 0, f(z) = F (z) a log F (ζ) = O(log ε ) [] Proof of Theorem 2.1. f(z) z = 0 f(z) = z l g(z), g(0) 0,, l Z l = n(0, 1/f) n(0, f) Lemma 2.2 R, f(z) r, g(z) = z l f(z) z = 0 log g(0) = 1 2π (log f(re iφ ) l log r)dφ + 2π 0 p j=1 a j 0 log a j r q = 1 2π log f(re iφ ) dφ (n(0, 1/f) n(0, f)) log r + 2π 0 = 1 2π log + f(re iφ ) dφ 1 2π log + 1/f(re iφ ) dφ 2π 0 2π 0 ( p + log a ) ( j q n(0, 1/f) log r j=1 r a j 0 k=1 b k 0 log b k n(0, f) log r k=1 r b k 0 log b k r f(z) 0 g(z) p j=1 a j 0 log a j r = r 0 log ρ d(n(ρ, 1/f) n(0, 1/f)) r = [log ρ r (n(ρ, 1/f) n(0, 1/f) )] r = N(r, 1/f) + n(0, 1/f) log r 0 r 0 ( n(ρ, 1/f) n(0, 1/f) ) dρ ρ log g(0) = m(r, f) m(r, 1/f) + N(r, f) N(r, 1/f) T (r, f) = T (r, 1/f) + log g(0) (2.4) α C N(r, f α) = N(r, f) ) 5

10 2π m(r, f α) = 1 log + f(re iφ ) α dφ, 2π 0 log + f(re iφ ) α log + f(re iφ ) + log + α + log 2, log + f(re iφ ) α log + f(re iφ ) log + α log 2 Lemma 2.3 m(r, f α) = m(r, f) + O(1). T (r, f) = T (r, f α) + O(1). (2.4) [] Lemma 2.3. α j (j = 1,..., h) log + ( h j=1 log + ( h j=1 ) ( ) α j log + h max α j 1 j h ) α j h log + α j. j=1 h log + α j + log h, j=1 m(r, f), T (r, f) Proposition 2.4. f(z), g(z) α, β C h N m(r, αf + βg) m(r, f) + m(r, g) + O(1), m(r, fg) m(r, f) + m(r, g), m(r, f h ) = hm(r, f), T (r, αf + βg) T (r, f) + T (r, g) + O(1), T (r, fg) T (r, f) + T (r, g), T (r, f h ) = ht (r, f). 6

11 3. Proposition 3.1. f(z) T (r, f) = O(log r) (r ) Proof. f(z) f(z) N(r, f) = O(log r). γ r max z =r f(z) = O(r γ ) m(r, f) = O(log r). T (r, f) = O(log r) T (r, f) = O(log r) n(r, f) n(0, f) 1 log r r 2 r (n(ρ, f) n(0, f)) dρ ρ N(r2, f) log r + O(1) T (r2, f) log r + O(1) = O(1) f(z) b k (k = 1,..., q) Theorem 2.1 T (r, 1/f) = T (r, f) + O(1) = O(log r) a j (j = 1,..., p). g(z) = f(z) p j=1(z a j ) 1 q k=1 (z b k) g(z) 0 Lemma 2.2 r z r/2 log g(z) = 1 2π 2π 2π 0 log g(re iφ ) r 2 z 2 re iφ z 2 dφ 2 log + g(re iφ ) dφ m(r, g) = T (r, g) T (r, f)+log r log r π 0 g(z) f(z) [] Remark 3.1. f(z) A 0 T (r, f) = A 0 log r+o(1) f(z) C T (r, f) = log + C H. Cartan Theorem 3.2. H. Cartan f(z) z = 0 T (r, f) = 1 2π N(r, 1/(f e iθ ))dθ + log + f(0). 2π 0 7

12 Proof. θ [0, 2π] e iθ f(0) f(z) e iθ Lemma 2.2 z = 0 log f(0) e iθ (3.1) = 1 2π p log f(re iφ ) e iθ dφ + log aθ j q 2π 0 r log b k r = 1 2π 2π 0 j=1 k=1 log f(re iφ ) e iθ dφ N(r, 1/(f e iθ )) + N(r, f). a θ j, b k f(z) e iθ z r Theorem 2.1 f(z) = a z, a 0 Lemma 2.2 R = 1, z = 0 log a = 1 2π log a e iφ dφ 2π 0 log a = 1 2π log a e iφ dφ + log a 2π 0 ( a > 1), a = 0 a C 1 2π 2π 0 log a e iφ dφ = log + a (0 < a 1), (3.1) θ [0, 2π] ( f(0) = e iθ 0 θ = θ 0 ), log + f(0) = 1 ( 2π 1 ) 2π log f(re iφ ) e iθ dθ dφ 2π 0 2π 0 1 2π N(r, 1/(f e iθ ))dθ + N(r, f) 2π 0 = 1 2π log + f(re iφ ) dφ + N(r, f) 1 2π N(r, 1/(f e iθ ))dθ 2π 0 2π 0 = T (r, f) 1 2π N(r, 1/(f e iθ ))dθ 2π 0 [] f(z) z = 0 Theorem 3.2 dt (r, f) d log r = 1 2π n(r, 1/(f e iφ ))dφ 2π 0 8

13 z = 0 l f(z) = z l g(z), g(0) 0, (2.4) T (r, f) = T (r, 1/f) + log g(0). Theorem 3.3. T (r, f) log r Proposition 3.4. f(z) log r/t (r, f) = o(1) (r ) Proof. Proposition 3.1 f(z) T (r) = T (r, f) log r Theorem 3.3 (d/d log r)t (r) r T (r, f) = T (r) = O(log r) (r ) Proposition 3.1 f(z) (d/d log r)t (r) (r ) ε r ε r r ε (d/d log r)t (r) ε 1 r r ε T (r) ε 1 log r + O(1), log r/t (r, f) ε + O(1/ log r) ε log r/t (r, f) 0 (r ) [] Example f(z) = (1 e k z) k=1 k=1 e k z f(z) e k (k = 1, 2,... ) log + f(z) log + (1 + e k z ) k=1 k=1 n(t, 1/f) = n(t) n(t) log t r z = r log + (1 + e k z ) n(r) log(r + 1) (log r) 2, e k r 9

14 log + (1 + e k z ) = log(1 + r/t)dn(t) e k r r >r [ ] n(t) n(t) r + r t r r t dt r 2 r r t dn(t) log t dt log r. t2 z = r log + f(z) (log r) 2 T (r, f) = m(r, f) (log r) 2 T (r, 1/f) N(r, 1/f) r 1 n(t) r dt t 1 log t dt (log r) 2 t T (r, f) (log r) 2 ϱ(f) = 0 Example 3.2. γ > 0 T (r, f) r γ, ϱ(f) = γ f(z) 0 < γ < 1 E k (z) := 1 z k 1/γ, γ 1 ( E k (z) := 1 z ) ( z exp k 1/γ k + 1( z ) 2 1 ( z ) ) [γ] + + 1/γ 2 k 1/γ [γ] k 1/γ f(z) = k=1 E k (z) k 1/γ (k = 1, 2,... ) γ 1 n(t, 1/f) = n(t) t γ z = r log + E k (z) ) (log(1 + rk 1/γ ) + [γ](2rk 1/γ ) [γ] k 1/γ 2r 2r 1 k 1/γ 2r log(1 + r/t)dn(t) + r [γ] 2r 1 dn(t) t [γ] 2r 1 n(t) dt + r γ r γ, t k 1/γ > 2r log E k (z) 2([γ]+1) 1 (rk 1/γ ) [γ]+1 k 1/γ >2r log + E k (z) k 1/γ >2r (rk 1/γ ) [γ]+1 r [γ]+1 t [γ] 1 dn(t) r γ. z = r log + f(z) r γ T (r, f) r γ. N(r, 1/f) r γ T (r, f) r γ 0 < γ < r

15 4. g(z) z = r Proposition 4.1. g(z) ϱ(g) = lim sup r log log M(r, g), M(r, g) := max log r g(z). z =r Lemma 4.2. r, R r < R g(z) M(r, g) 1 T (r, g) log M(r, g) R + r T (R, g). R r g(z) Liouville r M(r, g) 1. R = 2r T (r, g) log M(r, g) 3T (2r, g) Proposition 4.1 Proof of Lemma 4.2. T (r, g) = m(r, g) = 1 2π 2π 0 log + g(re iφ ) dφ 1 2π log M(r, g)dφ log M(r, g) 2π 0 M(r, g) = g(z r ) z r, z r = r g(z) a j r a j R(z r a j )/(R 2 a j z r ) 1 Lemma 2.2 2π log M(r, g) = log g(z r ) 1 log g(re iφ R 2 r 2 ) 2π 0 Re iφ z r dφ 2 1 2π R 2 r 2 2π 0 (R r) 2 log+ g(re iφ ) dφ = R + r R + r m(r, g) = T (R, g) R r R r 11

16 [] 5. f(z) δ(, f) := lim inf r m(r, f) T (r, f) (deficiency), α δ(α, f) := lim inf r m(r, 1/(f α)) T (r, f) α 0 δ(, f) 1, 0 δ(α, f) 1 Proposition 5.1. f(z) (1) δ(, f) < 1 (resp. δ(α, f) < 1) (resp. α- ) (2) (resp. α- ) δ(, f) = 1 (resp. δ(α, f) = 1) Proof. (2) N(r, f) log r f(z) Proposition 3.4 ( lim 1 r ) m(r, f) N(r, f) = lim T (r, f) r T (r, f) = 0. δ(, f) = 1. [] 2 ϑ(, f) = lim inf r N 1 (r, f) T (r, f), N 1 (r, 1/(f α)) ϑ(α, f) = lim inf r T (r, f), α Proposition 5.2. f(z) (1) ϑ(, f) > 0 (resp. ϑ(α, f) > 0) (resp. α- ) 2 12

17 (2) (resp. α- ) 2 ϑ(, f) = 0 (resp. ϑ(α, f) = 0) Example 5.1. f(z) simple ϑ(, f) = 0, double ϑ(, f) 1/2 ϕ(z) = 1/(e z 1) ϑ(, ϕ) = 0. Example 5.2. Weierstrass - (z) = z 2 + (j,k) (Z 2 ) ( ) (z Ωjk ) 2 Ω 2 jk, Ω jk = jω 1 + kω 2, Im (ω 2 /ω 1 ) > 0, (Z 2 ) = Z 2 \ {(0, 0)} ω 1, ω 2 (z) 2 = 4 (z) 3 g 2 (z) g 3 (5.1) g 2, g 3 ω 1, ω 2 g2 3 27g3 2 0 N(r, ) r 2 m(r, ) = O(log r) (Example 7.1 ) T (r, ) r 2. δ(, ) = 0. double ϑ(, ) = 1/2. 6. f (z)/f(z) (Theorem 6.5). Proposition 6.1. f(z) Lemma 2.2 z < R f (z) f(z) = 1 2π log f(re iφ Re iφ ) π 0 (Re iφ z) dφ 2 p ( ) 1 a j + + z a j R 2 a j z j=1 q ( 1 + k=1 z b k ) b k R 2 b k z 13

