自由空間損失 L db は? 半波長ダイポールの自由空間損失 L db は? アンテナの実効面積 A e m2 は? 4π d L = ( 真値 ) λ L db = logf MHz + 20logd km A 5.9 L= λ e 2 G = 4π 2 2 π d 2 2 λ 2

Size: px
Start display at page:

Download "自由空間損失 L db は? 半波長ダイポールの自由空間損失 L db は? アンテナの実効面積 A e m2 は? 4π d L = ( 真値 ) λ L db = logf MHz + 20logd km A 5.9 L= λ e 2 G = 4π 2 2 π d 2 2 λ 2"

Transcription

1 自由空間損失 L B は? 半波長ダイポールの自由空間損失 L B は? アンテナの実効面積 A e m は? L ( 真値 ) L B 3.4+ logf MHz + log km A 5.9 L e G π m ( 真値 ).8G m 絶対利得 Gのアンテナの電界強度絶対利得 ( 真値 ) G 電力密度 W/ m 受信電力 r W 電界強度開口面アンテナの絶対利得電界が零となる距離は? Eが極大になる電界強度 E E G 3G A η tg tga e r E π hh sin hh/ V/m W/m W 開口面アンテナの実効面積 等方性アンテナの実効面積 4hh/ V/m 角錐ホーンアンテナの絶対利得は? 相対利得 Gのアンテナの電界強度半波長ダイポールの電界強度三線式折返し半波長ダイポールの実効長半波長タ イホ ールアンテナ特性インヒ ータ ンス短縮率 δ 微小ダイポールの放射抵抗 R r 終端から長さ l m のところから見たインピーダンス Z i 平行 線式給電線の特性インピーダンス Z G 7 E 7 E l Z R r ab η η G V/m G π l 38log δ 4.55 π Z e V/m R π l ( l π l Z i jz tan D Z 77log h m ) 4

2 遮蔽平行 線式給電線の特性インピーダンス Z 整合回路の静電容量 C pf は? 臨界周波数 f c Hz アンテナの指向性利得 G B は? 群速度 ν g m/s 整合用給電線のインヒ ータ ンスQ 平行 4 線式給電線の特性インピーダンスは? 対地速度 ν は? 電力の変調度 m ネットワークアナライザのS c 77 SK Z log ε ν Cf fcos 変調度 m S Z ω C fc θ ED Z - R Z + R N θ - 遮断波長 α MAX HD Q Z r Z 38log Z -Z Z θ m/s R D m c Hz pf m/s - Aの効率 η T 影像周波数レーダー方程式雑音指数開口面アンテナ誤差を% 以下に抑える最小距離 R は同軸のインピーダンス微小ダイポールの実効面積微小ダイポールの電界強度等方性アンテナの電界強度 R max f f η L L T ( ) + η G η f > f f - f L < f f - f GA σ S min F L 4 e IF IF - F + + G E f f f f u F G 3 L L + f - G IF + f IF R (D +D ) / 38 b Z log ε α E R r max 3 8π 45 3 G ( ) m V/m V/m 3 f σ S u f min 4

3 半波長スロットアンテナの入力インピーダンスの最大値 ( 半波長ダイポールのインピーダンスを 73Ω) /4 波長垂直接地アンテナの実効静電容量 ( アンテナの静電定数 :C ) 平行平板のインピーダンス 自由空間のインピーダンス ( 6π ) 73 Z 49 8C π C e 377 ε r W Z π 377 F 半波長タ イホ ール相対利得絶対利得指向性利得 B 等方性アンテナ 微小タ イホ ール /4 波長よりはるかに小さい垂直接地アンテナの電界強度 受信機に誘起する電圧 アンテナに誘起する電圧 -.5B B.9 E V.5B.64 B.76B.5 9η El V El e e V/m V.5B.64 B V 折り返し半波長ダイポールの実効長 の l e 誘電体レンズのゾーニングの深さ パラボラの指向性を測定する最小測定距離 le m π z ε - r m D G R min m R min πη m メートルアンペア 給電線電流で実効長は? 平行 線式給電線の減衰定数 α 屈折がある電界強度 反射損 M アンテナ利得 G の動作利得 VSWR を S の反射損 VSWR を S アンテナ利得 G の動作利得 Z 5Ω Z L 4+j3Ω の時の電圧透過係数は? 実効長.83 α Z π hh E 4E S sin メートルアンペア給電線電流 動作利得 反射損 動作利得 (Z ) f π hh sin G M m Np/m ( + S ) 4S V/m 4SG ( + S) (4+ j3) ( Z + Z ) ( j3) L L

4 周波数 4 GHz 送信電力 W 送信アンテナ絶対利得 3 B 送受信点間距離 5 km 最小受信入力レベル Bm mw を Bm log7.85 L ( 真値 ) 周波数 3 MHz 相対利得 3.4 ( 真値 ) このアンテナの実効面積 A e m は? A e G m.8g m 自由空間損失 L B は? 受信アンテナの絶対利得 G r B は? L7 B 換算して B 絶対利得 相対利得.64 約.5 Bi ( 真数では約.64 倍 ).56 π W 5Bm G r Bm G r 39.5 B A e / / m 周波数 3 GHz 送信電力 W パラボラアンテナ直径 m アンテナ開口効率.6 最大放射距離 5 km 電界強度 E mv/m は? 絶対利得 G 3G のアンテナ E V/m パラボラの絶対利得 ( 真値 ) G 開口面積 A m 波長 m 開口効率 η A η G G4 π π.6/..4 π/. 4 π 送信電力 t W 電力密度 W/ m 送信アンテナ絶対利得 G 送受信点間距離 m tg W/m 受信電力 r W 受信アンテナ実効面積 A e tga e r A e m W E (3 4 π ) / 5 3 (7 π ) / 5 3 (7. 4 π ) / π / V/m 7 mv/m tga e r W

5 周波数 f 5 MHz 送信アンテナ高 h m 送信点から受信点までの距離 5 km 受信アンテナ高 h m 大地の反射係数 - 受信アンテナを送信点へ向かって移動し 電界が零となる距離は? 電界強度 E E π hh sin V/m 開口面アンテナ ( ハ ラホ ラ) の絶対利得 開口面アンテナの実効面積等方性アンテナの実効面積 sin(πh h /) の時にEが零になる 最初に零になるのは π の時 h h / / m 送信アンテナ高 m 周波数 MHz 受信アンテナ高 3 m 大地の反射係数 - 距離 km は? 送信アンテナ高 5 m 受信アンテナ高 m 最大放射方向距離 km 送信電力 W 周波数 5 MHz 送信アンテナの相対利得 6 B 相対利得 Gのアンテナの電界強度 7 G E V/m sin(πh h /)の時にEが極大になる 極大になるのはsin9 π/の時 πh h /π/ 4h h / 4 3/ km 受信点の電界強度は? mv/m 7 E G π hh E88 (4) 5 / / mv/m V/m 88 Ghh

6 角錐ホーンアンテナの絶対利得は? 開口面の縦 8 cm の横 66 cm 周波数 3 GHz 電界 (E) 面の開口効率.75 磁界 (H) 面の開口効率.8 角錐ホーンアンテナ 開口面の縦 a m の横 b m E 面の開口効率 η e H 面の開口効率 η h 波長 m 相対利得は 絶対利得より約.5 B (/.64 倍 ) 低い 等方性アンテナの相対利得は約.6 (/.64 倍 ) 微小ダイポールアンテナの相対利得は半波長ダイポールアンテナの相対利得に比べて約.39 B (/.9 倍 ) 低い 放射効率が のアンテナの絶対利得は 指向性利得に等しい G /. 3 3 B 送受信点間距離 8 km 半波長ダイポールアンテナの放射電力.5 kw F 層 回反射伝搬で F 層の高さ 3 km 第 種減衰は無し第 種減衰 6 B 電界強度 μv/m を B とする log7.85 最大放射方向の受信点の電界強度は B? 電波の通路長 (4 +3 ) km E7 (5) / 3 35 / 3 半波長ダイポールの電界強度 μv/m log35 5 B B とすれば絶対利得 G ( 真数 ) は ab ηeη h G 7 E V/m アンテナと給電回路と整合の時のアンテナ利得を G ( 真数 ) 不整合の時の反射損を M ( 真数 ) とすれば アンテナの動作利得は G/M ただし Γ を反射係数とすれば 半波長タ イホ ール 等方性アンテナ 微小タ イホ ール アンテナ効率.8 相対利得 B のアンテナ 微小ダイポールの実効面積について M Γ 受信アンテナから取り出す事のできる最大電力は 微小ダイポールの利得 Gは.5 倍 (+.76B +.76B) なので A e.8g.8.5. 相対利得 B -.5B / B /.9.9 B 絶対利得.5B.64 B.76B.5.5B 指向性利得.5B.64 B?

