飲料水の入った缶が斜めに立つ安定解析

Size: px
Start display at page:

Download "飲料水の入った缶が斜めに立つ安定解析"

Transcription

1 195 飲料水の入った缶が斜めに立つ安定解析 * 防衛大学校機械工学科 五十嵐 保 防衛大学校機械工学科 中村 元 清涼飲料水等の缶は適量の飲料水があれば傾き角 6 ~5 で斜めに立つ. 缶底部の外周に深い絞りがあり, 点支持となりバランスする. なお, 缶が満タンでも空でも缶は倒れる. 本報告では, この缶が斜めに立つ安定解析を行った. 缶の形状は複雑なので, 簡単な形状の有限長円筒にモデル化した. 缶の直径 d, 高さhと重さmおよび缶の重心高さh と傾斜角 φを与えた. 缶が斜めに立つための条件式と飲料水の最小容積 V min および最大容積 V max を解析より求め, 上述の変数で記述した. 各種缶の解析結果は実験値とよく一致した. A Stable Analysis f a Standing Slanting Can Cntaining Drink Tamtsu IARASHI and Hajime NAKAMURA Department f Mechanical Engineering, Natinal Defense Academy (Received Nvember, ; in revised frm 8 January, 5) A can f refreshing drink which cntains a certain amunt f drink stands at an inclined angle f 6 t 5 n a hrizntal table, because the can has deep draw int a cylinder with bttm and thus has tw supprting pints. The can fell dwn n the flr when it is either filled up r empty. In this paper, a stable analysis was carried ut n a can which cntained the same amunt f drink which stands slanting n a hrizntal flr. The actual shape f the can is cmplex, s the can is mdeled t a simple shape f a finite circular cylinder. The diameter d, height h and weight m f a can are given and the inclined angle φ and the height f the center f gravity f the can h are als given. The cnditinal equatin f the slanting standing f the can and the minimum and maximum amunt f drink, V min and V max are btained, these are described by the abve variables. The results f the analysis fr varius can agree well with thse f experimental values. (KEY WORDS): Hydrstatics, Stability, Balancing, Can Drink, Center f ravity, 1 まえがき近年, テレビ 1) で 秘密の缶ジュース と題してジュース缶が傾いて立つことが紹介された. 実際, 図 1 に示すように缶はテーブル上に斜めに立つ. 清涼飲料水, ジュース, ビール等の缶は底部の外周部に絞りがあり 点支持となり, 適量の飲 * 横須賀市走水 tigarash@nda.ac.jp 料水によって傾き角 φ = 6 ~5 でバランスする. なお, 缶が満タンでも空でも斜めには立たない. これは図 1 のように重心 が支点の右側にあり缶は倒れるからである. 缶の高さは標準サイズ缶の他にショート缶とロング缶がある. 標準缶とショート缶は斜めに立つが, 多くのロング缶は斜めに立たない. また, 缶材料にはスチールとアルミがある. 最近, 中 高校生の理科離れが進み理工系大学でも高校で物理を履修していない学生がかなりの