18 Proof. F (z), z = x + iy ( x i y ( x i y ) (Re F (z)) = F (z), ) F (z) = 0 ( x i ) F (z) = 2F (z), y Lemma 2.2 / x i / y R 2 z 2 Re iφ z 2 = Reiφ Re iφ z + ( x i ) R 2 z 2 y Re iφ z = 2 ( x i y ( x i ) log y z Re iφ z 2Re iφ (Re iφ z) 2 ) log f(z) = d dz log f(z) = f (z) f(z), R(z a j ) R 2 a j z = 1 + z a j a j R 2 a j z. [] Proposition 6.2. f(z) r 0 r 0 < r < R r, R m(r, f /f) 3 log + T (R, f) + 4 log + R R r + C 0 C 0 r, R. Lemma 6.3. z ρ f(z) c j (j = 1,..., ν) ν = ν(ρ, f) := n(ρ, f) + n(ρ, 1/f) D(z) := min 1 j ν { z c j }, r < ρ 1 2π 2π 0 log + r D(re iθ ) dθ 3 2 log ν(ρ, f)

19 Proof of Lemma 6.3. θ j = arg c j (0 θ j < 2π) ( c j = 0 θ j = 0 ). ν 0 θ 1 < θ 2 < < θ ν < 2π (ν ν) θ 0 = θ ν 2π, θ ν +1 = θ 1 + 2π k = 1,..., ν η k = min { π 2ν, 1 2 (θ k θ k 1 ) Θ k := [θ k ηk, θ k + η k + ], } 2π, η + k = min { π 2ν, 1 2 (θ k+1 θ k ) log + r ν dθ I(Θ 0 D(re iθ k ) + I(Θ ), (6.1) ) k=1 ( I(X) = log + r ν X D(re iθ ) dθ, ) Θ = [0, 2π] \ Θ k θ Θ k D(re iθ ) r sin θ θ k I(Θ k ) log + 1 Θ k sin θ θ k θ θ dθ k π/(2ν) 2 I(Θ ) π/(2ν) 0 2π 0 log log + k=1 log + 1 sin θ θ k dθ π 1/ν 2φ dφ = π log ψ dψ = π (log ν + 1). 0 ν 1 2π sin(π/(2ν)) dθ log νdθ = 2π log ν. 0 (6.1) [] Proof of Proposition 6.2. ρ = (r + R)/2 Proposition 6.1 R ρ z = re iθ f (z) f(z) 1 2π log f(ρe iφ ρ ) π 0 (ρ r) dφ + ( 1 2 c j D(z) + 1 ) ρ r ρ 2ρ ( ) ( 1 m(ρ, f) + m(ρ, 1/f) + ν(ρ, f) (ρ r) 2 D(z) + 1 ) (6.2) ρ r } 15

20 c j, D(z), ν(ρ, f) Lemma 6.3 N(R, f) R n(ρ, f) ρ ( ) dt n(t, f) n(0, f) t R ρ ( ) n(ρ, f) n(0, f) R R N(R, f) + n(0, f) = 2R R ρ N(R, f) + n(0, f). R r ν(ρ, f) 2R ( ) N(R, f) + N(R, 1/f) + O(1) R r 4R ( ) T (R, f) + O(1). (6.3) R r m(ρ, f) + m(ρ, 1/f) 2T (ρ, f) + O(1) 2T (R, f) + O(1). (6.4) (6.3), (6.4) (6.2) 2ρ(ρ r) 2 8R(R r) 2, (ρ r) 1 = 2(R r) 1, z = re iθ f (z) f(z) 8R ( ) 2T (R, f) + O(1) (R r) 2 + 4R R r ( T (R, f) + O(1) ) ( 1 D(z) + 2 log + log + f (re iθ ) f(re iθ ) 2 log + R r 4R ( 6 R r (T (R, f) + O(1)) R r + R R r + log+ T (R, f) + log + ) r ). D(z) r D(re iθ ) + O(1). θ Lemma 6.3 (6.3) [] 16

21 Lemma 6.4. Pólya T (r) [r 0, ) (r 0 > 0) T (r) 1 E [r 0, ), µ(e) 2 E, [r 0, ) \ E T ( r + 1/T (r) ) < 2T (r) µ( ) Lebesgue Proof. r 1 := min{r r 0 T (r + 1/T (r)) 2T (r)} E = r 1 := r 1 + 1/T (r 1 ) r 2 := min{r r 1 T (r + 1/T (r)) 2T (r)} r 2 := r 2 + 1/T (r 2 ) r j := min { r r j 1 T ( r + 1/T (r) ) 2T (r) }, r j := r j + 1/T (r j ) r j, r j r j r j 1, r j 1 r 1 < r 1 r 2 < r 2 r j < r j r j+1 < r j+1 r j r j r < r j r j = 1/T (r j ) 0 T (r ) = E := {r T (r + 1/T (r)) 2T (r)} E j 1[r j, r j] T (r j+1 ) T (r j) = T (r j + 1/T (r j )) 2T (r j ) T (r j ) 2 j 1 T (r 1 ) 2 j 1. µ(e) (r j r j ) = 1/T (r j ) j 1 j 1 2 (j 1) = 2. j=1 [] Theorem 6.5. f(z) µ(e) < E (0, ) r, r E m(r, f /f) log T (r, f) + log r. ϱ(f) < ( ) ( ) r m(r, f /f) log r. 17

22 Proof. ϱ(f) = γ < T (r, f) = O(r γ+1 ) (r ) Proposition 6.2 R = 2r r m(r, f /f) log + T (2r, f) + O(1) log r. Proposition 6.2 R = r + 1/T (r, f) Lemma 6.4 E, µ(e) < r E T (r + 1/T (r, f), f) < 2T (r, f) r, r E m(r, f /f) log + T (r + 1/T (r, f), f) + log T (r, f) + log r log(2t (r, f)) + log T (r, f) + log r log T (r, f) + log r. [] Corollary 6.6. f(z) k E k, µ(e k ) < r, r E k m(r, f (k) /f) log T (r, f) + log r. ϱ(f) < m(r, f (k) /f) log r Proof. k = 1 Theorem 6.5 k r, r E k, m(r, f (k) ) m(r, f (k) /f) + m(r, f) m(r, f) + O(log T (r, f) + log r). f(z) l f (k) (z) (l + k) r E k N(r, f (k) ) (k + 1)N(r, f). T (r, f (k) ) (k + 1)T (r, f) + O(log T (r, f) + log r) (6.5) r E k m(r, f (k+1) /f) m(r, f (k+1) /f (k) ) + m(r, f (k) /f) m(r, f (k+1) /f (k) ) + log T (r, f) + log r (6.6) 18

23 (6.5) f (k) (z) Theorem 6.5 E k+1 ( E k ), µ(e k+1 ) < r E k+1 m(r, f (k+1) /f (k) ) log T (r, f (k) ) + log r log T (r, f) + log r. (6.6) k + 1 k ϱ(f) < [] (6.5) Corollary 6.7. k E k, µ(e k ) < r, r E k T (r, f (k) ) (k + 1)T (r, f) + O(log T (r, f) + log r). ϱ(f) < T (r, f (k) ) (k + 1)T (r, f) + O(log r). [r 0, ) (r 0 > 0) χ(r) E, µ(e) < r, r E χ(r)/t (r, f) 0 χ(r) = S(r, f) Corollary 6.8. f(z) k m(r, f (k) /f) = S(r, f). Proof. f(z) Corollary 6.6, Proposition 3.4 z f (k) (z)/f(z) = O(z 1 ) Remark 3.1 [] Lemma 6.9. χ(r), ψ(r) [r 0, ) E, µ(e) < [r 0, ) \ E 19

24 χ(r) ψ(r) r [r 0, ) χ(r) ψ(r + r ) Proof. r µ(e) < r r [r 0, ) c r < r r + c r E χ(r) χ(r + c r ) ψ(r + c r ) ψ(r + r ). [] 7. Clunie Lemma 7.1. Clunie u Q(z, u) = q ι (z)u ι 0 (u ) ι1 (u (s) ) ιs, ι = (ι 0, ι 1,..., ι s ) ι I q ι (z) I ι h N ι I ι 0 + ι ι s h f(z) f h+1 = Q(z, f) m(r, f) = S(r, f) ϱ(f) < m(r, f) = O(log r). Proof. I := {φ [0, 2π] f(re iφ ) 1} m(r, f) = 1 2π log + f(re iφ ) dφ = 1 log + f(re iφ ) dφ 2π 0 2π I φ I log + f(re iφ ) = log + Q(z, f)f h ( log + f q ι ι 1 f (s) ι I f f ( log + f q ι ι 1 f (s) ι I f f ι s f ι 0 +ι 1 + +ι s h) ι s ) log r + log + f /f + + log + f (s) /f. 20 (7.1)

25 (7.1) Corollaries 6.6, 6.8 [] Lemma 7.2. A. Z. Mohon ko and V. D. Mohon ko F (z, u) z, u, u,..., u (s) f(z) F (z, f) = 0 c C F (z, c) 0 m(r, 1/(f c)) = S(r, f) ϱ(f) < m(r, 1/(f c)) = O(log r). Proof. g = f c F (z, c) = F (z, f) F (z, c) = F (z, g + c) F (z, c) = q ι (z)g ι0 (g ) ι1 (g (s) ) ιs, 1 ι 0 + +ι s d 0 ι = (ι 0,..., ι s ) q ι (z) d 0 φ I := {φ [0, 2π] g(re iφ ) 1} log + 1/g(re iφ ) log ( F + (z, c) 1 g q ι ι 1 g (s) ι s ) 1 ι 0 + +ι s d 0 g g log + F (z, c) 1 + log r + log + g /g + + log + g (s) /g φ I S(r, g) = S(r, f) m(r, F (z, c) 1 ) T (r, F (z, c) 1 ) = O(log r) [] Remark 7.1. Lemma 7.1 Lemma 7.2 S(r, f) log T (r, f) + log r Example 7.1. Weierstrass - (z) (cf. Example 5.2) ( ) 2 = 4 3 g 2 g 3 Lemma 7.1 m(r, ) = S(r, ). N(r, ) r 2 T (r, ) r 2 +S(r, ). µ(e) < E r E T (r, ) = O(r 2 )+o(t (r, )) K 0 T (r, ) K 0 r 2 r E Theorem 3.3 Lemma 6.9 r > 0 T (r, ) K 0 (r + r ) 2 = O(r 2 ) ϱ( ) 2 Lemma 7.1 m(r, ) = O(log r) 21

26 8. Theorem 8.1. f(z) q α 1,..., α q q m(r, f) + m(r, 1/(f α j )) + N 1 (r, f) + N(r, 1/f ) 2T (r, f) + S(r, f). j=1 Corollary 8.2. f(z), α 1,..., α q q ( δ(, f) + ϑ(, f) + δ(αj, f) + ϑ(α j, f) ) 2. j=1 Proof. q j=1 N 1 (r, 1/(f α j )) N(r, 1/f ) Theorem 8.1 q ( m(r, f) + N 1 (r, f) + m(r, 1/(f αj )) + N 1 (r, 1/(f α j )) ) j=1 2T (r, f) + S(r, f) T (r, f) r lim inf [] Corollary 8.2 n N δ(α, f) 1/n α C 2n ϑ(α, f) 1/n α δ(α, f) > 0 ϑ(α, f) > 0 α Corollary 8.2 Corollary 8.3. f(z) ( ) δ(α, f) + ϑ(α, f) 2, Ĉ = C { }. α Ĉ 22