7 α3 mm b mm の方形導波管周波数 GHz 基本モード TE の電波が伝搬するときの群速度は? m/s とする 波長 m 電波の速度 c m/s 位相速度 ν p m/s 群速度 ν g m/s c 位相速度 νp - α 群速度 ν g c ν p c m/s - α m/s m/s 微小ダイポールの長さ m に高周波電流 3 A を加える周波数 MHz アンテナの電流分布は三角形状に分布する実効長 l m 放射される電力は? 波長 m とすれば 実効長 l/ m 放射電力 I R r 3 8 π / / 9 8 W 微小ダイポールの放射抵抗 R r R r 8π l アンテナの長さ L L m 実効長 l m 三線式折返し半波長ダイポール 群速度は位相速度より遅い 受信周波数 MHz 波長 m 群速度 ν g 3 6 {-(.3/ 3-3 ) } m/s 受信した時の実効長は? l.5/ m 実効長 l m 相対利得 G ( 真値 ) 放射抵抗 R 波長 m l G π R 73.3 m 三線式折返し半波長ダイポール 放射抵抗は半波長ダイポール 73.3 の 9 倍

8 球面大地の伝搬 送信アンテナ高 m 地球の半径 637 km 地球の等価半径係数 ただし cosx -x /(x ) 見通しの距離は? を求めればよい (KR+h) +KR KR +hkr+h +KR KR h なので h は無視する? hkr km 相対利得 ( 真値 ) 電界面内の電力半値幅 3.5 度磁界面内の電力半値幅 4. 度のビームを持つアンテナの指向性利得 G B は? log3.48 電界面内の電力半値幅 θ E ra を θ ED 度 磁界面内の電力半値幅 θ H ra を θ HD 度 G ( 真値 ) θθ θ θ 453 θ θ ED HD ED G ( 真値 ) 453/ G 34.8 B E H HD ( π/8) 電離層の最大電子密度が 8. 個 /m 3 臨界周波数は? MHz KRh θ KR m ra 電離層の最大電子密度が N 個/m 3 の時 電波を電離層へ垂直に入射した時の反射は であり N が最大電子密度 N MAX の高さで反射条件が成り立つ周波数が臨界周波数 f c Hz である fc 9 N MAX Hz f c 9 (8. ) 9 (8 ) Hz 8. MHz

9 直径 mm 距離 D 3 cm 平行 4 線式給電線の特性インピーダンスは? log3.48 として Z 38log D 直径 4 mm 線間隔 cm 周波数 MHz 終端からの長さ.5 m のところから終端を見たインピーダンスと等価となる平行 線式給電線のコイルのインダクタンスは? インピーダンス インダクタンス 角周波数 Z L ω ω π f ra/s Z 38log.3/. 38 log(.44.3/.) 38 log(.) 波長 m 終端から長さ l m のところから見たインピーダンス Z i π l Z i jz tan Q Z R 直径 m 線間隔 D m 平行 線式給電線の特性インピーダンス D Z Z 77log 平行 線式給電線直径 mm 線間 mm アンテナの R 35 整合用給電線直径? mm 線間 mm 整合用給電線の直径は? 平行 線式給電線のインヒ ータ ンス Z Z 7log(./.) 54 整合用給電線のインヒ ータ ンス Q Q (Z R) (54 35) 7 整合用給電線のインヒ ータ ンス Q に代入 Q77log(D/) log(./). m mm 平行 線式給電線の特性インピーダンス Z 77log(D/) 77 log(./.4) 77 log 終端からの長さ.5 m のところから終端を見たインピーダンス Z i j554tan(π.5/5) j554tan(π/3) π/3 は 6 だから tan6 3 j554 3 j958 Z i Lω L958 / (π 6 ) 958/ μh

10 Z 7log(D/) を使う事 半波長ダイポール 周波数 5 MHz アンテナの入力インピーダンスを純抵抗素子の直径 mm 素子の長さ l m は? m だから全波長は m 半波長は m 素子の長さは 5 m になる アンテナ特性インピーダンス Z 38log( 5/.) 44 短縮率 δ4.55/π44.37 短縮率を考慮した素子長さ l m l5*(-.37) m 素子直径 m 素子長さ l m の時 半波長タ イホ ールアンテナ特性インヒ ータ ンス Z 短縮率 δ δ l 38log 4.55 π Z 短縮率を考慮した素子長さ - 短縮率 特性インピーダンス 5 平行 線式線路の伝搬速度が自由空間の.83 倍 m 当たりのインダクタンス L は? 特性インピーダンス Z 自由空間の伝搬速度 c m/s 3 8 平行 線式の伝搬速度 υ m/s 平行 線式線路の単位長当たりの静電容量 C F/m としたとき Z L C υ m/s Z L/C CL/Z υ/ (L L/Z ) / (L /Z ) /L/Z Z /L.83c LZ /.83c L5/ L.8-8. μh/m アンテナ特性インピーダンス 68 垂直接地アンテナ長 5 m 周波数.5 MHz 挿入すべきコイルのインダクタンスは? LC 垂直接地アンテナ長 l m アンテナの特性インピーダンス Z 入力インピーダンス Z とすると Z -jzcot πl Z-j68 cot(π5/) -j68 cot(π/4) -j68 Z が容量性なので 誘導性リアクタンス X L が次式のインダクタンス L H の延長にコイルを付加すれば良い アンテナ特性インピーダンス Z X L πfl68 L68/πf 68/π Z π fl Lω π fc Cω

11 66.7 μh 周波数 MHz 特性インピーダンス Z 365 入力インピーダンス Z 73 の半波長ダイポールアンテナとを整合させるための静電容量 C pf は? Z ω C Z -Z Z ωπf pf C/( ) {(365-73)/73} pf 同軸と平行平板のインピーダンスが等しい比誘電率 ε r b/a 5 のときの /W.6 同軸のインピーダンス 38 b Z log ε α r 自由空間のインピーダンス Z π 平行平板のインピーダンス Z Z ε W r 微小ダイポールの実効面積 3 8π m 共振周波数.5 MHz 給電線電流 A メートル アンペア m A にする為の l l は? 実効長 h e m 給電線電流 I A メータ アンペア S m A S h e m I アンテナ全体の長さは /4 m 実効長 / 5 m 垂直部は電流分布が一様なので l 5 m アンテナ全体の長さは /4 だから

12 特性インピーダンス の同軸ケーブルと比べて特性インピーダンス 5 は? 内部導体が大きい 減衰定数が小さい 伝送できる電力容量が大きい 耐電圧が大きい TE モードの遮断周波数が低い 同軸線路 TEM 波のみ使用 TE 波より高い周波数は使用しない 比誘電率 ε S がの時の位相定数は ε S 倍 散乱波について 図の物体に平面波が入射すると導電電流又は変位電流が誘起して電磁波が再放射される 比誘電率 ε r の誘電体で囲まれたS が等しい平行 線式線路と比べると抵抗損失は大きい 遮蔽物を取り除いて は変えずに S のみが K 倍された平行 線式線路の特性インピーダンスと等しい 方向の散乱断面積 σ σ S / O m 遠方の距離 D m の電力束密度 W/ m は O σ /( ) W/ m m は 散乱方向が入射波と一致するときのσ をレーダー断面積又は後方散乱断面積 全散乱電力と入射波の電力束密度の比全散乱断面積 吸収電力と全散乱電力の和の断面積全断面積

13 レーダー断面積又は後方散乱断面積 定在波比 位相関係によっては伝送品質の劣化の原因となる η η X - - X + -b l η X - e - η X + 回折係数 E E ( S + R S + R S 3 + R R S 4 ) V/m X は定在波比 l は給電線路の長さ b は減衰定数 E E S ( - e -jφ - e -jφ + e -j(φ+φ) ) V/m E E S ( - e -jφ )( e -jφ ) V/m 交差偏波識別度 降雨時は雨滴の変形は雨滴が大きいほど高い つの周波数で つの偏波 つの信号を伝送すれば効率は 倍になるが偏波間干渉が問題となる 風の降雨時は雨滴が長軸の電界が短軸の電界よりも大きくなるため交差偏波が発生する SHF 帯の降雨 GHz に水蒸気分子の共鳴周波数 6 GHz に酸素分子の共鳴周波数 降雨による減衰は GHz 以上で顕著になり GHz までは降雨強度が多いほど減衰量が増える つの電波が交差している領域に降雨があると干渉が起きる事がある log( 主偏波電界 / 交差偏波電界 ) 降雨が強いほど また雨滴の傾きが大きいほど劣化する 電波の位相回転の大きさが偏波の方向によって異なることと関係する

14 電波伝搬 電波は建物等に反射 回折され半波長の定在波を路上に生ずる 上記は受信波にフェージングが発生する周波数が高いほど 移動速度が速いほど変動が速いフェージングとなる 電波伝搬 対流圏散乱波は屈折率の揺らぎで生じ 見通し外遠距離通信に利用 ラジオダクト波は気温逆転現象で屈折率が高さ方向に変化見通し外の遠距離まで伝わる 広帯域伝送では周波数選択性フェージングを生じスペクトルが変形し歪みを生ずる 衛星の大気 電離圏の影響 晴天時の水滴を含まない場合 衛星の仰角が低いほど減衰する 大気の屈折率は常時変動しているので電波の到来方向も変動しシンチレーションの原因となる VHF 帯の高い周波数以上は電離圏での減衰は無視出来る 電離圏の屈折率は周波数が高くなると に近づく 電離圏の位相について VHF 帯では偏波面の回転 ( ファラデー回転 ) となるが UHF 帯以上では問題にならない 対流圏シンチレーションは低仰角の場合変動幅が大きい電離圏シンチレーションと比べて周期が長い ブリッジダイプレクサ 異なるつの高周波は相互作用が無く つのアンテナへ給電できる 正相端子から入力した波は つの平衡端子に同振幅で π ra の位相差ができる同相端子には出力されない 同相端子から入力した波は つの平衡端子に同振幅で ra の位相差ができる正相端子には出力されない つの平衡端子から同振幅で π ra の位相差で入力すると正相端子のみ出力される 同相端子より周波数特性の広い正相端子に fv 同相端子に fa を接続する

15 電界や磁界のシールド 静電遮蔽は電界が存在しない事を用いる 磁気遮蔽は静磁界を遮蔽する事であり 磁界が透磁率の大きな材料を通り 外部からの磁界が小さくなることを用いる 電磁遮蔽は高周波電流が遮蔽の作用をする 遮蔽材は 銅やアルミ網の場合は 網がアンテナになるので波長より小さくしなければならない ILS グランドパスには 個又は3 個のコーナレフレクタアンテナを垂直に配列直接波と反射波の合成のヌルを航空機に上下方向として与える ローカライザは複数のコーナレフレクタアンテナ等を横に配列したもの大きさの等しいつのローブで 航空機に上下方向として与える マーカは 素子の半波長ダイポールで放射パターンはファンビーム 利得と指向性 受信アンテナの利得と指向性が送信アンテナに等しいのは可逆定理 同じアンテナを複数並べた指向性は 単体の指向性に配列指向係数を掛けたもの 偏波 直線偏波は電界の位相差が ra 又は π ra 円偏波は振幅の等しいつの電界の位相差が π/ ra 時計回りに回転する楕円偏波を右旋楕円偏波

16 偏波 反射係数は垂直偏波より水平偏波の方が大きい入射角が9 に近いときはどちらも になる 垂直偏波は反射係数が最小となる入射角ブルースター角がある 垂直偏波では ブルースター角以下のとき 反射波の位相が水平偏波に対して逆位相となる円偏波を入射すると逆回りの円偏波になる アンテナ側を見たインピーダンスが最大値 Z max V t Z + Z max Z max W の時の電力 t VSWR を S とすると Z max SZ V S Z (+ S) t W だから 電離層伝搬 位相速度は周波数によって異なる アンテナと給電線が整合している時の電力 V 4Z W 不整合による反射損 M は M t ( S) 4S + W 自由空間の電波速度より大きい 減衰量は周波数が小さくなるほど大きい 直線偏波が楕円偏波になる 跳躍距離付近で日出 日没時に電子密度が変化し電離層を突き抜ける跳躍フェージング アンテナ利得 G W ( 真数 ) は G G 4SG W W M (+ S)

17 航空監視レーダー (ASR) アンテナの利得は cosec θ に比例する 等高度で飛行していれば 反射強度は航空機の距離に無関係に一定 水平面内のビーム幅は 非常に狭い 表皮厚さ ( 導電率の導体中へ浸透する深さ ) 導体表面の電磁界強度が /e に減衰する時の距離 (eは自然対数の底) 導電率が大きくなるほど薄くなる 表皮厚さが厚くなるほど減衰定数は小さくなる ダイバーシティ 空間ダイバーシティは干渉性フェージングを軽減する 空間ダイバーシティの効果は異なる受信点の電界強度変動が小さいほど大きい 受信レベルが極大 h m の時は sin9 π/ Δh の時は sin7 3π/ 周波数ダイバーシティは選択性フェージングを軽減 偏波ダイバーシティは偏波性フェージングを軽減 偏波ダイバーシティの効果は同じ受信点に直交する偏波面のアンテナ つを設置してもよい

18 アンテナの測定 ダイポールで 3 MHz で測定する場合は 送信アンテナから3 波長以上離さなければならないので 波長は m だから 3 m 以上離す 屋外で測定する場合 送受信アンテナ高を測定距離に比べて低く設定する事で大地反射波を利用できる 分割同軸バラン 巻線比 : Z s が無限大になる l は /4 m tan(π/) 同軸給電線には Z p /4 が接続され インピーダンスの整合がとれ 平衡と不平衡の変換が出来る マクスウェル方程式 l は /4 m 以外の時も平衡と不平衡は維持される roth rote E σ E + ε t H -μ t 第 項導電流第 項変位電流でアンペアの法則 コイルが無い空間といえばファラデーの法則 答え

19 開口面アンテナ 領域 フレネル領域 ( 近傍 ) 電界強度が距離に対して振動的に変化する フラウンホーファ領域 ( 遠方 ) 距離によって変化しない フレネル領域とフラウンホーファ領域の距離開口面 D m 波長 m とすると D / アンテナのごく近傍リアクティブ近傍界 ホーンリフレクタアンテナ 反射鏡からの反射波がほとんとんど戻らないから広帯域にわたってインヒ ータ ンスの不整合が生じにくい 開口面以外は導体で覆われているので 不要発射が少なく前方後方比 前方側方比が高い 角すいホーンリフレクタアンテナは多周波数帯の共用 偏波の共用が出来る サイドローブ 反射鏡アンテナの鏡面の精度を高めるとサイドローブは低減できる パラボラの主反射鏡に遮蔽板を取り付けると広角サイドローブを低減できる カセグレンアンテナは主反射鏡に対する副反射鏡が大きいほど近軸サイドローブが増加する レンズアンテナの照度分度分布を周を周辺を弱くすると広角サイドローブを低減できる ホーンリフレクタアンテナは電波通路が無いのでサイドローブ特性が良い 特性 開口効率は電界の振幅分布 位相分布によって最大値 になる 注意事項開口面アンテナの送信アンテナの直径を D m 受信アンテナの直径を D m 波長 m の誤差を % 以下に抑える最小距離 R は R (D +D ) / 屋外で測定する場合オープンサイトで実施する カセグレンアンテナ 副反射鏡 つの焦点は一次放射放射器と一致し もう一つの焦点は主反射鏡と一致 主反射鏡の中心に一次放射放射器を置くから給電路を短く出来る 主反射鏡と副反射鏡の表面を修正すると サイドローブが良好になる 放射特性の乱れはオフセットカセグレンアンテナより大きい

20 グレゴリアンアンテナ 主反射鏡に回転放物面 副反射鏡に回転楕円面 焦点を 次反射器の位相中心と一致させる 副反射鏡によるブロッキッキングングノイズを無くして サイドローブを良好にする為オフセット型が用いられる 点 の軌跡 T+R と + との通路差が / の整数倍 回転楕円体をフレネルゾーンといい 内側から第 第 第 3 第 n フレネルゾーンという第 n フレネルゾーンの半径は n m + 障害物が第 フレネルゾーンに入らない様にクリアランスを設ける 角錐ホーンアンテナ 開口面上で電磁界の位相が一様である事 ホーンの開き角を大きくしすぎると利得があがらない ( 位相が周辺部より中心部の方が速く進む為 ) 位相を揃える為にはパラボラ形反射鏡ラ形反射鏡 電波レンズを用いる 電波暗室の電波吸収体 誘電材料に黒鉛粉末を使用する 図 自由空間と整合する為にテーパ状にする 図 種々の誘電率の材料を重ねて広帯域特性にしたりする フェライトコアを粉末にして使用したものは誘電材料の電波吸収体より

21 無給電アンテナ ( 反射板 ) 使用周波数が低い 反射板は遠隔形平面反射板と近接形辺面反射板がある 遠隔形平面反射板は励振アンテナのフラウンホーファ領域にある 有効投影面積 S e m 実際の面積 S m 開口効率 α αscos cosθ m S e θ が鈍角になる場合 平行反射板を 枚用いれば開口効率の低下を少なくできる.53 波長垂直接地アンテナは高仰角 アンテナの周波数特性 周波数の変化に対して敏感な入力イン力インピーダンス 半波長ダイポールはアンテナ素子が太い方が帯域幅が広い 自己補対アンテナは定インピーダンスなので 帯域幅が広い 指向性が同じ複数のアンテナの合成指向性はアンテナ素子の指向性と無指向性点放射放射源との積 位相係数 K e jblcos cosθ 合成電界強度 E A (e -jb /) D( +KM )

22 携帯電話の逆 F 形アンテナ 線状逆 L 形アンテナ 小型の為 /4 波長モノポールアンテナを逆 L 形アンテナの給電点に 逆 L 形アンテナの容量性リアクタンスに対し 誘導性リアクタンスで共振させ 放射抵抗抵抗分を増加して整合をとる 周波数帯域幅が狭い 板状逆 F 形アンテナ 短絡板の幅を調整して整合 周波数帯域幅が広い アンテナ 個の場合 t W を送信し 反射してきた電波を同じアンテナで受信した電力を r W r tg () tg (8π ) G W W 8π G r t アンテナ 個の場合 r tg tg ( ) G W W G r t 反射波を受信したときの電圧定在波比を S とすれば r t S - S +

23 模型を使用したアンテナ測定の注意事項 媒体の誘電率電率及び及び導電率は模型の縮尺率に依存しない ( 自由空間と同じ ) 材料の導電率は模型の縮尺率に依存する 周波数 f Hz 模型の縮尺率 p (p < ) 測定周波数 f m は? f / p Hz f m 測定周波数は周波数を短縮率で割で割った高い周波数を使用する 対数周期ダイポールアレーアンテナ, 対数周期比 τ X n+ /X n α tan - l n /X n, 隣接するダイポールごとに逆位相で給電 3, アンテナの中心軸の O 方向に単一指向性を得る 4, 周波数は最も長い素子と短い素子で決まる 5, 周波数の対数に対して周期的に小さな変化を繰り返す 平面反射板付ダイポール 平面反射板を取り除いても指向性が等しいイメージアンテナのz 軸上の距離は -/4 m イメージアンテナにはダイポールと逆向きの電流が流れる 指向性は z 軸上に最大放射方向を持つ単一指向性が得られる 反射板が小さいと回折波の影響を受ける 八木アンテナの帯域幅 半波長ダイポールより帯域幅は狭い 放射器 導波器 反射器の導体が太いほど帯域幅は広い 導波器は中心周波数より短い方が帯域幅は広い 反射器は中心周波数より長い方が帯域幅は広い 利得が最大になる寸法だと帯域幅が狭くなる