27 α C { } f(z) = α z α Picard (exceptional value of Picard) δ(α, f) = 1 α Ĉ 2 Theorem 8.4. Picard Picard 2 Example 8.1. f(z) = e z Picard 0, f(z) = 1/ cos z Picard 0 Theorem 8.5. Valiron P (u), Q(u) C[u] R(u) = P (u)/q(u) P (u), Q(u) d P, d Q d R := max{d P, d Q } f(z) T (r, R(f)) = d R T (r, f) + O(1). (8.1) Remark 8.1. M z z u M z - P (z, u), Q(z, u) M z [u] M z - R(z, u) = P (z, u)/q(z, u) u d R = max{d P, d Q } {c λ (z) M z λ Λ} P (z, u), Q(z, u) ( ) T (r, R(z, f)) = d R T (r, f) + O T (r, c λ Λ λ) + O(1). Theorem 8.5 Proof of Theorem 8.5. R(u) d Q = 0, d R = d P = d 1 R(u) = P (u) = C 0 + C 1 u + + u d T (r, P (f)) T (r, C 0 ) + T (r, (C 1 + C 2 f + + f d 1 )f) + O(1) T (r, f) + T (r, C 1 + C 2 f + + f d 1 ) + O(1) dt (r, f) + O(1). 23

28 z = r log + P (f) d log + f + O(1) (8.2) z = r (8.2) P (f) f d /2 log + P (f) d log + f log 2 (8.2) P (f) < f d /2 z 0 f d + C d 1 f d C 1 f + C 0 = α(z 0 )f d, α(z 0 ) < 1/2 (8.3) ζ F (ζ) = (1 α(z 0 ))ζ d + C d 1 ζ d C 1 ζ + C 0 z 0 κ 0 = κ 0 (C 0,..., C d 1 ) ζ κ 0 F (ζ) 1 (8.3 f(z 0 ) κ 0 O(1) d log + κ 0 (8.2) (8.2) m(r, P (f)) dm(r, f) + O(1) N(r, P (f)) = dn(r, f) T (r, P (f)) dt (r, f) + O(1) d Q = 0 (8.1) d Q 1 T (r, R(f)) = T (r, 1/R(f)) + O(1) d R = d Q d P d Q = d R T (r, R(f)) d R T (r, f) + O(1) (8.4) d Q = 1 d P R(u) = B 0 + 1/(B 1 + B 2 u), B 2 0 (8.4) d d Q d P (8.4) d Q = d + 1 d P R(u) = P (u) Q(u) = B 0 + P 1(u) Q(u) = B U(u) + P 2 (u)/p 1 (u), d P1 d Q 1 = d, d U = d Q d P1, d P2 < d P1 24

29 T (r, R(f)) = T (r, P 1 (f)/q(f)) + O(1) = T (r, Q(f)/P 1 (f)) + O(1) T (r, U(f)) + T (r, P 2 (f)/p 1 (f)) + O(1). U(u) T (r, R(f)) d U T (r, f) + d P1 T (r, f) + O(1) = d Q T (r, f) + O(1). d Q = d+1 (8.4) (8.4) V (u), W (u) C[u] V (u)q(u) + W (u)p (u) = 1, d V + d Q = d W + d P d R = d Q d P d W d V (8.4) T ( r, 1/(Q(f)W (f)) ) = T ( r, P (f)/q(f) + V (f)/w (f) ) T (r, R(f))+T (r, V (f)/w (f))+o(1) T (r, R(f))+d W T (r, f)+o(1), T ( r, 1/(Q(f)W (f)) ) = T (r, Q(f)W (f))+o(1) = (d Q +d W )T (r, f)+o(1) T (r, R(f)) d Q T (r, f) + O(1). (8.4) (8.1) [] Proof of Theorem 8.1. q q ( m(r, 1/(f α j )) = T (r, 1/(f αj )) N(r, 1/(f α j )) ) j=1 j=1 q = qt (r, f) N(r, 1/(f α j )) + O(1) j=1 P (u) = q j=1(u α j ) Theorem 8.5 qt (r, f) = T (r, P (f)) + O(1) = T (r, 1/P (f)) + O(1) q = T (r, 1/P (f)) N(r, 1/(f α j )) + O(1) j=1 q = m(r, 1/P (f)) + N(r, 1/P (f)) N(r, 1/(f α j )) + O(1) j=1 m(r, 1/P (f)) + O(1). 25

30 α j (1 j q) 1/P (u) = q j=1 γ j (u α j ) 1, γ j 0 = m ( r, q j=1γ j /(f α j ) ) m ( r, q j=1γ j f /(f α j ) ) + m(r, 1/f ) + O(1) = m(r, 1/f ) + S(r, f) = T (r, 1/f ) N(r, 1/f ) + S(r, f) = T (r, f ) N(r, 1/f ) + S(r, f) = m(r, f ) + N(r, f ) N(r, 1/f ) + S(r, f) m(r, f /f) + m(r, f) + N(r, f ) N(r, 1/f ) + S(r, f). q m(r, f)+ m(r, 1/(f α j )) 2m(r, f)+n(r, f ) N(r, 1/f )+S(r, f) j=1 = 2T (r, f) ( 2N(r, f) N(r, f ) + N(r, 1/f ) ) + S(r, f) = 2T (r, f) ( N 1 (r, f) + N(r, 1/f ) ) + S(r, f) [] 26

31 Nevanlinna Airy w + zw = 0 Nevanlinna Mathieu w + (θ 0 + θ 1 (e iz + e iz ))w = 0 Nevanlinna 9. w = 1 + w 2, (9.1) w = z 1 w 2, (9.2) w = (1 + 2z)z 2 w w 2, (9.3) w = w 1 /2, (9.4) ( = d/dz) (9.1) w = tan(z C) z = C + π/2 + kπ (k Z) C (9.2) w = (C log z) 1 z = 0,, e C z = 0, e C (9.3) w = z 2 e 1/z (C e 1/z ) 1 z = 0 z = 1/ log C (9.4) w = (z C) 1/2 27

32 z =, C F (z, u 0, u 1,..., u n 1 ) z, u 0, u 1,..., u n 1 w (n) = F (z, w, w,..., w (n 1) ) (9.5) F (z, u 0, u 1,..., u n 1 ) (z 0, w0, 0 w1, 0..., wn 1) 0 w(z 0 ) = w 0 0, w (z 0 ) = w 0 1,..., w (n 1) (z 0 ) = w 0 n 1 (9.5) w(z) = w(w0, 0 w1, 0..., wn 1; 0 z) w0, 0 w1, 0..., wn 1 0 w0, 0 w1, 0..., wn 1 0 w(z) (movable singular point) (fixed singular point) (9.1), (9.2), (9.3) (9.4) ( (9.1), (9.2), (9.3)). Painlevé property Painlevé property universal covering Nevanlinna 28

33 10. Riccati w = P (z, w) Q(z, w) (10.1) P (z, w), Q(z, w) z, w P (z, w), Q(z, w) w p, q u = 1/w u = P (z, u) Q (z, u) (10.2) P (z, u), Q (z, u) P (z, u) := u d+2 P (z, 1/u), d := max{p 2, q} Q (z, u) := u d Q(z, 1/u), (10.3) z, u Z :=Z 0 Z 0 Z 1 Z 1, (10.4) Z 0 := { z 0 C Q(z 0, w) 0 }, Z 0 := { z 0 C Q (z 0, u) 0 }, Z 1 := { z 0 C P (z 0, w 0 ) = Q(z 0, w 0 ) = 0 for some w 0 C }, Z 1 := { z 0 C P (z 0, 0) = Q (z 0, 0) = 0 } Theorem w = φ(z) (10.1) φ(z) c Z Proof. c Z φ(z) c C : z = χ(t), t > 0 C \ {c} w = φ(z) 29

34 Γ := Γ(τ) C { }, Γ(τ) := { φ(χ(t)) t τ }. τ>0 Claim 1: γ Γ (a) γ P (c, γ) 0 Q(c, γ) = 0, (b) γ = Q (c, 0) = 0 P (c, 0) 0. γ Γ z ν c, φ(z ν ) γ {z ν } C Q(c, γ) 0 Theorem A.3 φ(z) c c Q(c, γ) = 0 c Z 1 P (c, γ) 0 γ = c Z 1 (b) Claim 2: Γ γ 0 C { } C z c φ(z) γ 0 c Z 0 Q(c, w) 0 Q(c, w) γ 1,..., γ q (q q) Claim 1 Γ {γ 1,..., γ q, }, j := {w w γ j < ρ j } (j = 1,..., q ), := {w w > ρ } k l = k l k, l {1,..., q, } Γ γ, γ Γ, γ γ k l γ k, γ l {zν} C z ν c, φ(z ν) λ C \ ( 1 q ) C \ {γ 1,..., γ q, } Q(c, λ) 0 Theorem A.3 φ(z) c Γ γ 0 Case 1: γ 0 Claim 1 (a), C c, C \ {c} φ (z) 0 C \ {c} φ (z) w = φ(z) z = φ (w) w- C := φ(c \ {c}) z = φ (w) dz dw = Q(z, w) P (z, w) 30 (10.5)

35 w γ 0, w C φ (w) c Theorem A.3 φ (w) w = γ 0 (dφ /dw)(γ 0 ) = 0 w = γ 0 φ (w) = c + a m (w γ 0 ) m + O((w γ 0 ) m+1 ), a m 0, m N, m 2 φ(z) = γ 0 + a 1/m m (z c) 1/m +. c z = c φ(z) Case 2: γ 0 = u = ψ(z) = 1/φ(z) (10.2) z c, z C ψ(z) 0 Q (c, 0) = 0 c Z 0 Claim 1, (b) u = ψ(z) z = ψ (u) C := ψ(c \ {c}) dz du = Q (z, u) P (z, u) u 0, u C ψ (u) c u = 0 ψ (u) (dψ /du)(0) = 0 ψ (u) = c + a m u m + O(u m+1 ), a m 0, m N, m 2 φ(z) = 1/ψ(z) = a 1/m m (z c) 1/m + z = c Q (c, 0) 0 u = ψ(z) z = c ψ(c) = 0 1/φ(z) = ψ(z) = b n (z c) n + O((z c) n+1 ), b n 0, n N z = c φ(z) [] Remark u = z + u u = (c + 1)e z c z 1 z = c 31

36 u = c(z c) + (c + 1)(z c) 2 /2 + w = 1/u w = zw 2 w w = φ(c, z) = ( (c + 1)e z c z 1 ) 1 φ(c, z) = (z c) 1( c + (c + 1)(z c)/2 + ) 1 z = c c 0 simple c = 0 double Painlevé property Theorem R C \ Z universal covering (10.1) R (10.1) Riccati w = p 0 (z) + p 1 (z)w + p 2 (z)w 2 (10.6) p j (z) (j = 0, 1, 2) Proof. (10.1) p 2, q = 0 q 1 c C \ Z Q(c, w) 0 Q(c, λ) = 0 P (c, λ) 0 dz Q(z, w) = dw P (z, w) z = Φ(w) Φ(λ) = c (dφ/dw)(λ) = 0 z = Φ(w) = c + a m (w λ) m + O((w λ) m+1 ), a m 0, m N, m 2 Φ(w) w = φ(z) z = c (10.1) R q = 0 Q(z, w) = Q(z) p 3 d = p 2 1 u = 1/w (10.2) Q (z, u) = Q(z)u d 32

37 c C \ Z P (c, 0) 0 dz du = Q(z)ud P (z, u) z = Φ (u) Φ (0) = c p 2 [] Riccati (10.6) (10.4) Z Z = { z 0 1/pj (z 0 ) = 0 for some j } Theorem 10.2 Theorem R 0 C \ Z universal covering Riccati (10.6) R 0 p j (z) (j = 0, 1, 2) (10.6) C Proof. p j (z) c c C φ(z) C c c A := lim inf z c, z C φ(z) 0 A < + {z ν } C z ν c, φ(z ν ) γ C Theorem A.3 φ(z) z = c A = + z c, z C φ(z) v = p 2 (z) p 1 (z)v p 0 (z)v 2 v = ψ(z) = 1/φ(z) z c, z C ψ(z) 0 Theorem A.3 z = c ψ(z) φ(z) φ(z) R 0 [] Riccati Malmquist Nevanlinna Yosida 1930 Theorem Malmquist-Yosida n R(z, w) z, w (w ) n = R(z, w) (10.7) 33

38 w = φ(z) R(z, w) w 2n R(z, w) = R 2n (z)w 2n + + R 1 (z)w + R 0 (z), R j (z) C(z) φ(z) R(z, w) w n Remark n = 1 (10.7) Riccati Theorem 10.2 Example w = (z) (w ) 2 = 4w 3 g 2 w g 3 (Example 5.2). w = 1/ (z) (w ) 2 = g 3 w 4 g 2 w 3 + 4w Example n = 1 φ(z) (10.7) n = 2 w = cos z = (e iz + e iz )/2 (w ) 2 = 1 w 2 φ(z) R(z, w) w n w = tan z = i(e iz e iz )/(e iz + e iz ) (w ) 2 = 1 + w 2 Proof. φ(z) R(z, w) = P (z, w)/q(z, w) P (z, w), Q(z, w) z, w w p, q P (z, w), Q(z, w) w j z φ(z) z 0 φ(z) = c l (z z 0 ) l +, l N p q w = φ(z) (10.7) z = z 0 R(z, φ(z)) = O((z z 0 ) (p q)l ) = O(1) p > q φ(z) (10.7) z z 0 n(l + 1) = (p q)l l = n/(p q n) N n + 1 p q 2n Q(z, φ)(φ ) n = P (z, φ) φ p = Q(z, φ, φ ) ( Q(z, u, v) u, v (p 1) ) Lemma 7.1 m(r, φ) = S(r, φ) (10.8) 34

39 q 1 P (z, w) Q(z, w) R(z, w) = U(z, w) + P 1 (z, w)/q(z, w) U(z, w) P 1 (z, W ) z w p q, q 1 φ(z) (10.7) Φ(z) := φ (z) n U(z, φ(z)) = P 1(z, φ(z)) Q(z, φ(z)) (10.8) Theorem 6.5 m(r, Φ) = m ( r, (φ ) n U(z, φ) ) (10.9) m(r, φ /φ) + m(r, φ) + O(log r) = S(r, φ) (10.10) (10.9) Φ(z) φ(z) φ(z) Φ(z) Φ(z) N(r, Φ) log r N(r, 1/Φ) N(r, φ)+o(log r) (10.10) T (r, Φ) = S(r, φ) T (r, Φ) = T (r, 1/Φ) + O(1) N(r, 1/Φ) + O(1) N(r, φ) + O(log r) N(r, φ) = S(r, φ) (10.8) T (r, φ) = S(r, φ) q = 0 R(z, w) w 2n φ(z) Corollary 8.2 δ(γ, φ) = 0 γ φ(z) φ(z) γ- v = ψ(z) = 1/(φ(z) γ) (v ) n = R(z, v) := ( v) 2n R(z, γ + 1/v), R(z, v) = R 2n (z)v 2n + + R 1 (z)v + R 0 (z) R(z, w) = (γ w) 2n R(z, 1/(w γ)) w 2n R(z, w) w n+1 Lemma 7.1 m(r, φ) = S(r, φ) φ(z) N(r, φ) = O(log r) = S(r, φ). T (r, φ) = S(r, φ) R(z, w) w n [] 11. Riccati 35

40 Riccati w = p 0 (z) + p 1 (z)w + p 2 (z)w 2, p j (z) C(z) (11.1) Riccati (11.1) w = v/p 2, v = u /u u (p 2(z)/p 2 (z) + p 1 (z))u + p 0 (z)p 2 (z)u = 0 Painlevé (11.1) Theorem Riccati (11.1) φ(z) T (r, φ) = O(r θ ) θ p j (z) C(z) (j = 0, 1, 2) Proof. p 2 (z) 0 p j (z) (j = 0, 1, 2) κ Z, c 0 0, µ 1 z p 2 (z) = z κ (c 0 + O(z 1 )), p 0 (z) + p 1 (z) = O( z µ ) φ(z) z 0 φ(z) ψ(z) = 1/φ(z) z 0 ψ(z) u = ψ(z) u = p 2 (z) p 1 (z)u p 0 (z)u 2 z 0 z z 0 < 1 ψ(z) z 0 2µ κ ψ (z) = z0 κ ( c 0 + O( z 0 1 )) z 0 z = z 0 + z0 κ t Ψ(t) = ψ(z 0 + z0 κ t) Ψ(0) = 0 t < z 0 κ Ψ(t) z 0 2µ κ (d/dt)ψ(t) = c 0 + O( z 0 1 ) (11.2) t τ 0 := ( c 0 1 /3) z 0 2µ κ c 0 t /2 Ψ(t) 2 c 0 t (11.3) 36

41 τ = sup { } τ t < τ Ψ(t) z 0 2µ κ, τ τ 0 (11.2) t τ Φ(t) c 0 + O( z 0 1 ) τ 0 (1/2) z 0 2µ κ τ τ > τ 0 t τ 0 (11.2) t τ 0 Ψ(t) = ( c 0 + O( z 0 1 ) ) t (11.3) z, φ(z) (11.3) φ(z) z z 0 < z 0 κ τ 0 = C 0 z 0 λ, C 0 := c 0 1 /3, λ := κ + κ + 2µ 2 z 0 z 0 r z r φ(z) n(r, φ) πr 2 (πc 2 0r 2λ ) 1 r 2+2λ N(r, φ) = O(r 2+2λ ) (11.1) w = φ(z) Lemma 7.1 m(r, φ) = S(r, φ) T (r, φ) = O(r 2+2λ ) + o(t (r, φ)) r E, µ(e) < Lemma 6.9 T (r, φ) = O(r 2+2λ ) (Example 7.1 ). p 2 (z) 0 φ (z) = p 0 (z) + p 1 (z)φ(z) φ(z) z φ(z) = O(exp(C 1 z µ+1 )) (C 1 > 0) T (r, φ) = m(r, φ)+ O(log r) r µ+1 [] Theorem φ(z) (11.1) (1) p 2 (z) 0 m(r, φ) = O(log r), δ(, φ) = 0 p 2 (z) 0 δ(, φ) = 1. (2) α C p 0 (z)+αp 1 (z)+α 2 p 2 (z) 0 m(r, 1/(φ α)) = O(log r), δ(α, φ) = 0 p 0 (z) + αp 1 (z) + α 2 p 2 (z) 0 φ(z) α- δ(α, φ) = 1. 37

42 (3) 2 p j (z) (j = 0, 1, 2) p 2 (z) (4) 2 α- p j (z) p 0 (z) + αp 1 (z) + α 2 p 2 (z) = 0 Remark δ(, φ) = 0, δ(α, φ) = 0 α- (Proposition 5.1). Proof. p 2 (z) 0 Lemma 7.1 Theorem 11.1 T (r, φ) = O(r θ ) m(r, φ) = O(log r) φ(z) Proposition 3.4 δ(, φ) = 0 p 2 (z) 0 φ(z) w = p 0 (z)+p 1 (z)w φ(z) p 0 (z), p 1 (z) N(r, φ) = O(log r) δ(, φ) = 1 lim r N(r, φ)/t (r, φ) = 1 (1) v = 1/(φ(z) α) v = p 2 (z) (p 1 (z) + 2αp 2 (z))v (p 0 (z) + αp 1 (z) + α 2 p 2 (z))v 2 (1) (2) (3) φ(z) (11.1) v (3) (4) [] 12. Painlevé (10.1) Painlevé property Riccati (10.1) F (z, w, w ) = 0 F (z, w 0, w 1 ) z, w 0, w 1 Painlevé property - (Example 5.2) (w ) 2 = 4w 3 g 2 w g 3 Painlevé property w = R(z, w, w ) (12.1) 38

43 R(z, w 0, w 1 ) z, w 0, w 1 Painlevé property w = 6w 2 g 2 /2 - Painlevé property Painlevé property (12.1) (12.1) 1900 Painlevé Gambier w = 6w 2 + z, w = 2w 3 + zw + α, (I) (II) w = (w ) 2 w w z + 1 z (αw2 + β) + γw 3 + δ w, (III) w = (w ) 2 2w w3 + 4zw 2 + 2(z 2 α)w + β w, (IV) ( 1 w = 2w + 1 )(w ) 2 w (V) w 1 z ( (w 1)2 + αw + β ) + γw δw(w + 1) +, z 2 w z w 1 w = 1 ( 1 2 w + 1 w ) (w ) 2 (VI) w z ( 1 z + 1 z ) w w z ( w(w 1)(w z) + α + βz ) γ(z 1) δz(z 1) + +. z 2 (z 1) 2 w2 (w 1) 2 (w z) 2 α, β, γ, δ C Painlevé Painlevé (α-method) (12.1) α (II),..., (VI) α 0 < α < ε α = 0 39

44 Painlevé Painlevé property Painlevé property Painlevé (I) 1960 Hukuhara (VI) Theorem (I), (II), (IV) C C \ {0}, C \ {0, 1} universal covering R 0, R 0,1, (III), (V) R 0 (VI) R 0,1 (I), (II), (IV) z = (III), (V) z = 0, (VI) z = 0, 1, (I), (II) Theorem 12.1 Painlevé property w 13. (I), (II) Painlevé property Painlevé w = 6w 2 + z, w = 2w 3 + zw + α (I) (II) Painlevé property Riccati Painlevé property (Theorem 10.3) Ljapunov Theorem (I) Theorem 12.1 Step 1: w(z) (I) 40

45 Proposition w(z) z = σ w(z) = (z σ) 2 σ(z σ) 2 /10 (z σ) 3 /6 + b(z σ) 4 + b Proof. w(z) = c l (z σ) l +, l N, c l 0 (I) l + 2 = 2l, (l + 1)lc l = 6c 2 l l = 2, c 2 = 1 j= 2 c j (z σ) j (z σ) j 2 (j 4)(j + 3)c j = G j (σ, c k ; k j 1), j 1 G j (σ, c k ;... ) σ, c k c j G 4 (σ, c k ; k 3) = 0 c 4 = b [] Remark σ, b Remark G 4 (σ, c k ; k 3) = 0 c 4 G 4 (I) Painlevé test Painlevé test Painlevé property σ w(z) = u(z) 2 u(z) z = σ u(z) ξ = z σ σ = z ξ w(z) = ξ 2 zξ 2 /10 ξ 3 /15 + bξ 4 + (13.1) w (z) = 2ξ 3 zξ/5 3ξ 2 /10 + 4bξ 3 + (13.2) (13.1) ξ = ±u(z)(1 zu(z) 4 /20 u(z) 5 /30+bu(z) 6 /2+ ) (13.2) w (z) = 2u(z) 3 zu(z)/2 u(z) 2 /2 ± 7bu(z)