24 フェーズドアレーアンテナ デジタル移相器の位相角 π/ n サイドローブが生じたとき 透過型空間給電方式で低減 G tg Γ W t W 区間ロス t L tr r L ΓΓ 区間伝搬ロス Γ GG L

25 導波管の伝送モード 円形導波管は TE モード TE モード周波数が高くなるほど減衰定数が低下 同軸線路は TEM モード 方形導波管 TE モード TEMモードが存在しない a b a < < a TM mn モードには m あるいは n に対応するモードは存在しない ベーテ孔方向性結合器 電界結合した電波が副導波管を両方向に進む 磁界結合した電波が副導波管を 方向に進む 磁界結合した電波の大きさは cosθに比例 方向性が周波数に無関係な特徴 スロットアレーアンテナの偏波 yz 面は z 軸に平行な電流が流れている y 軸の電界分布は 管内波長の / の間隔で反転 l m 間隔のスロットから放射される電波の電界の方向はスロットに垂直 隣り合うスロットからの電波の電界をy 成分とz 成分に分解すると z 成分は互いに逆向き y 成分は同じ向きだからz 成分が打ち消されるので水平偏波となる

26 ラットレース回路 導波管の E 面を環状にした 4 本の E 面分岐を設けた から入力した場合 へは g だから出力あり 3 へは g / だから出力なし 4 へは同相だから出力あり から入力した場合 と 3 へは出力あり 4 へは出力なし 方形導波管 金属片 金属棒は平行 線式給電線にリアクタンス素子を並列にしたのと同じ働きをする 図 金属片はキャパシタンスの働きをする 図 金属片はインダクタンスの働きをする 図 3 挿入長 l m は /4 m より長いとインダクタンス 短いとキャパとキャパシタンス メタルレンズ 導波管内では位相速度が自由空間より速くなる性質を応用したもの 図 電界に平行な金属板で凹レンズで 波面を揃えて平面波にする 図 金属板間隔 で位相速度を速くする場合は外側に近いほど狭くする金属板間隔 が/より小さい時は遮断領域となって電波が減衰する

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 9 回アンテナ ( 基本性質 利得 インピーダンス整合 指向性 実効長 ) 柴田幸司 講義ノート アンテナとは 無線機器の信号 ( 電磁波 ) を空間に効率よく放射したり 空間にある電磁波を無線機器に導くための部品 より長距離での通信の為 非共振型アンテナ ホーン ( ラッパ ) パラボラレンズ 非共振型アンテナの動作原理 ホーンアンテナ 導波路がテーパ状に広がることにより反射させることなく開口面まで伝搬させ

More information

A-4 次の記述は 微小ダイポールの放射抵抗について述べたものである ら選べ 内に入れるべき字句の正しい組合せを下の番号か (1) アンテナから電波が放射される現象は 給電点に電流 I A が流れ アンテナからの放射によって電力 P r W が消費さ れることである これは アンテナの代わりに負荷と

A-4 次の記述は 微小ダイポールの放射抵抗について述べたものである ら選べ 内に入れるべき字句の正しい組合せを下の番号か (1) アンテナから電波が放射される現象は 給電点に電流 I A が流れ アンテナからの放射によって電力 P r W が消費さ れることである これは アンテナの代わりに負荷と 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること FB007 第一級陸上無線技術士 無線工学 B 試験問題 25 問 2 時間 30 分 A-1 次の記述は 電界 V/m と磁界 A/m に関するマクスウェルの方程式について述べたものである 内に入れる べき字句の正しい組合せを下の番号から選べ ただし 媒質は均質 等方性 線形 非分散性とし 誘電率を F/m

More information

反射係数

反射係数 平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 8 回電磁波の伝搬特性 Ⅱ ( ダクト伝搬 電離大気中の伝搬 フェージング ) 柴田幸司 本章の目的 産業や通信に用いられる電磁波は宇宙的な規模での振る舞いを考えると その周波数によって空間を伝搬する性質などが異なる よって 特に電離層での振る舞いを例に その違いについて理解する 電離層伝搬に関連する周波数 MF( 中波 ) 3kHz~ 3MHz HF( 短波 SW) 3MHz~3MHz

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

6 電力利得が 18 d の増幅器の出力電力の値が 3.2 W のとき 入力電力の値として最も近いものを下の番号から選べ ただし log 10 2 = 0.3 とする 1 1,000 mw mw mw mw 5 50 mw 7 図に示す断面を持つ同軸ケーブルの特性

6 電力利得が 18 d の増幅器の出力電力の値が 3.2 W のとき 入力電力の値として最も近いものを下の番号から選べ ただし log 10 2 = 0.3 とする 1 1,000 mw mw mw mw 5 50 mw 7 図に示す断面を持つ同軸ケーブルの特性 JZ06 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級陸上特殊無線技士 無線工学 試験問題 24 問 1 次の記述は マイクロ波 (SHF) 帯を利用する通信回線又は装置の一般的な特徴について述べたものである 内に入れる べき字句の正しい組合せを下の番号から選べ (1) 周波数が高くなるほど が大きくなり 大容量の通信回線 を安定に維持することが難しくなる

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 回アンテナ素子 ( 線状アンテナ 開口面アンテナ 進行波アンテナ アレイ 柴田幸司 線状アンテナ 金属 モノポール ダイポール 八木 宇田 オープン ( 電圧分布に対して db -3dB 半値角 E 面 ( 垂直面内 指向性 単一周波数において共振現象によりエネルギーの増大した高周波磁界がアンテナから放射 kx θ kxθ kx kx kxθ A θ B dx θ θ dx ダイポールアンテナの指向特性

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

ダイポールアンテナ標準:校正の実際と不確かさ

ダイポールアンテナ標準:校正の実際と不確かさ ダイポールアンテナ標準 校正の実際と不確かさ ( 独 ) 産業技術総合研究所 森岡健浩 概要 アンテナ係数 3アンテナ法 ( 半自由空間と自由空間 ) 置換法 不確かさ積算 異なるアンテナ校正によるアンテナ係数の一意性 まとめ アンテナ係数の定義 z 波源 V 付属回路 受信アンテナ図 アンテナ係数の定義 V 測定量 : アンテナ係数 ( 水平偏波.0 m 高 または自由空間 ) 校正方法 : 3アンテナ法

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 : 金属. 復習. 電気伝導度 3. アンペールの法則の修正 4. 表皮効果 表皮深さ 5. 鏡の反射 6. 整理 : 電子振動子模型 注意 : 整理しましょう! 前回 : 付録 (4) のアプローチ. 屈折率と損失について記述するために分極振動 ( 電気双極子の集団運動 ) による電気双極子放射を考慮. 誘電率は 真空中の値 を採用 オリジナル光

More information

2. λ/2 73Ω 36Ω 2 LF λ/4 36kHz λ/4 36kHz 2, 200/4 = 550m ( ) 0 30m λ = 2, 200m /200 /00 λ/ dB 3. λ/4 ( ) (a) C 0 l [cm] r [cm] 2 l 0 C 0 = [F] (2

2. λ/2 73Ω 36Ω 2 LF λ/4 36kHz λ/4 36kHz 2, 200/4 = 550m ( ) 0 30m λ = 2, 200m /200 /00 λ/ dB 3. λ/4 ( ) (a) C 0 l [cm] r [cm] 2 l 0 C 0 = [F] (2 JARL 36kHz 20.7.3 JA5FP/.... 36kHz ( ) = () + + 0m 00mΩ 0 00Ω 3 36kHz 36kHz 短小モノポールモノポールの設置環境 垂直なキャパシタンス 孤立キャパシタンス アンテナエレメント 短小モノポールモノポールの等価回路 浮遊容量 H 浮遊容量 電力線 L 接地抵抗 放射抵抗 対地容量 損失抵抗 損失抵抗 立木 水平なキャパシタンス 大地深部

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって 入門書 最近の数多くの AC 電源アプリケーションに伴う複雑な電流 / 電圧波形のため さまざまな測定上の課題が発生しています このような問題に対処する場合 基本的な測定 使用される用語 それらの関係について理解することが重要になります このアプリケーションノートではパワー測定の基本的な考え方やパワー測定において重要な 以下の用語の明確に定義します RMS(Root Mean Square value

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

A 5 図に示すように一次側及び二次側の巻線数がそれぞれ 及び で 巻数比 = 5 の無損失の変成器 ( 理想変成器 ) の二次 側に 8 Ω の抵抗を接続したとき 端子 から見たインピーダンスの値として 正しいものを下の番号から選べ 1 16 Ω 2 2 Ω 3 24 Ω 4 32 Ω 8 Ω :

A 5 図に示すように一次側及び二次側の巻線数がそれぞれ 及び で 巻数比 = 5 の無損失の変成器 ( 理想変成器 ) の二次 側に 8 Ω の抵抗を接続したとき 端子 から見たインピーダンスの値として 正しいものを下の番号から選べ 1 16 Ω 2 2 Ω 3 24 Ω 4 32 Ω 8 Ω : IZ12 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第二級アマチュア無線技士 無線工学 試験問題 25 問 2 時間 A 1 図に示す静電容量の等しいコンデンサ C 1 C 2 C 3 及び C 4 からなる回路に 9 V の直流電圧を加えたところ コンデンサ C 1 には 6 μc の電荷が蓄えられた 各コンデンサの静電容量の値とコンデンサ C

More information

4. アンテナエレメント物理長の短縮 4-1 エレメント長短縮方法 (1) 携帯電話用アンテナはアンテナエレメント+グラウンド板の変形ダイポールアンテナとして考えて差し支えありません 実際のエレメント物理長の短縮方法は各種提案されていますが現在はインバーテッドF 構造が主流です 携帯電話業界では通常

4. アンテナエレメント物理長の短縮 4-1 エレメント長短縮方法 (1) 携帯電話用アンテナはアンテナエレメント+グラウンド板の変形ダイポールアンテナとして考えて差し支えありません 実際のエレメント物理長の短縮方法は各種提案されていますが現在はインバーテッドF 構造が主流です 携帯電話業界では通常 4. アンテナエレメント物理長の短縮 4-1 エレメント長短縮方法 (1) 携帯電話用アンテナはアンテナエレメント+グラウンド板の変形ダイポールアンテナとして考えて差し支えありません 実際のエレメント物理長の短縮方法は各種提案されていますが現在はインバーテッドF 構造が主流です 携帯電話業界では通常 PIFAと呼称されていますがPIFAはアンテナ下部にグラウンド板をもつ変形パッチアンテナの一種であり本来はインバーテッドFアンテナと呼称される事が妥当であると考えます

More information

1.千葉工業大学(長)修正版

1.千葉工業大学(長)修正版 別紙 5 周波数選択性素子を用いた 周波数共用アンテナ 千葉工業大学工学部情報通信システム工学科 教授長敬三 平成 30 年 2 月 19 日 Antennas and Wireless Systems Lab. 1 背景 移動通信トラヒックの増加 高速 大容量通信システムの必要性 New Band 周波数帯の追加 4.5GHz Band etc. 1.5/1.7GHz Band 2GHz/800MHz

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 6 回境界条件と伝送線路 柴田幸司 伝送線路とは 伝送線路とは光速で進む電磁波を構造体の中に閉じ込めて低損失にて伝送させるための線路であり 伝搬方向 断面方向に電磁波を閉じ込めるためには金属条件や誘電体の境界条件を利用する必要がある 開放型 TM 型 平行 線 誘電体型 誘電体線路 光ファイバ 閉鎖型 TM 型 同軸線路 導波路型 導波管 おのおのの伝送線路の形状に対する管内断面の電磁波の姿体の導出

More information

スライド 1

スライド 1 センサー工学 2012 年 11 月 28 日 ( 水 ) 第 8 回 知能情報工学科横田孝義 1 センサー工学 10/03 10/10 10/17 10/24 11/7 11/14 11/21 11/28 12/05 12/12 12/19 1/09 1/16 1/23 1/30 2 前々回から振動センサーを学習しています 今回が最終回の予定 3 振動の測定教科書 計測工学 の 194 ページ 二つのケースがある

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

スライド タイトルなし

スライド タイトルなし 第 9 回情報伝送工学 情報を持った信号の加工 ( フィルタ ) 高周波フィルタとはフィルタとは ある周波数の電磁波のみを通過させる回路 ( 部品 ) であり アンテナからの微小な信号を選択増幅するために 得に初段の増幅器前のフィルタには低損失な性能が要求される たとえば 下図におけるアンテナ直下に配置されているフィルタは アンテナから入力された信号のうち 必要な周波数帯域のみを受信回路に送り 一方送信回路から送られてきた信号を周波数の違いにより受信回路には入れず

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1 電磁波解析入門セミナー 説明資料 1 もくじ 1. 電磁波解析の概要 2. 電磁波解析の機能 設定の紹介 2 もくじ 1. 電磁波解析の概要 Femtet の3つの電磁界ソルバ... 4 電磁波解析の3つの種類... 5 調和解析... 6 導波路解析... 7 共振解析... 8 2. 電磁波解析の機能 設定の紹介 3 Femtet の 3 つの電磁界ソルバ Femtet には 3 つの電磁界ソルバがあります

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

オペアンプの容量負荷による発振について

オペアンプの容量負荷による発振について Alicatin Nte オペアンプシリーズ オペアンプの容量負荷による発振について 目次 :. オペアンプの周波数特性について 2. 位相遅れと発振について 3. オペアンプの位相遅れの原因 4. 安定性の確認方法 ( 増幅回路 ) 5. 安定性の確認方法 ( 全帰還回路 / ボルテージフォロア ) 6. 安定性の確認方法まとめ 7. 容量負荷による発振の対策方法 ( 出力分離抵抗 ) 8. 容量負荷による発振の対策方法

More information

Microsoft PowerPoint - 第9回電磁気学

Microsoft PowerPoint - 第9回電磁気学 017 年 1 月 04 日 ( 月 ) 13:00-14:30 C13 平成 9 年度工 V 系 ( 社会環境工学科 ) 第 9 回電磁気学 Ⅰ 天野浩 mno@nuee.ngoy-u.c.jp 9 1 月 04 日 第 5 章 電流の間に働く力 磁場 微分形で表したア ンペールの法則 ビオ サバールの法則 第 5 章電流の作る場 http://www.ntt-est.co.jp/business/mgzine/netwok_histoy/0/

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

Microsoft Word - 第5章09電波障害 doc

Microsoft Word - 第5章09電波障害 doc 5. 9 電波障害 5. 9. 1 現況調査 (1) 調査内容事業計画地周辺における電波障害の状況及びテレビジョン電波の受信状況を把握するため 既存資料調査及び現地調査を実施した 既存資料調査は 地上デジタル放送について 事業計画地周辺において受信可能なテレビジョン放送局及びその送信所についてまとめた 現地調査は 事前の机上検討により把握した電波障害の発生が予想される範囲周辺において 高層建造物の屋上に測定機材を設置

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s) と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします

More information

Microsoft PowerPoint - 04.誘導起電力 [互換モード]

Microsoft PowerPoint - 04.誘導起電力 [互換モード] 第 4 章誘導起電力 Φ 磁界中のコイルと磁束 ( 復習 ) : コイルの断面積 Φ : コイルを貫く磁 力線 ( 磁束 ) B B θ : コイル面と磁界 Φ θ のなす角 B: 磁束密度 a) 磁界に対して垂直 b) 傾きθ の位置図 a) のように, 面積 の1 回巻きコイルをΦ の磁力線が貫くときを考える このような磁力線の数を磁束 (magnetic flux) と呼び,[Wb( ウェーバー

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

IEICE_JP_Template

IEICE_JP_Template 放射散乱共用リフレクトアレーアンテナの設計の基礎検討塚田隆平, 佐藤弘康, 陳強 ( 東北大学工学研究科 ) 1 概要 : リフレクトアレーは, 周期的に並べられたアレー構造を用いて電磁波の散乱方向の制御を可能とする技術である. 応用として, 電波の不感地帯の解消, 平面型レンズ等が挙げられる. 従来, リフレクトアレーは散乱体として利用されており, 負荷や給電構造を持たせた場合の研究はほとんど行われていない.

More information

平面波

平面波 平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.

More information

Presentation Title Arial 28pt Bold Agilent Blue

Presentation Title Arial 28pt Bold Agilent Blue Agilent EEsof 3D EM Application series 磁気共鳴による無線電力伝送システムの解析 アジレント テクノロジー第 3 営業統括部 EDA アプリケーション エンジニアリングアプリケーション エンジニア 佐々木広明 Page 1 アプリケーション概要 実情と現状の問題点 非接触による電力の供給システムは 以前から研究 実用化されていますが そのほとんどが電磁誘導の原理を利用したシステムで

More information

<4D F736F F F696E74202D2091E F12D96B390FC92CA904D82D682CC899E97702E707074>

<4D F736F F F696E74202D2091E F12D96B390FC92CA904D82D682CC899E97702E707074> 電磁波工学 第 11 回無線通信システムと回線設計 ( 固定局通信 移動体通信 衛星通信 ) 講義ノート 柴田幸司 無線通信と回線設計 無線機器の信号 ( 電磁波 ) を空間に放射し 情報 ( デジタル アナログ ) を伝送する手法 --- 通信方式 ( 送受信点による分類 )--- 固定通信 マイクロ波 中継回線 (4,5,6G), 携帯電話のエントランス回線 (TV ラジオ放送) 移動体通信 携帯電話

More information

資料1-5 5GHz帯におけるレーダーの概要

資料1-5 5GHz帯におけるレーダーの概要 RA- 報 -15 030 気象レーダー概要説明 2015 年 12 月 11 日 目次 1. 気象レーダーの原理 2. 気象レーダーの運用 3. 送信装置の固体化技術 4. 固体化気象レーダーの送信諸元 1 1. 気象レーダーの原理 2 気象レーダーの降雨観測 レーダー方程式 気象エコー 送信信号 受信信号 Pt Pr 距離及び大気により送信信号が減衰する 距離及び大気により反射した信号が減衰する