46 b (u, v) w = u 2, w = u 2 /2 (2u 3 + zu/2 u 3 v) (13.3) w (I) w (u, v) ± u = 1 + zu 4 /4 ± u 5 /4 u 6 v/2, v = ±z 2 u/8 + 3zu 2 /8 ± (1/4 zv)u 3 5u 4 v/4 ± 3u 5 v 2 /2 (13.4) (13.3) (u, v) (I) Step 2: (13.3) w + w 1 /2 = u(2w 2 + z/2 w 1 v) (w ) 2 + w w 4w3 2zw = 1 4w 2 + z2 4w + v2 w 3 zv w 2 4v. (13.5) w(z) Φ(z) := w (z) 2 + w (z) w(z) 4w(z)3 2zw(z) (13.6) (13.5) Φ(z) w(z) w(z) (13.3) u(z), v(z) (13.5) Φ(z) (I) w(z) 2w (z) (d/dz)(φ(z) w (z)/w(z)) = 2w(z) (I) Φ (z) + 2w(z) = w (z) w(z) w (z) 2 w(z) 2 Φ(z) = 6w(z) + z w(z) Φ(z) w(z) + w (z) 2 w(z) 4w(z) 2z 3 w(z). Φ (z) + Φ(z) w(z) = z 2 w(z) + w (z) (13.7) w(z) 3 42

47 z γ(z 0, z) w(t) 0 [ Φ(z) = E(z 0, z) 1 Φ(z 0 ) E(z 0, z) 2w(z) w(z 0 ) 2 ] E(z 0, t) γ(z 0,z) 2w(t) 4 (2tw(t)3 1)dt (13.8) ( ) E(z 0, t) = exp w(τ) 2 dτ, t γ(z 0, z), γ(z 0, t) γ(z 0, z). γ(z 0,t) Φ(z) Ljapunov Step 3: w(z) z = a 0 a 0 Γ w(z) A = lim inf w(z) z a 0, z Γ 0 < A < + Γ w(z) A/2 (13.8) Φ(z) Γ {a n } Γ a n a 0, w(a n ) w 0 C \ {0} (13.6) {w (a n )} {a n } w (a n(k) ) (k ) Theorem A.3 w(z) z = a 0 A = + w(z) (z a 0, z Γ) (13.8) Φ(z) Γ (13.5), (13.6) v(z) v(z) Γ w(z) 1/2 ±u(z) u(z), v(z) {a n} Γ a n a 0, u(a n) 0, v(a n) v 0 C Theorem A.3 a 0 u(z) w(z) Γ Step 4: A = 0 Painlevé Hukuhara (II) w = f 0 (z, w) (13.9) 43

48 f 0 (z, w) z, w z a 0 1, w 1 f 0 (z, w) K Lemma θ 0 := min{1/2, K 1 /2} c c a 0 < 1/2 (13.9) w(z) z = c w(c) θ 0 /6, w (c) 2 w(z) w (c) z c < θ 0 w (c) z c = θ 0 /2 w(z) θ 0 /4 Proof. ξ = ρ(z c), ρ = w (c), w(z) = η(ξ) (13.9) η = ρ 2 g 0 (ξ, η), g 0 (ξ, η) := f 0 (z, w) = f 0 (c + ρ 1 ξ, η) ( = d/dξ) η(ξ) η(0) = w(c), η(0) = 1 η(ξ) η(ξ) = η(0) + ξ + ξ 2 h(ξ), (13.10) h(ξ) := ρ 2 ξ 2 ξ r 0 := sup { r M(r) < 1 }, 0 τ 0 g 0 (t, η(t))dtdτ M(r) := max ξ r η(ξ) η(0) = w(c) θ 0 /6 1/12, r 0 > 0 M( ξ ) < 1, ξ < 1 z a 0 z c + c a 0 < 1/ w (c) + 1/2 1 (13.10) f 0 (z, w) h(ξ) ρ 2 ξ 2 ( ξ 2 /2)K K/8, (13.11) η(ξ) θ 0 /6 + ξ + K ξ 2 /8 (13.12) r 0 < θ 0 (13.11) θ 0 ξ < r 0 < 1 η(ξ) θ 0 /6 + θ 0 + (Kθ 0 /8)θ 0 1/12 + 1/2 + 1/32 < 2/3 r 0 r 0 θ 0 ξ < θ 0 (13.11), (13.12) η(ξ) ξ = θ 0 /2 η(ξ) ξ ξ 2 h(ξ) η(0) ( 1 (θ 0 /2)K/8 ) (θ 0 /2) θ 0 /6 (1 1/32)θ 0 /2 θ 0 /6 > θ 0 /4. 44

49 z, w(z) [] Step 5: A = 0 Γ = [c 0, a 0 ] z a 0 < 1/2 (13.9) (I) z a 0 1, w 1 f 0 (z, w) K = 7 + a 0 Lemma 13.2 θ 0 K 1 /2 θ 0 Γ 0 := {z Γ w(z) θ 0 /6} Γ A = 0 ε > 0 Γ 0 {z z a 0 < ε} = Γ 0 w (z) 2 {a n } Γ 0, a n a 0 {w(a n )}, {w (a n )} Theorem A.3 w(z) z = a 0 Γ = [c 0, a 0 ] c 0 a 0 Γ 0 c 1 Lemma 13.2 D 1 : z c 1 w (c 1 ) 1 θ 0 /2 D 1 w(z) θ 0 /4 z = a 0 D 1 D 1 [c 1, a 0 ] a 0 Γ Γ 0 c 2 Γ 0 D 2 : z c 2 w (c 2 ) 1 θ 0 /2 D 2 w(z) θ 0 /4 D 2 [c 2, a 0 ] a 0 c 3 Γ 0 {D n } n=1 {c n } n=1 Γ 0 (1) D n : z c n r n =: w (c n ) 1 θ 0 /2. (2) D n w(z) θ 0 /4 (3) n a 0 D n (4) c 1 a 0 > c 2 a 0 > > c n a 0 >. (5) {z z c n > r n } Γ 0 D n [c n, a 0 ] c n+1 (6) n c n+1 c n > r n n 1 r n a 0 c 0 c n c Γ \ {a 0 } (6) (1) r n = w (c n ) 1 θ 0 /2 0 (n ) w(c ) θ 0 /6, w (c ) = w(z) Γ \ {a 0 } c n a 0 n D n D j D := Γ ( ) n=1 D n Γ := D { z Im((z c 0 )/(a 0 c 0 )) 0 } 45

50 Γ a 0 Γ 0 n=1 D n (2) Γ w(z) θ 0 /6 lim inf z a0,z Γ w(z) θ 0 /6 > 0 (6) Γ (1 + π) a 0 c 0 A = 0 0 < A + (Step 3 ). a 0 (I) Theorem (II) Theorem 12.1 (II) Painlevé property (I) w(z) (II) Proposition σ w(z) w(z) = ±(z σ) 1 σ(z σ)/6 (α ± 1)(z σ) 2 /4 + b(z σ) 3 +. b (I) w = u 1, w = u 2 (1 + zu 2 /2 + (α ± 1/2)u 3 u 4 v) (13.13) (II) ± u = 1 + zu 2 /2 + (α ± 1/2)u 3 u 4 v, ± v = (z/2 + (α ± 1/2)u u 2 v)(α ± 1/2 2uv) (13.14) (13.13) u ± Ljapunov Φ(z) := w (z) 2 + w (z) w(z) w(z)4 zw(z) 2 2αw(z) v 2 v 2 ( w z w 2 2α w 3 ) v Φ(z) + α2 1/4 + αz w 2 w + z2 4 = 0 46

51 Φ(z) Φ (z) + Φ(z) w(z) = α 2 w(z) + w (z) w(z) 3 w(z) 1 Φ(z) w(z) Γ a 0 A = lim inf z a0, z Γ w(z) (I) a Painlevé Painlevé (I), (II) (I) z = w(z) = c p z p + c p 1 z p 1 +, p Z, c p 0 (I) z p 2 = 2p 1, p 2 = 1 2p, p 2 2p = 1 Theorem 12.1 Theorem (I) (II) α α = 0 w 0 Theorem (II) α Z Proof. (II) w 0 (z) Proposition 13.3 simple ±1 p w 0 (z) = ε j (z σ j ) 1 + P 0 (z), ε j = ±1, P 0 (z) C[z] j=1 z = ( p w 0 (z) = P 0 (z) + ε j )z 1 + O(z 2 ) (14.1) j=1 P 0 (z) d 1 (14.1) (II) z 3d = d+1 P 0 (z) c 0 47

52 c 0 0 (14.1) (II) c 0 z 0 P 0 (z) 0 w 0 (z) w 0 (z) 0 α = 0 (14.1) (II) p α + ε j = 0 (14.2) j=1 α Z [] Theorem α Z (II) Bäcklund (II) α (II) α Lemma (1) α 1/2 w α (II) α w α+1 = T + α (w α ) := w α α + 1/2 w α + w 2 α + z/2 (14.3) (II) α+1 (2) α 1/2 w α (II) α w α 1 = T α (w α ) := w α + α 1/2 w α w 2 α z/2 (14.4) (II) α 1 (3) α ±1/2 (II) α w α (Tα+1 T α + )(w α ) = (T α 1 + Tα )(w α ) = w α Remark (II) α w = εw 2 + εz/2 + v, v = 2εwv ε/2 + α, (14.5) ε = ±1 α 1/2 (resp. α 1/2) (14.3) (resp. (14.4)) 0 w α (14.5) 48

53 H(z, w, v) := εw 2 v + v 2 /2 (α ε/2)w + εzv/2 Hamilton Hamilton dw dz = H v, dv dz = H w Proof. (14.5) U ε,α : ŵ = w + ε(α ε/2)/v, v = v ŵ = εŵ 2 εz/2 + v, v = 2εŵ v + ε/2 + (α ε) (w, v) (II) α (14.5) (ŵ, v) (II) α ε v w (1), (2) (II) α (w α, v α ) U 1,α ( w α + (α 1/2)/v α, v α ) (II) α 1 U 1,α 1 (w α, v α ) (3) [] Proof of Theorem α = 0 W 0 (z) 0 (II) 0 w(z) 0 z = w(z) = c p z p + c p 1 z p 1 +, p Z, c p 0 (II) 0 z 3p = p + 1 (II) 0 W 0 (z) 0 α = m N (II) m W m (z) Lemma 14.4 w(z) = (T 1 T m 1 T m)(w m (z)) (II) 0 w(z) 0 W m (z) = (T + m 1 T + 1 T + 0 )(0) (II) m m N [] Theorem m Z \ {0} (II) m m 2 W m (z) = ε j (z σ j ) 1, ε j = ±1 j=1 49