More information

Microsoft Word - VK5KLT_J2.doc

Microsoft Word - VK5KLT_J2.doc An Overview of the Underestimated Magnetic Loop HF Antenna 過小評価されているマグネチック ループ HF アンテナの概要 - その 2 Leigh Turner VK5KLT 訳者 : 小暮裕明 JG1UNE 2013/11/17 この文書は, 執筆者である Leigh Turner 氏の許可を得て翻訳しています. 一部に意訳が含まれますが,

More information

Microsoft Word - H11#300sansyutsu-sokutei.doc

Microsoft Word - H11#300sansyutsu-sokutei.doc 無線設備から発射される電波の強度の算出方法及び測定方法を定める件 ( 平成二十九年九月二十五日時点 最終改正 : 総務省告示第三百八号 ) ( 電波法施行規則第二十一条の三第二項 ) 平成十一年四月二十七日郵政省告示第三百号 電波法施行規則 ( 昭和二十五年電波監理委員会規則第十四号 ) 第二十一条の三第二項の規定に基づき 無線設備から発射される電波の強度の算出方法及び測定方法を次のように定め 平成十一年十月一日から施行する

More information

Microsoft PowerPoint - 電力回路h ppt

Microsoft PowerPoint - 電力回路h ppt 電力回路 対称座標法 平成 年 6 月 日 単位値から実値への変換 単位値は, 実値をベース値で割って得る 実値は, 単位値にベース値を掛けて求まる 電流 ( A) 電流 ( p. u.) ベース電流 ( A) 電圧 ( ) 電圧 ( p. u.) ベース電圧 ( ) インピーダンス( Ω) インピーダンス( p. u.) ベースインピーダンス( Ω) 三相電力回路 三相一回線送電線の回路 回路図

More information

<8AEE B43979D985F F196DA C8E323893FA>

<8AEE B43979D985F F196DA C8E323893FA> 基礎電気理論 4 回目 月 8 日 ( 月 ) 共振回路, 電力教科書 4 ページから 4 ページ 期末試験の日程, 教室 試験日 : 月 4 日 ( 月 ) 時限 教室 :B-4 試験範囲 : 教科書 4ページまでの予定 http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 特別試験 ( 予定 ) 月 5 日 ( 水 ) 学習日 月 6 日 ( 木 )

More information

Microsoft PowerPoint - 第06章振幅変調.pptx

Microsoft PowerPoint - 第06章振幅変調.pptx 通信システムのモデル コミュニケーション工学 A 第 6 章アナログ変調方式 : 振幅変調 変調の種類振幅変調 () 検波出力の信号対雑音電力比 (S/N) 送信機 送信メッセージ ( 例えば音声 ) をアナログまたはディジタル電気信号に変換. 変調 : 通信路で伝送するのに適した周波数帯の信号波形へ変換. 受信機フィルタで邪魔な雑音を除去し, 処理しやすい電圧まで増幅. 復調 : もとの周波数帯の電気信号波形に変換し,

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

Microsoft PowerPoint - machida0206

Microsoft PowerPoint - machida0206 広帯域制御のためのフォトメカニカルアクチュエータの開発とその応用 東京大学新領域創成科学研究科物質系専攻三尾研究室 M2 町田幸介 重力波研究交流会 (2009 2/6) 1 発表の流れ 実験の背景 広帯域制御のためのアクチュエータ 実験の目的 実験 電磁アクチュエータの作製 電磁アクチュエータの評価 電磁アクチュエータの応用 ( 位相雑音補償と共振器長制御 ) まとめ 2 広帯域制御のためのアクチュエータ

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの方程式 : 真空中 () 1. 電磁波 ( 光波 ) の姿 : 真空中. エネルギー密度 3. ポインティング ベクトル 4. 絵解き : ポインティング ベクトル 5. ポインティング ベクトル : 再確認 6. 両者の関係 7. 付録 : ベクトル解析 注意 1. 本付録 : マクスウェルの方程式: 微分型 を使用. マクスウェルの方程式を数学的に取扱います

More information

EMC 設計技術者試験問題例無断転載禁止

EMC 設計技術者試験問題例無断転載禁止 EMC 設計技術者資格練習問題 018 年 4 月 1 日 EMC 設計技術者試験問題例無断転載禁止 EMC 設計技術者試験問題例無断転載禁止 1. 定格静電容量が 1 [μf] の面実装セラミックキャパシタで 内部インダクタンスが 10 [nh] の場合 下記条件のもとで このキャパシタの自己共振周波数に近いのはいずれか 条件 サイズ 1608 [mm] 定格電圧 6.3[Vdc] 印加電圧 3.0[Vdc]

More information

高速デジタル信号に対応するプリント基板の開発

高速デジタル信号に対応するプリント基板の開発 埼玉県産業技術総合センター研究報告第 5 巻 (007) 高速デジタル信号に対応するプリント基板の開発 井沢昌行 * 本多春樹 * 萩原玄 ** Development of printe wiring boar for high spee igital signal. IZAWA Masayuki*, HONDA Haruki*, HAGIWARA Gen**, 抄録 高次の高周波を含む高速なデジタル信号の品質を損なうことなく伝送するプリント配線

More information

電磁気学 IV 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート19 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 12 日 ( 第 1 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 14 日 ( 第 2 回 )

電磁気学 IV 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート19 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 12 日 ( 第 1 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 14 日 ( 第 2 回 ) 電磁気学 IV 08.07.03 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート9 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 日 ( 第 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 4 日 ( 第 回 ) 時間的に変化がない場 静電界 静磁界 定常電流界 6 月 9 日 ( 第 3 回 ) 定常的な場のシミュレーション 6 月

More information

航空無線航行システム (DME) 干渉検討イメージ DME:Distance Measuring Equipment( 距離測定装置 ) 960MHz から 1,215MHz までの周波数の電波を使用し 航空機において 当該航空機から地表の定点までの見通し距離を測定するための設備 SSR:Secon

航空無線航行システム (DME) 干渉検討イメージ DME:Distance Measuring Equipment( 距離測定装置 ) 960MHz から 1,215MHz までの周波数の電波を使用し 航空機において 当該航空機から地表の定点までの見通し距離を測定するための設備 SSR:Secon 資料 81-46-4 航空無線航行システムとの干渉検討結果について中間報告 ( 案 ) 2010 年 10 月 13 日 Copyright 2006 emobile All Rights Reserved. 航空無線航行システム (DME) 干渉検討イメージ DME:Distance Measuring Equipment( 距離測定装置 ) 960MHz から 1,215MHz までの周波数の電波を使用し

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

降圧コンバータIC のスナバ回路 : パワーマネジメント

降圧コンバータIC のスナバ回路 : パワーマネジメント スイッチングレギュレータシリーズ 降圧コンバータ IC では スイッチノードで多くの高周波ノイズが発生します これらの高調波ノイズを除去する手段の一つとしてスナバ回路があります このアプリケーションノートでは RC スナバ回路の設定方法について説明しています RC スナバ回路 スイッチングの 1 サイクルで合計 の損失が抵抗で発生し スイッチングの回数だけ損失が発生するので 発生する損失は となります

More information

.2GHz 帯及び TV ホワイトスペース帯における電波伝搬調査結果 (2) ) 見通し屋外電波伝搬調査 各周波数帯における到達距離およびダイバシティ効果 送受信間の距離や移動による影響を表 に示す場所で確認した 調査した結果 図 2で示すように 800MHz 帯 ホワイトスペース帯.2GHz 帯で

.2GHz 帯及び TV ホワイトスペース帯における電波伝搬調査結果 (2) ) 見通し屋外電波伝搬調査 各周波数帯における到達距離およびダイバシティ効果 送受信間の距離や移動による影響を表 に示す場所で確認した 調査した結果 図 2で示すように 800MHz 帯 ホワイトスペース帯.2GHz 帯で .2GHz 帯及び TV ホワイトスペース帯における電波伝搬調査結果 () 資料 3-3-3 電波伝搬調査結果 現行の800MHz 帯 TVホワイトスペース帯および.2GHz 帯の電波伝搬調査結果より.2GHz 帯で 急峻な落ち込みが認められる ( 図 参照 ) が ダイバーシティー受信効果により800MHz 帯とほぼ同等の伝搬特性が得られた 特定ラジオマイクでは 通常ダイバーシティーが採用されているが

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

軽量かつ小型な金属プレートレンズアンテナの実現とその設計法の開発 代表研究者 須賀良介 青山学院大学理工学部助教 共同研究者 橋本修 青山学院大学理工学部教授 共同研究者 荒木純道 東京工業大学理工学研究科教授 1 はじめに 金属プレートレンズアンテナは低周波数帯においても軽量かつ鋭い指向性を実現で

軽量かつ小型な金属プレートレンズアンテナの実現とその設計法の開発 代表研究者 須賀良介 青山学院大学理工学部助教 共同研究者 橋本修 青山学院大学理工学部教授 共同研究者 荒木純道 東京工業大学理工学研究科教授 1 はじめに 金属プレートレンズアンテナは低周波数帯においても軽量かつ鋭い指向性を実現で 軽量かつ小型な金属プレートレンズアンテナの実現とその設計法の開発 代表研究者 須賀良介 青山学院大学理工学部助教 共同研究者 橋本修 青山学院大学理工学部教授 共同研究者 荒木純道 東京工業大学理工学研究科教授 1 はじめに 金属プレートレンズアンテナは低周波数帯においても軽量かつ鋭い指向性を実現できることで知られている [1]. 図 1 に金属プレートレンズアンテナの構造を示す. 同図に示すように

More information

Microsoft PowerPoint - em01.pptx

Microsoft PowerPoint - em01.pptx No. 基礎 ~ マクスウェルの方程式 ~ t t D H B E d t d d d t d D l H B l E 微分形積分形 電磁気学の知識からマクスウェルの方程式を導く No. ファラデーの法則 V d dt E dl t B d ストークスの定理を使って E d E ファラデー : 近接作用 界の概念を提唱 B t t B d アンペアの法則 I H rh I H dl d r dl V

More information

スライド 1

スライド 1 光通信工学. 復習. ポインティング ベクトル 3. 光強度 4. 強度反射 ( 透過 率 通常のレンズ フレネルレンズ 光通信工学 3- 光波とは : 式で書いた方が分かりやすいかも! 軸 偏光 : 電場 の振動方向偏波面 : 電場 ベクトルと波数ベクトルからなる平面 方向の直線偏光 軸 + 軸 : 磁場の強さ 平面波 & 進行波 : 簡単 便利 偏波面 :-z 平面右ねじ : 電場 (+ 磁場

More information

スライド 1

スライド 1 プリント回路基板の EMC 設計 京都大学大学院工学研究科 松嶋徹 EMC( 電磁的両立性 ): 環境電磁工学 EMC とは? 許容できないような電磁妨害波を, 如何なるものに対しても与えず, かつ, その電磁環境において満足に機能するための, 機器 装置またはシステムの能力 高 Immunity イミュニティ ( 耐性 ) 低 EMI 電磁妨害 EMS 電磁感受性 低 電磁妨害波によって引き起こされる機器

More information

Microsoft Word - 09gun_07hen_02.docx

Microsoft Word - 09gun_07hen_02.docx 9 群 ( 電子材料 デバイス )- 7 編 ( マイクロ波伝送 回路デバイス ) 2 章平面導波路 ( 執筆者 : 橋本修 )[2010 年 7 月受領 ] 概要 マイクロ波集積回路の伝送路として, 平面導波路は極めて重要な技術である. 本章では, 種々の平面導波路の解説している. 解説では, それぞれの導波路について, その構成から原理, そして伝送特性や特徴について示している. 本章の構成 本章は,

More information

Microsoft PowerPoint - 9.Analog.ppt

Microsoft PowerPoint - 9.Analog.ppt 9 章 CMOS アナログ基本回路 1 デジタル情報とアナログ情報 アナログ情報 大きさ デジタル信号アナログ信号 デジタル情報 時間 情報処理システムにおけるアナログ技術 通信 ネットワークの高度化 無線通信, 高速ネットワーク, 光通信 ヒューマンインタフェース高度化 人間の視覚, 聴覚, 感性にせまる 脳型コンピュータの実現 テ シ タルコンヒ ュータと相補的な情報処理 省エネルギーなシステム

More information

AK XK109 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級総合無線通信士第一級海上無線通信士 無線工学の基礎 試験問題 25 問 2 時間 30 分 A 1 図に示すように 電界の強さ E V/m が一様な電界中を電荷 Q C が電界の方向

AK XK109 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級総合無線通信士第一級海上無線通信士 無線工学の基礎 試験問題 25 問 2 時間 30 分 A 1 図に示すように 電界の強さ E V/m が一様な電界中を電荷 Q C が電界の方向 K XK9 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級総合無線通信士第一級海上無線通信士 無線工学の基礎 試験問題 25 問 2 時間 3 分 図に示すように 電界の強さ /m が一様な電界中を電荷 Q が電界の方向に対して θ rd の角度を保って点 から点 まで m 移動した このときの電荷の仕事量 W の大きさを表す式として 正しいものを下の番号から選べ

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

15群(○○○)-8編

15群(○○○)-8編 4 群 ( 通信工学 )-2 編 ( アンテナ 伝搬 ) 5 章平面アンテナ 電子情報通信学会 知識の森 (http://www.ieice-hbkb.org/) ( 執筆者 : 山本学 )[21 年 3 月受領 ] 概要 平面アンテナの代表例として, マイクロストリップアンテナ (Microstrip Antenna) がある. マイクロストリップアンテナは, 誘電体基板と, その両面に印刷配線されたと地導体板を構成要素とする平面アンテナである.

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

Microsoft PowerPoint - 受信機.ppt[読み取り専用]

Microsoft PowerPoint - 受信機.ppt[読み取り専用] 受信機 1. 直線受信機 2. スーパヘテロダイン受信機 受信機 1.AM 受信機 DSB 受信機 SSB 受信機 2.FM 受信機 高周波増幅器 アンテナで受信した希望周波数 f s を増幅する 周波数変換回路 混合器と局部発振器からなり 高周波増幅された信号を中間周波数に変換する 局部発振器 スーパヘテロダイン受信機の局部発信周波数は受信周波数より中間周波数だけ高く ( 低く ) 設定する 混合器

More information

スライド 1

スライド 1 受信システム計算事例集 一般社団法人電子情報技術産業協会 (JEITA) 受信システム事業委員会受信システム調査普及専門委員会 第. 版 202 年 3 月 目次 () 受信アンテナの出力電圧 (dbμ V) の計算 - 電界強度とアンテナ出力レベルの関係 -2 電界強度とアンテナ出力 ( 地上デジタル放送 ) -3 衛星放送 -EIRP とアンテナ出力 コンバータ出力 (45cm) -4 衛星放送

More information

JZ12B 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級陸上特殊無線技士 無線工学 試験問題 24 問 1 次の記述は 静止衛星通信の特徴について述べたものである 内に入れるべき字句の正しい組合せを下の番号から選 べ (1) 衛星と地球局間の距

JZ12B 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級陸上特殊無線技士 無線工学 試験問題 24 問 1 次の記述は 静止衛星通信の特徴について述べたものである 内に入れるべき字句の正しい組合せを下の番号から選 べ (1) 衛星と地球局間の距 JZ12 答案用紙記入上の注意 : 答案用紙のマーク欄には 正答と判断したものを一つだけマークすること 第一級陸上特殊無線技士 無線工学 試験問題 24 問 1 次の記述は 静止衛星通信の特徴について述べたものである 内に入れるべき字句の正しい組合せを下の番号から選 べ (1) 衛星と地球局間の距離が 37,500km の場合 往路及び復路の両方の通信経路が静止衛星を経由する電話回線においては 送話者が送話を行ってからそれに対する受話者からの応答を受け取るまでに

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

愛媛県工業系研究報告 No ネットワークアナライザ (VNA) から発信した電波を誘電体レンズアンテナから測定試料に送信し 試料からの反射波及び 透過波をレンズアンテナで受信した後 反射波 透過波の振幅及び位相量を測定し その値から複素比誘電率 複素比透磁率を求めた 測定系の周波数範

愛媛県工業系研究報告 No ネットワークアナライザ (VNA) から発信した電波を誘電体レンズアンテナから測定試料に送信し 試料からの反射波及び 透過波をレンズアンテナで受信した後 反射波 透過波の振幅及び位相量を測定し その値から複素比誘電率 複素比透磁率を求めた 測定系の周波数範 報文 愛媛県工業系研究報告 No.45 2007 76GHz 帯で吸収特性を有するフェライト系電波吸収体の開発 * 倉橋真司加藤秀教堀内健太郎 * 西内正樹 ** 末永慎一 ** 窪田賢 The development research of the ferrite type radio absorptive material which has an absorption characteristic

More information

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q 電磁気の公式の解説 更新日 :2017 年 5 月 11 日 A 電気量電荷と電気量は何が違うのだろうか? 簡単に言うと 電気を帯びたものを電荷といい その電荷の大きさを数字で表すものが電気量である 電荷と電気量の本来の意味は少し違うが 実際には同じ意味で使われることが多い 電気量は次のように決められる ファラデー定数 9.65 10 4 (C /mol ) より電子 6.02 10 23 個が電気量

More information

諮問第 3 号 国際無線障害特別委員会(CISPR) の諸規格について のうち 無線周波妨害波およびイミュニティ測定法の技術的条件

諮問第 3 号 国際無線障害特別委員会(CISPR) の諸規格について のうち 無線周波妨害波およびイミュニティ測定法の技術的条件 諮問第 3 号 国際無線障害特別委員会(CISPR) の諸規格について のうち 無線周波妨害波およびイミュニティ測定法の技術的条件 T m T s T o T m T o T m T tot T tot T m T s T s T m Δf T s min 2 Ts min = ( k Δf ) /( Bres ) T s min Δf B res k T = ( k Δf ) /(

More information

Microsoft PowerPoint - H22パワエレ第3回.ppt

Microsoft PowerPoint - H22パワエレ第3回.ppt パワーエレトクロニクス ( 舟木担当分 ) 第三回サイリスタ位相制御回路逆変換動作 平成 年 月 日月曜日 限目 誘導負荷 位相制御単相全波整流回路 導通期間 ( 点弧角, 消弧角 β) ~β( 正の半波について ) ~ β( 負の半波について ) β> となる時に連続導通となる» この時, 正の半波の導通期間は~» ダイオードでは常に連続導通 連続導通と不連続導通の境界を求める オン状態の微分方程式

More information

スライド タイトルなし

スライド タイトルなし アンテナ狭小化に伴う方位分解能劣化 の改善と東京湾での評価結果 - 民需等の利活用拡大を目指して - 直線 4 アレイ ( 八木 ) 菱形 4 アレイ ( ダイポール ) 伊藤浩之, 千葉修, 小海尊宏, 大西喬之 *1 山田寛喜 *2 長野日本無線 ( 株 ) *1 新潟大学 *2 08 年 12 月 17 日 08 年海洋レーダ研究集会 No.1 目次 1. はじめに : 海洋レーダの課題 2.