54 ε j = 1 l + = (m 2 m)/2 ε j = 1 l = (m 2 + m)/2 Proof. Theorem 14.2 p W m (z) = ε j (z σ j ) 1 = mz 1 + O(z 2 ) j=1 (z ), (14.6) p m = ε j j=1 (14.7) Proposition 13.3 W m (z) 2 σ j (z σ j ) 2 p W m (z) 2 = (z σ j ) 2 + P (z), P (z) C[z] j=1 (14.6) P (z) 0 p W m (z) 2 = (z σ j ) 2 = pz 2 + O(z 3 ) (z ). j=1 (14.8) (14.6), (14.8) p = m 2 (14.7) l + + l = m 2, l + l = m l + = (m 2 m)/2, l = (m 2 + m)/2 [] 50

55 Painlevé Painlevé (I) (Theorems 12.1, 14.1). (I) Painlevé T (r, w) Painlevé ϱ(w) (I) (II), (IV) (III), (V) (I) (V) 15. Painlevé Theorem (I) w(z) T (r, w) = O(r C ) C > 0 w(z) Remark (I) w(z) w(z) (I) Theorem 15.1 Proposition N(r, w) = O(r C ). Lemma 7.1 m(r, w) = S(r, w) µ(e) < E r, r E T (r, w) = N(r, w) + m(r, w) = O(r C ) + o(t (r, w)) Lemma 6.9 Theorem 15.1 Proposition 15.2 r w(z) 13 Ljapunov Lemma Lemma 13.2 w (c) Lemma θ := 2 4 c 5 c w(c) θ 2 c 1/2 /6 51

56 (1) w(z) z c < δ c (2) (5/6)δ c z c δ c w(z) θ 2 c 1/2 /5. δ c θ c 1/4 min{1, θ c 3/4 / w (c) } < δ c 3θ c 1/4 (15.1) Proof. z c = ρt, ρ = c 1/4, w(z) = w(c + ρt) = θc 1/2 W (t) (I) Ẅ (t) = 6θW (t) 2 + θ 1 (1 + ρ 5 t) ( = d/dt) W (t) = W (0) + Ẇ (0)t + θ 1 t 2 /2 + g(t), (15.2) W (0) = θ 1 c 1/2 w(c), g(t) := θ 1 ρ 5 t 3 /6 + 6θ Ẇ (0) = θ 1 c 3/4 w (c), t τ 0 0 W (s) 2 dsdτ. Case 1: Ẇ (0) 1. η 0 := sup{η M(η) 8θ}, M(η) := max t η W (t) W (0) = θ 1 c 1/2 w(c) θ/6 η 0 > 0 η 0 < 3θ t η 0, c 5 g(t) θ 1 ρ 5 t θ t τ 0 0 W (s) 2 ds dτ θ 1 ρ 5 (3θ) 3 /6 + 6θ(8θ) 2 (3θ) 2 /2 < θ/4 (15.3) (15.2) W (t) W (0) + t + θ 1 t 2 /2 + θ/4 (1/ /2 + 1/4)θ < 7.92θ (15.4) t η 0 η 0 η 0 3θ (15.3) t 3θ 2.5θ t 3θ W (t) θ 1 t 2 /2 t W (0) g(t) ( / /6 1/4 ) θ > θ/5. 52

57 2 θ 1 x 2 /2 x x θ (1), (2) δ c = 3θ c 1/4 Case 2: Ẇ (0) = κ > 1. η 1 := sup{η M(η) 5θ} η 1 < (2/κ)θ (15.3), (15.4) t η 1 g(t) θ 1 ρ 5 (2θ) 3 /6 + 6θ(5θ) 2 (2θ) 2 /2 < θ/24, W (t) W (0) + κ t + θ 1 t 2 /2 + θ/24 (1/ /24)θ < 4.3θ η 1 η 1 (2/κ)θ t (2/κ)θ g(t) < θ/24 (0.8/κ)θ t (1.2/κ)θ W (t) κ t θ 1 t 2 /2 W (0) g(t) ( /2 1/6 1/24 ) θ > θ/5. δ c = 1.2θ c 1/4 /κ = 1.2θ c 1/4 θ c 3/4 / w (c) (1), (2) [] Remark Lemma 15.3 c 5 (2) (2 ) (5/6)δ c z c δ c w(z) θ 2 z 1/2 /5.5. Lemma z = R 0 (5 < R 0 < 10) w(z) σ σ > 10 Γ σ : z = ϕ(x) x Γ σ z (1) Γ σ z = R 0 σ (2) ϕ(x) x (3) Γ σ dz (6/ 11)d z. (4) Γ σ w(z) 2 11 z 1/2. Proof. R 0 e i arg σ σ Γ 0 Γ 0 Γ := {z w(z) θ 2 z 1/2 /6} Γ = θ 2 /6 > 2 11 R 0 e i arg σ σ Γ 0 Γ 53

58 c 1 Γ 1 : z c 1 (5/6)δ c1 γ 1 := {z = ξe i arg σ ξ > 0, z c 1 δ c1 } δ c1 Lemma γ 1 γ A(c 1 ) γ 1 σ b 1 A(c 1 ) Lemma 15.3 Remark 15.2 σ A(c 1 ) (Γ 0 A(c 1 )) {z z b 1 } ( b 1 ) w(z) θ 2 z 1/2 /6 w(b 1 ) θ 2 b 1 1/2 /5.5 b 1 Γ 0 \ Γ Γ 0 σ Γ c 2 Γ Lemma 15.3 δ c2 c 1 A(c 2 ) A(c 2 ) Γ 0 σ b 2 A(c 2 ) b 2 Γ 0 {c n } Γ, {δ cn } {A(c n )}. c n c Γ 0 \ {σ}, n δ cn 0 w (c ) = + w(c n ) c Γ 0 \ {σ} c n σ Γ σ ( ( Γ σ := Γ 0 A(c n )) ) { z z R 0, Im(z/σ) 0 } n=1 (1), (2) Γ σ w(z) θ 2 z 1/2 /6 (4) A(c n ) (3) [] Proposition 15.2 σ, σ > 10 w(z) 13 (13.6) Ljapunov Φ(z) = w (z) 2 + w (z) w(z) 4w(z)3 2zw(z) Lemma 15.4 σ Φ(z) w(z) Riccati 54

59 Step 1: R 0, 5 < R 0 < 10 z = R 0 w(z) 0, max Φ(z) < +, z =R 0 max 1/w(z) < + (15.5) z =R 0 Lemma 15.4 Γ σ z z Γ σ (z) := {t Γ σ t z } Γ σ z 0 (σ) ( z 0 (σ) = R 0 ) Φ(z) (13.8) Φ(z) Lemma 15.4 (3), (4) ( ) E(z 0 (σ), z) ±1 dt exp Γ σ(z) w(t) 2 ( z exp 11 z 0 (σ) ) d t = O( z C 0 ), t C 0 = / 11 (15.5) (13.8) ( ) Φ(σ) σ C 0 σ C0 1 + t C0+1/2 d t = O( σ 2C0+3/2 ) Γ σ (15.6) σ U(σ) := { z z σ < η(σ) }, η(σ) := sup { η 2 z 1/2 < w(z) < + in 0 < z σ < η ( 1) } [σ, z] U(σ) (13.8) E(σ, z) ±1 = O(1) (15.6) Φ(z) Φ(σ) t 1/2 d t = O( z 2C0+3/2 ), U(σ) [σ,z] Φ(z) K 0 z Λ (15.7) Λ = > 2C 0 + 3/2 K 0 σ Step 2: Φ(z) (13.6) w(z) = u(z) 2, z = σ + σ Λ/6 s v(s) := u(σ + σ Λ/6 s) (σ + σ Λ/6 s) Λ/6 v(s) < ε0 (15.8) 55

60 dv ds (s) = σ Λ/6( 1 + h(s, v(s)) ), (15.9) h(s, v(s)) < 1/2, v(0) = 0 u(z) u (σ) = σ Λ/6 (dv/ds)(0) = 1 ε 0 = ε 0 (K 0 ) σ (15.8) z = σ + σ Λ/6 s U(σ) η := sup{η s < η (15.8) } < ε 0 /4 (15.9) s η (< ε 0 /4) s /2 σ Λ/6 v(s) 3 s /2 3ε 0 /8 (15.10) M 0 σ M 0 s η (σ + σ Λ/6 s) Λ/6 v(s) σ Λ/6 v(s) (1 + M0 1 ) Λ/6 ε 0 /2 σ M 0 η σ M 0 η ε 0 /4 (15.10) s < ε 0 /4 w(z) 0 < z σ < (ε 0 /4) σ Λ/6 Theorem 11.1 n(r, w) = O(r C ), C = 2 + Λ/3 Proposition Painlevé (I) T (r, w) = O(r C ) C C C = ( Theorem 6.5), Theorem Painlevé (I) w(z) r 5/2 log r T (r, w) r5/2 56

61 Corollary (I) w(z) ϱ(w) 5/ Theorem 16.1 Theorem 15.1 w(z) (I) Ljapunov Φ(z) = w (z) 2 + w (z) w(z) 4w(z)3 2zw(z) Ljapunov Ψ(z) := w (z) 2 4w(z) 3 2zw(z) (I) 2w (z) Ψ (z) = 2w(z) z 0 z γ(z 0, z) w(z) Ψ(z) = Ψ(z 0 ) 2 w(t)dt (16.1) γ(z 0,z) z = r 0, r 0 > 10 w(z) K K > 2r 1/2 0 M(w; r 0 ) + M(Ψ; r 0 ) , (16.2) M(f; r) := max z =r f(z), D K := {z w(z) > K z 1/2 } Proposition a R(θ) := {z = xe iθ x r 0 } (a) w(a) = K a 1/2, a D K. (b) δ a R(θ) {z a δ a < z a } C \ D K, R(θ) {z a < z < a + δ a } D K. 57

62 (c) Ψ(a) 4K a 3/2. w(z) σ a (σ a ) : z σ a < (11/10)K 1/2 σ a 1/4 (1) a 1/10 < σ a < a + 1/10. (2) a (σ a ). (3) w(z) (σ a ) \ {σ a } (4) (σ a ) w(z) < K z 1/2, (σ a ) C \ D K. Proposition a, a R(θ) (a), (b), (c) (σ a, (σ a )), (σ a, (σ a )) Proposition 16.3 (σ a ) (σ a ) = (σ a ) = (σ a ) Propositions 16.3, 16.4 σ σ > 2r 0 w(z) σ 0 < z σ < (11/10)K 1/2 σ 1/4 w(z) n(r, w) r 5/2 (16.3) N(r, w) = O(r 5/2 ) σ R σ := R(arg σ) = {z = xe i arg σ x r 0 } (16.2) z 0 := r 0 e i arg σ R σ w(z 0 ) < Kr 1/2 0 /2, Ψ(z 0 ) < K z 0 D K z 0 R σ σ D K Proposition 16.3 (a), (b) a = a 1 R σ [z 0, a 1 ] C \ D K (16.1) Ψ(a 1 ) Ψ(z 0 ) +2 w(t) dt K +2K a 1 1/2 a 1 z 0 3K a 1 3/2 [z 0,a 1 ] 58

63 Proposition 16.3 (c) Proposition 16.3 σ 1 := σ a1, (σ 1 ) (1),..., (4) σ 1 = σ (σ)\{σ} (σ 1 ) [0, σ] Γ 1, b 1, b + 1, b 1 < b + 1 [b 1, b + 1 ] R σ Γ 1 R σ (1) := (R σ \ [b 1, b + 1 ]) Γ 1 z 0 (σ 1 ) [z 0, b + 1 ] Γ 1 z r 0 b + 1 R σ (1) (a), (b) a = a 2 R σ (1) a 2 R σ (1) [a 2 ] R σ (1) [a 2 ] π a 2 /2 R σ (1) [a 2 ] w(z) K z 1/2 K a 2 1/2 Ψ(a 2 ) Ψ(z 0 ) + 2 w(t) dt K + K a 2 1/2 π a 2 4K a 2 3/2 R (1) σ [a 2 ] (c) Proposition 16.3 σ 2 := σ a2, (a 2 ) Proposition 16.4 (σ 1 ) (σ 2 ) = σ 2 σ σ 1 R σ (2) σ j σ {σ j }, { (σ j )} (σ j ) πk 1 σ j 1/2 ( πk 1 ( σ + 1) 1/2 ) (a), (b), (c) a R σ, (1),..., (4) w(z) σ = σ a, (σ ) [a, σ] \ {a } σ σ w(z) (σ) \ {σ} Propositions 16.3, Proposition 16.3 a Proposition 16.3 a σ a Ljapunov Φ(z) a r 0 > 10 (16.4) (16.2), (a), (c) Ψ(z) w (a) 2 4 w(a) a w(a) + Ψ(a) (4K 3 + 2K + 4K) a 3/2 < 10K 3 a 3/2 59

64 w (a)/w(a) 10K 1/2 a 1/4 (16.4) K > 10 2 Φ(a) Ψ(a) + w (a)/w(a) < 4K a 3/2 (1 + K 1/2 a 5/4 ) < 5K a 3/2 (16.5) U(a) := { z z a < 2K 1/2 a 1/4} Lemma a z γ(z) U(a) (1) γ(z) := dt 1/10. γ(z) (2) t γ(z) a z w(t) Φ(z) < 6K z 3/2 Proof. Φ(z) (13.8) z 0 = a (2) (16.2), (16.4) t γ(z), w(t) w(a) = K a 1/2 300 E(a, t) ±1 exp( γ(z) /300 2 ) < (1) 0.99 a t 1.01 a (16.6) (16.5) [ Φ(z) E(a, z) 1 E(a, z) + 1 Φ(a) + 2 w(a) 2 E(a, t) + γ(z) w(t) ( t + 1 w(t) 3 ) ] dt [ 5K a 3/ ( (1.01 a ) )] < 6K z 3/2 [] steepest descent path Lemma f(z) D c 0 D f(c 0 ) 0 D D γ 0 60

65 (1) γ 0 c 0 c (2) f(c ) = 0 c D (3) γ 0 d f(z) /ds = df(z)/ds s γ 0 c 0 z Proof. X := Ref(z), Y := Imf(z) ( d f(z) ds ) 2 df(z) ds 2 ( d = ds X2 + Y 2 ) 2 (X 2 s +Y 2 s ) = (X sy XY s ) 2 f(z) 2 (X s = dx/ds). f(z) = C (d/ds ) f(z) = 0 XX s + Y Y s = 0 f(z)f (z) 0 X s Y XY s = 0 f(z) = C, C > 0 c 0 c 1 (3) f(z) c 1 (i) c 1 D, (ii) f(c 1 ) = 0, (iii) f (c 1 ) = 0. c 1 D f (c 1 ) = 0 f(c 1 ) 0 c 1 f(z) ( ), c 1 (3) γ 0 [] Lemma w(z) σ a σ a a 1.01K 1/2 a 1/4 < 1/10, (16.7) Φ(σ a ) < 6K σ a 3/2 (16.8) Proof. w(z) = u(z) 2 u(z) f(z) = u(z), D = U(a), c 0 = a Lemma 16.6 a a γ 0 u(a ) = 0 or a U(a) (16.9) d u(z) /ds = du(z)/ds on γ 0 (16.10) γ 0 u(z) u(z) u(a) = K 1/2 a 1/4 (16.11) 61

66 Φ(z) w(z) = u(z) 2 4u (z) 2 2u(z) 5 u (z) 4 2zu(z) 4 u(z) 6 Φ(z) = 0 u (z) F (z), F (z) := zu(z) 4 /2 + u(z) 6 Φ(z)/4 + u(z) 10 /16 (16.12) γ 0 z γ 0 (z) γ 0 (z) 1/10 Lemma 16.5, (16.6), (16.11), (16.2) F (z) (1/2)K 2 z/a + (3/2)K 2 z/a 3/2 + (1/16)K 5 a 5/2 2K /2 + (1/16)K 5 < 10 3 /3 (16.13) u(z) u (z) = u(z) 5 /4 + (1 + F (z)) 1/2 (16.14) γ 0 (z) 1/10 (1+F (z)) 1/2 1 < 10 3 /3 u (z), u(z) γ 0 (z) 1/10 u (z) = 1 + g(z), g(z) < 10 3 (16.15) (16.15) γ 0 (z) ds (16.10) ds/dt = 1 γ 0 (z) 1/10 u (t)ds γ 0 (z) γ du(t) 0 (z) ds ds = γ 0 (z) (1 + g(t))ds γ 0 (z) γ 0 (z) ds γ 0 (z) d u(t) ds = u(a) u(z) ds g(t)ds ( ) γ 0 (z) (16.2), (16.4) γ 0 (z) 1.01(K 1/2 a 1/4 u(z) ) < 0.06 γ 0 (z 1 ) = 1/10 z 1 γ 0 γ 0 (z 1 ) < 0.06 γ 0 < 1/10, (16.9) a γ (K 1/2 a 1/4 u(a ) ) < 1/10 (16.16) 62

67 a U(a) γ 0 a a = 2K 1/2 a 1/4 (16.16) u(a ) = 0 σ a = a w(z) (16.16) γ 0 a σ a (16.7) Lemma 16.5 (16.8) [] σ a w(z) Lemma z σ a < (6/5)K 1/2 σ a 1/4 Φ(z) < 7K z 3/2, (16.17) u (z) 1 < 10 2, (16.18) 0.99 z σ a u(z) 1.01 z σ a (16.19) u(z) (16.18) w(z) 1/2 Proof. µ 0 := sup { µ } z σa < µ (16.17), (16.18),(16.19) Lemma 16.7 u(z) γ 0 (16.18) (16.15) u (σ a ) 1 < 10 3 σ a (16.18) σ a ( γ 0 ) u(z) (16.19) (16.8) µ 0 > 0 µ 0 < (6/5)K 1/2 σ a 1/4 < 1/14 U 0 := {z z σ a < µ 0 } U σ a < z < 1.01 σ a (16.19) u(z) 1.01µ 0 < 1.3K 1/2 σ a 1/4, w(z) 1 < 10 2 (16.20) (13.8) z 0 = σ a, σ a z Φ(σ a ) < 6K σ a 3/2 (16.20) Lemma 16.5 U 0 Φ(z) < 6.5K σ a 3/2 6.7K z 3/2 (16.21) (16.12), (16.20), (16.21) U 0 F (z) (1/2)1.3 4 K 2 z/σ a K 2 z/σ a 3/2 + (1/16) K 5 < K /2 + (1/16) K 5 < 10 2 /6 63

68 (16.13) U 0 u (z) 1 < 10 2 /3, (16.22) ( /3) z σ a u(z) ( /3) z σ a (16.23) (16.21), (16.22), (16.23) µ 0 µ 0 (6/5)K 1/2 σ a 1/4 [] Remark w(z) 1/2 u (z) z σ a < (6/5)K 1/2 σ a 1/4 u (z) + 1 < 10 2 (16.7) Proposition 16.3 (1) σ a /a ( a + 1/10)/ a < 1.01 σ a a 1.01K 1/2 a 1/ /4 K 1/2 σ a 1/4 < (11/10)K 1/2 σ a 1/4, a (σ a ) (16.19) (σ a ) z/σ a 1 < 10 2 u(z) K 1/2 σ a 1/4 1.08K 1/2 (0.99 z 1 ) 1/4 > 1.07K 1/2 z 1/4 (σ a ) w(z) < K z 1/2 Proposition Proposition 16.4 (σ a ) (σ a ) u(z) (σ a ) (σ a ) (16.18) z (σ a ) (σ a ) [σ a, σ a ] u(z ) (z σ a ) 10 2 z σ a, u(z ) (z σ a ) 10 2 z σ a σ a σ a 10 2 σ a σ a σ a = σ a [] Theorem

69 (16.3) w(z) {σ j } j=1 double 2 σ 1 σ 2 σ j w(z) Lemma 7.1 κ κ > 1 S({σ j }, κr, z) := σ j <κr z σ j 2 Lemma r 0 (κ) r > r 0 (κ) r r/ 2 < z r < r z r S({σ j }, κr, z r ) 8n(κr)r 2 log r. (16.24) n(r) := n(r, w) = n(r, w)/2 Proof. 0 < δ < 1, ω(t) := min{1, t 1/4 } (t > 0) δ (r) := {z z < r} \ D δ, D δ := j=1 {z z σ j < δω( σ j )} (16.3) n(r) = n(r, w)/2 r 5/2 Ω(r) := 1 σ j r+1 ω( σ j ) 2 r+1 1 t 1/2 dn(t) r 1/2 n(r + 1) + r+1 1 t 3/2 n(t)dt r 2. δ Ar(D δ {z z < r}) < πδ 2 (Ω(r) + O(1)) < πr 2 /16 Ar(. ) z σ j = ρ, 65

70 z = x + yi z σ j 2 dxdy = δω( σ j ) z σ j (κ+1)r δω( σ j ) ρ (κ+1)r 0 θ 2π 2π ( log(r/ω( σ j )) + B κ ), ρ 1 dρdθ Bκ := log((κ + 1)/δ). σ j κr r/ω( σ j ) κr 5/4 δ (r) S({σ j }, κr, z)dxdy (5/2)πn(κr)( log r + B κ + log κ) (16.25) F r := {z δ (r) S({σ j }, κr, z) 8n(κr)r 2 log r} (16.25) 8n(κr)r 2 log r Ar(F r ) (5/2)πn(κr) ( log r + B κ + log κ ) r 0 (κ) r > r 0 (κ) Ar(F r ) 3πr 2 /8 H r := F r (D δ {z z < r}) Ar(H r ) (3/8 + 1/16)πr 2 < πr 2 /2 z r r/ 2 < z r < r, z r δ (r) \ F r [] Lemma κ 8 κ K 0 r > 1, z < r r, z χ(κr, z) := σ j κr σ j κr z σ j 4 K 0, (z σ j ) 2 σ 2 j K 0 κ 1/2 r 1/2, Proof. σ j κr, z < r z/σ j 1/8 (z σ j ) 2 σj 2 = 2 z σ j 3 1 (z/σ j )/2 1 z/σ j 2 3r σ j 3 (16.3) r > 1 n(r) K 1 r 5/2 K 1 χ(κr, z) 3r σ j κr σ j 3 = 3r t 3 dn(t) κr 9r 66 κr t 4 n(t)dt 18K 1 κ 1/2 r 1/2