More information

Microsoft PowerPoint - 弾性波動デバイス4

Microsoft PowerPoint - 弾性波動デバイス4 平成 年 4 月 3 日版 弾性波動デバイス Part 4: 次元伝搬 千葉大学大学院工学研究科人工システム科学専攻電気電子系コース 橋本研也 1 内容 次元の波動伝搬 導波モード スカラポテンシャル法解析 横モードの抑圧 回折現象 W (a) (b) (a) Fresnel 領域 ( ビーム状伝搬 ) (b) Fraunhofer 領域 ( 円筒波状伝搬 ) x c 臨界距離 :x c =(1+γ)W

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 電場と電位 00 年度本試験物理 IB 第 5 問 A A 図 のように,x 軸上の原点に電気量 Q の正の点電荷を, また, x d Q の位置に電気量の正の点電荷を固定した 問 図 の x 軸を含む平面内の等電位線はどのようになるか 最も適当なものを, 次の~のうちから一つ選べ ただし, 図中の左の黒丸 Q は電気量 Q の点電荷の位置を示し, 右の黒丸は電気量の点電荷の 位置を示す 電場と電位

More information

IEC シリーズ イミュニティ試験規格の概要

IEC シリーズ イミュニティ試験規格の概要 IEC 61000-4 e 2018 7 23 1 2 2 2 2.1.............. 2 2.2.................. 2 3 IEC 61000-4-2 ( ) 3 3.1...................... 3 3.2..................... 3 3.2.1 ESD........... 3 3.2.2 ESD.............. 3

More information

15群(○○○)-8編

15群(○○○)-8編 4 群 ( モバイル 無線 )- 1 編 ( 無線通信基礎 ) 2 章無線伝搬路 概要 無線通信では送受信間の伝送には電波を用いるが, 電波の伝送路は特に用意されているわけではない. これに対して, 有線の場合では同軸ケーブルや光ファイバケーブルといった最適に設計された伝送路が用いられる. 無線通信では伝送路を自前で用意するわけではないので, 自然界に形成される伝搬路の特性をよく理解してそれを最大限に活用する技術が要求される.

More information

DVIOUT-J-te

DVIOUT-J-te 情報通信システム実験第一 / 第二電子情報システム実験第一 / 第二情報通信工学実験 AB Ver. 5.4 (2017 年 9 月 ) 目次 はじめに... 2 1. 基礎事項... 4 1.1 分布定数回路における基礎方程式とその解 4 1.2 反射係数とインピーダンス整合 6 1.3 定在波 7 1.4 自由空間中の電磁波の伝搬 8 1.5 導波管中の電磁波の伝搬 10 1.6 スミス図 (Smith

More information

地下街等電波遮蔽空間における地上放送の普及の在り方に関する調査研究会 資料 資料 4 地下街 地下鉄における地上放送再送信の技術的手法と課題 平成 17 年 6 月 27 日 株式会社 NHK アイテック

地下街等電波遮蔽空間における地上放送の普及の在り方に関する調査研究会 資料 資料 4 地下街 地下鉄における地上放送再送信の技術的手法と課題 平成 17 年 6 月 27 日 株式会社 NHK アイテック 地下街等電波遮蔽空間における地上放送の普及の在り方に関する調査研究会 資料 資料 4 地下街 地下鉄における地上放送再送信の技術的手法と課題 平成 17 年 6 月 27 日 株式会社 NHK アイテック 1. 地下街等における地上放送の再送信の概要 [ 地下街等での再送信の意義など ] 地下街 地下鉄などでは 放送電波が到来しないため移動受信のネックとなっているが 携帯ラジオやFM 受信機能付の携帯電話などの普及に伴い

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

高校卒程度技術 ( 電気 ) 専門試験問題 問 1 次の各問いに答えなさい なお 解答欄に計算式を記入し解答すること 円周率 π は 3.14 で計算すること (1)40[Ω] の抵抗に 5[A] の電流を流した時の電圧 [V] を求めなさい (2) 下の回路図においてa-b 間の合成抵抗 [Ω]

高校卒程度技術 ( 電気 ) 専門試験問題 問 1 次の各問いに答えなさい なお 解答欄に計算式を記入し解答すること 円周率 π は 3.14 で計算すること (1)40[Ω] の抵抗に 5[A] の電流を流した時の電圧 [V] を求めなさい (2) 下の回路図においてa-b 間の合成抵抗 [Ω] 高校卒程度技術 ( 電気 ) 専門試験問題 問 1 次の各問いに答えなさい なお 解答欄に計算式を記入し解答すること 円周率 π は 3.14 で計算すること (1)40[Ω] の抵抗に 5[A] の電流を流した時の電圧 [V] を求めなさい (2) 下の回路図においてa-b 間の合成抵抗 [Ω] を求めなさい 40[Ω] 26[Ω] a b 60[Ω] (3) ある電線の直径を 3 倍にし 長さを

More information

~.15) Nylon12 樹脂 ( 比誘電率 2.1 等組成により異なる 誘電正接.3 等 ) ポリプロピレン樹脂 ( 比誘電率 2.2~2.6 誘電正接.5~.18) ポリカーボネート樹脂 ( 比誘電率 3.1 誘電正接.1) などがある これらのうち 高周波特性に影響する誘電正接が比較的低い材

~.15) Nylon12 樹脂 ( 比誘電率 2.1 等組成により異なる 誘電正接.3 等 ) ポリプロピレン樹脂 ( 比誘電率 2.2~2.6 誘電正接.5~.18) ポリカーボネート樹脂 ( 比誘電率 3.1 誘電正接.1) などがある これらのうち 高周波特性に影響する誘電正接が比較的低い材 アナログ ディジタル融合制御 MIMO に適したアナログビームフォーミング給電回路の研究 研究代表者関智弘日本大学生産工学部教授 1 まえがき 移動通信の高速化に向けた検討として MassiveMIMO 技術の適用が進められている MassiveMIMO 技術を適用する場合 MIMO に関わるすべての処理をディジタル制御により行うとすると 莫大な重み付け演算処理が必要となる そこで レーダー等に用いられるマルチビーム給電回路を用い

More information

特集_02.Q3C

特集_02.Q3C 2 Use of Electromagnetic Energy and Resultant Noises SUGIURA Akira Recently, the advent of RF-ID systems and PLC systems have raised a new problem of electromagnetic interference (EMI) between newly developed

More information

回転楕円鏡を用いた高感度放射電力測定技術の研究開発 平成 23 年 11 月 30 日アンリツ株式会社

回転楕円鏡を用いた高感度放射電力測定技術の研究開発 平成 23 年 11 月 30 日アンリツ株式会社 回転楕円鏡を用いた高感度放射電力測定技術の研究開発 平成 23 年 11 月 30 日アンリツ株式会社 背景 ユビキタス社会の到来を迎え 携帯電話機や無線 LAN に加え RFID や UWB などの小型無線機器の爆発的増大が予測されている これらの機器の多くは測定用の端子を有しないものが多く 既存の方法で測定を行うことは困難であり 新たな放射測定法の確立が求められている 従来の携帯機 これからの無線機

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

2. 測定対象物 ( 単層ソレノイド コイル ) 線径 mm の PEW 線を 50mmφ の塩ビパイプに 0 回スペース巻きしてコイルを作製しま した Fig. Single layer coil under test 計算によると (

2. 測定対象物 ( 単層ソレノイド コイル ) 線径 mm の PEW 線を 50mmφ の塩ビパイプに 0 回スペース巻きしてコイルを作製しま した Fig. Single layer coil under test 計算によると ( アンテナアナライザ (AA-30) を用いたコイルの Q 測定 Koji Takei (JGPLD), Oct. 3, 204. はじめに RigExpert 社のアンテナアナライザ (AA-シリーズ) は 50Ω のリターンロスブリッジにより測定対象物の基準波に対する振幅と位相を検出し これから複素インピーダンスや VSWR を算出しています しかも設定した範囲を周波数スキャンしてくれるので短時間で有用な測定が完了する優れものです

More information

問 の標準解答 () 遮へい失敗事故 : 雷が電力線を直撃してアークホーンにフラッシオーバが発生する 逆フラッシオーバ事故 : 架空地線あるいは鉄塔への雷撃によって架空地線あるいは鉄塔の電位が上昇し, 架空地線と導体間, 又はアークホーンにフラッシオーバが発生する () 架空地線の弛度を電力線のそれ

問 の標準解答 () 遮へい失敗事故 : 雷が電力線を直撃してアークホーンにフラッシオーバが発生する 逆フラッシオーバ事故 : 架空地線あるいは鉄塔への雷撃によって架空地線あるいは鉄塔の電位が上昇し, 架空地線と導体間, 又はアークホーンにフラッシオーバが発生する () 架空地線の弛度を電力線のそれ 平成 4 年度第二種電気主任技術者二次試験標準解答 配点 : 一題当たり 3 点 電力 管理科目 4 題 3 点 = 点 機械 制御科目 題 3 点 = 6 点 < 電力 管理科目 > 問 の標準解答 () 電動機出力 ( ポンプ入力 )= 電動機入力 電動機効率なので, A P M = P Mi h M B 又はC P Mi = M f M D 又はE P G = G f G 3 () G M なので,

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information