71 r > 1, z < r z < r σ j κr z σ j 4 (8/7) 4 σ j κr σ j 4 [] Lemma µ(e) < E (0, ) z (0, ) \ E z 0< σ j < (z σ j ) 2 σ 2 j z 9. Proof. E := (0, σ 1 + 1) ( j=2 ( σ j σ j 3, σ j + σ j 3 ) ) (16.3) µ(e) σ j 3 t 3 dn(t) t 4 n(t)dt < j Lemma z E ( + ) (z σ j ) 2 σj 2 ( z 6 +1)n(8 z, w)+ z 1/2 z 9 0< σ j <8 z σ j 8 z [] Lemma κ 8, 0 < η < 1 κ η L 0 1 r > 1 r γ(κr) = 0< σ j κr Proof. r > 1 1 σ j κr σ j 2 = κr 1 σ j 2 η 4 n(κr)r 2 + L 0 (ηr 1/2 + 1) ( η 2 t 2 dn(t) (κr) 2 r n(κr) κr ( κr ) η 2 (κr) t 3 r dt n(κr) + 2 t 3 n(t)dt η 2 r 1 = η 4 n(κr)r η 2 r η 2 r 1 ) t 3 n(t)dt t 3 n(t)dt

72 L < σ j <1 σ j 2 L 0 t 1 n(t) L 0 t 5/2 /4 [] Proposition 13.1 w(z) σ j (z σ j ) 2 Mittag-Leffler Lemma w(z) ( ) w(z) = h(z) + G(z), G(z) := (z σj ) 2 σj 2 j=1 h(z) σ 1 = 0 G(z) z 2 r, κ r > 1, κ 8 G(z) S({σ j }, κr, z) + γ(κr) + χ(κr, z) Lemma χ(κr, z) K 0 κ 1/2 r 1/2 z < r Lemma 16.9 r > r 0 (κ) r/ 2 < z r < r z r S({σ j }, κr, z r ) 8n(κr)r 2 log r Lemma η = η 0 (κ) := κ 1/2 L 1 0 r > 1 γ(κr) η 0 (κ) 4 n(κr)r 2 + κ 1/2 r 1/2 + L 0 r (κ) := r 0 (κ) + exp(η 0 (κ) 4 ) r > r (κ) r/ 2 < z r < r z r G(z r ) 9n(κr)r 2 log r + (K 0 + 1)κ 1/2 r 1/2 + L 0 r 1/2 log r (16.26) σ j <κr(z r σ j ) 4 S({σj }, κr, z r ) 2 Lemma r > r (κ) G (z r ) 64n(κr) 2 r 4 (log r) 2 + 6K 0 r(log r) 2 (16.27) (16.3), Lemma 7.1 Lemma r, r E T (r, h) = m(r, h) m(r, w) + m(r, G) = O(log r) Lemma 6.9 T (r, h) = O(log r) Proposition 3.1 h(z) w(z r ) = (1/ 6)(w (z r ) z r ) 1/2 (16.26), (16.27) h(z r ) G(z r ) + ( h (z r ) + G (z r ) + z r ) 1/2 r 1/2 log r + h (z r ) 1/2 68

73 z r h(z) C 0 C z r = w (z r ) 6w(z r ) 2 (16.26), (16.27) 2 1/4 r 1/2 z r 1/2 ( G (z r ) + 6( G(z r ) + C 0 ) 2) 1/2 G (z r ) 1/2 + 3( G(z r ) + C 0 ) 35n(κr)r 2 log r + 3(K 0 + 1)κ 1/2 r 1/2 + O(1) r r (κ) κ = κ 0 > 8 2 1/4 3(K 0 + 1)κ 1/2 0 > 0 n(κ 0 r) r 5/2 / log r, n(r, w) r 5/2 / log r, N(r, w) r 5/2 / log r Painlevé (II), (IV) Painlevé (II), (IV) (I) (II), (IV) simple ±1 2 Airy Weber (I) Theorem (II) T (r, w) = O(r 3 ) (IV) T (r, w) = O(r 4 ) (II) w(z) (II) Painlevé property Ljapunov Φ(z) = w (z) 2 + w (z) w(z) w(z)4 zw(z) 2 2αw(z) Ψ(z) := w (z) 2 w(z) 4 zw(z) 2 2αw(z) Φ (z) + Φ(z) w(z) = α 2 w(z) + w (z) w(z), 3 Ψ (z) = w(z) 2 69

74 z 0 z γ(z 0, z) Ψ(z) = Ψ(z 0 ) w(t) 2 dt, γ(z 0,z) [ Φ(z) = E(z 0, z) 1 Φ(z 0 ) 1 ( E(z0, z) 1 ) 2 w(z) 2 w(z 0 ) 2 E(z 0, t) ( αw(t) 3 1/2 ) ] dt, γ(z 0,z) w(t) 4 ( E(z 0, t) := exp w(τ) 2 dτ γ(z 0,t) ), γ(z 0, t) γ(z 0, z) z = r 0 > 10 w(z) K K > 2r 1/2 0 M(w; r 0 ) + M(Ψ; r 0 ) α D K := {z w(z) > K z 1/2 } n(r, w) = O(r 3 ), T (r, w) = O(r 3 ) (I) Proposition a R(θ) = {z = xe iθ x r 0 } Proposition 16.3 (a), (b) (c ) Ψ(a) 2K 2 a 2 w(z) σ a (σ a ) : z σ a < (11/10)K 1 σ a 1/2 (1) a 1/10 < σ a < a + 1/10. (2) a (σ a ). (3) w(z) (σ a ) \ {σ a } (4) (σ a ) w(z) < K z 1/2, (σ a ) C \ D K. Proposition a, a R(θ) (a), (b), (c ) (σ a, (σ a )), (σ a, (σ a )) (σ a ) (σ a ) = (σ a ) = (σ a ) 70

75 Proposition Proposition 16.3 (a), (c ) K Φ(a) 3K 2 a 2 {z z a < 2K 1 a 1/2 } a z γ(z) γ(z) 1/10 w(t) γ(z) u(z) = 1/w(z) Φ(z) < 4K 2 z 2 u (z) 2 u(z) 3 u (z) 1 zu(z) 2 2αu(z) 3 u(z) 4 Φ(z) = 0 steepest descent path w(z) σ a σ a a 1.01K 1 a 1/2, Φ(σ a ) < 4K 2 σ a 2 σ a Lemma z σ a < (6/5)K 1 σ a 1/2 Φ(z) < 5K 2 z 2, u (z) 1 < 10 2 or u (z) + 1 < 10 2, 0.99 z σ a u(z) 1.01 z σ a u (z) (I) (16.18) Proposition (I) Proposition Proposition

76 Painlevé Nevanlinna Painlevé (I), (II), (IV) Nevanlinna (I), (II) (III), (V) C \ {0} universal covering z = e t 17. (I) w(z) w = 6w 2 + z (I) (I) 6w 2 = w z w(z) (Theorem 15.1 Theorem 16.1) Lemma 7.1 Theorem m(r, w) = O(log r). w(z) Corollary δ(, w) = 0. a C w a (I) Lemma 7.2 Theorem a C m(r, 1/(w a)) = O(log r). Corollary a C δ(a, w) = 0. (I) C { } (Proposition 5.1). Picard Corollary (I) Nevanlinna 2 72

77 Lemma m(r, w ) = O(log r). Proof. Theorem 6.5 Theorem 17.1 m(r, w ) m(r, w /w) + m(r, w) = O(log r) [] w (z) 3 N(r, w ) = (3/2)N(r, w) = O(r 5/2 ) Corollary T (r, w ) = O(r 5/2 ). (I) 2 (Theorem 8.1) Theorem N(r, 1/w ) + N 1 (r, w) = 2T (r, w) + O(log r). Proof. (I) w (3) = 12ww + 1 1/w = w (3) /w 12w. Corollary 17.7 w (z) Corollary 6.6 m(r, 1/w ) m(r, w (3) /w ) + m(r, w) = O(log r). Lemma 17.6 N(r, 1/w ) = T (r, 1/w ) m(r, 1/w ) = T (r, w ) + O(log r) = N(r, w ) + m(r, w ) + O(log r) = (3/2)N(r, w) + O(log r) = (3/2)T (r, w) + O(log r) N 1 (r, w) = (1/2)N(r, w) = (1/2)T (r, w) + O(log r) [] Corollary N(r, 1/w ) = (3/2)T (r, w) + O(log r). a- a a a- ϑ(a, w) = 0 73

78 Theorem a C N 1 (r, 1/(w a)) (1/6)T (r, w) + O(log r), (17.1) ϑ(a, w) 1/6 N 1 (r, w) = (1/2)T (r, w) + O(log r), (17.2) ϑ(, w) = 1/2 Proof. Theorem 17.1 N 1 (r, w) = (1/2)N(r, w) (17.2) w(z) ϑ(, w) = 1/2 (17.1) a- a- X := {z w(z) = a, w (z) = 0} X N 1 (r, 1/(w a)) = O(log r) (17.1) X z X 3 a- w (z ) = 0 z = w (z ) 6w(z ) 2 = 6a 2 X 1 2 a- 16 Ljapunov Ψ(z) = w (z) 2 4w(z) 3 2zw(z) (16.1) Ψ(z) Ψ(z 0 ) = 2 z w(t)dt z 0 (17.3) z 0 X w(z 0 ) = a, w (z 0 ) = 0 (17.3) z G(z) = 2a(z z 0 ) 2 w(t)dt, (17.4) z 0 G(z) := w (z) 2 4(w(z) 3 a 3 ) 2z(w(z) a) (17.5) (17.4) G (z) = 2(a w(z)), G (z) = 2w (z) τ X \ { 6a 2 } w(τ) = a, w (τ) = 0, w (τ) 0 G(τ) = G (τ) = G (τ) = 0 74

79 τ G(z) 3 N 1 (r, 1/(w a)) (1/3)N(r, 1/G) + O(log r) (1/3)T (r, G) + O(log r) (17.6) w(z) z = σ w(z) = (z σ) 2 + o(1) (17.4) 2(z σ) 1 + O(1) σ G(z) simple (17.4) G(z) w(z) N(r, G) = (1/2)N(r, w) = (1/2)T (r, w) + O(log r) (17.5) Lemma 17.6 m(r, G) m(r, w ) + m(r, w) + O(log r) = O(log r). T (r, G) = (1/2)T (r, w) + O(log r) (17.6) [] 18. (II) w = 2w 3 + zw + α (II) (I) Theorems 14.2, 14.3 α Z (II) α Z w(z) (II) Theorem w(z) Lemma 7.1 w(z) (I) Theorem m(r, w) = O(log r) δ(, w) = 0. Theorem 14.5 Corollary (II) α = 0 w 0 a C w a (II) 2a 3 + az + α 0 a = α = 0 Lemma

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) III203 00- III : October 4, 203 Version :. Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/3w-kansuron.html pdf 0 4 0 0 8 2 0 25 8 5 22 2 6 2 3 2 20 0 7 24 3

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

i 978 3 3 Riemann Stein 2 3 n 2n n Cauchy Riemann Dolbeault 3 Dolbeault 2 Čech ii 2009 3 5 TEX 3 2009 3 iii i ii 4 20. C n....................................2.....................................3.....................................

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information