2 196 率を占めている. 著者の一人は, その対策として講義の中に身近で簡単な実験を取り入れて学生の興味と勉学意欲を引き出すよう努めてきた. 例えば, 衝突噴流による円盤の浮上を扱った 上壁のある円形衝突噴流により浮上する円盤に働く揚力 -), 静水に浮く角材の姿勢 5), さらには 水流に引き上げられる卵, ゴルフボールおよび球まわりの流れに関する研究 6) などは, その一例である. 上述の缶内の飲料水の適量は実験により簡単に求めることができる. しかし, この水の適量を解析から求めるのは容易でない. この問題は教材としても格好のテーマである. 数学や物理の素養, すなわち三角関数, 微分積分や重心, モーメント等の重要な項目に関する基礎学力が要求される. 缶は三次元形状で斜めに立っているため, 複雑な系を簡単化するモデル化と座標原点の取り方が鍵となる. 本報告では, 缶のモデル化を行いサイズと傾斜角および質量と重心位置を一般的記号で与えた. 缶が斜めに立つための条件と飲料水の最小および最大容積を解析から求めた. 市販の各種缶に対する解析結果を実験値と比較し, 両者がよく一致することを確認した. x, z : 水平方向および鉛直方向の座標 y : x, z 面と直角方向の座標 W : 飲料水 ( 水 ) の入った缶の総質量 = m + ρv β : 無次元喫水距離 = b/() φ : 缶の傾斜角 θ : 缶底面の換算角度 x = () cs θ θ : 喫水線 b の換算角度 b = ()(1 + csθ ) ρ : 飲料水 ( 水 ) の密度添え字 can : 缶 K, L, M, N: 缶底部の支点 缶のサイズと缶が斜めに立つ実験.1 缶の形状とサイズ標準缶, ショート缶およびロング缶を図 に示す. 図 (a) に缶を直径方向にカットした断面図を示す. 缶は上部が絞られていて, 底部は絞りがあり上げ底となっている. 底部の支点となる位置をK, LおよびM, Nとする. 缶のサイズ, すなわち, 缶円筒部の外径 d ( 65.9 mm), 内径 d, 肉厚 t, 缶の高さHとする. アルミ缶の肉厚は.1 mm, 記 号 a, b : 缶の直径方向断面の底面から喫水線までの距離 d, d : 缶円筒部の内径と外径 d = d t : 缶内の飲料水の重心 can : 缶の重心,x-z 座標では (, h ) 1, : 領域 Ⅰ, Ⅱの飲料水の重心 H, h : 缶の高さ, モデル化された缶の高さ h : モデル化された缶の底面の支点 K, Nからの重心高さ m, M : 缶の質量, 無次元質量 = m/ ρπ( d /) M x, M y : x 軸, y 軸に関する全モーメント ΔM x, ΔM y :x 軸, y 軸に関する微小モーメント t : 缶の円筒部の肉厚 V 1, V : 缶内の飲料水の領域 Ⅰ, Ⅱの容積 V : 缶内の飲料水の容積 = V 1 +V V min, V max : 水の最小容積および最大容積 X, Z : 重心のx, z 座標 図 1 Standing slanting can cntaining drink standard shrt lng 図 Can with varius size

3 197 スチール缶は.11 mmである. 缶が斜めに立つ場合の外側の支点 K (N) から上部までの距離をモデル化された缶の高さh, 缶を鉛直においた場合の支点 K, Nからの重心高さをh とする. まず, 用意した各種缶のサイズを測定した.. 缶の質量と重心および傾斜角空き缶の質量 mは電磁式はかりで測定した. 標準サイズのスチール缶 ( なっちゃんとウーロン茶 ) はアルミ缶より約 1.8 倍重たい. 重心高さh は図 (b) に示すように空の缶をスケヤ (Square, けがき工具の一種で職人はスコヤという ) の上に横にして乗せてバランスした位置を重心 can とした. can のx-z 座標は (, h ) である. 傾斜缶の傾き角 φ は手製の分度器と写真から測定した. 両者は.5 以内で一致した. 傾斜角 φは6 から5 の範囲である. 缶の質量はメーカーにより1% 弱の差異があるが, 重心位置の差異は少ない. 以上の計測結果を表 1 に示す.. 実験清涼飲料水の代わりに水を用いて最小容積 V min と最大容積 V max に対する缶の重さmを含んだ総質量 W = m + ρvも電磁式はかりで測定した. 最小容積 V min を求める実験手順は次の通りである 1 適当な量の水を缶に入れて斜めに立たせる 次に水を徐々に抜き, 缶が倒れるまで行う 今度はストローを用いて水を数滴ずつ加えて缶が斜め (a) (b) 図 An axial sectinal view f a can and a can pised n the square 表 1 Diameter, height, weight, center f gravity and the inclined angle f a can d mm Type trade name inner diameter height H mm simulatin height h mm center f gravity h mm weight m g inclined angle φ Shrt Trpicana Kyhu-syu Pcari Sweat Cider Super ent kunama Standard Cca Cla Calpis Water Autumn Brew Brau Natchan Suntry Olng Kirin Ichiban Lng Cca Cla hyketsu

4 198 に立つまで繰り返す 最大容積 V max を求める場合 は次の通りである 1 適当な量の水を缶に入れて斜めに立たせる 次に管内に水を徐々に加え, 缶が倒れるまで行う 最後にストローを用いて缶内の水を数滴抜き取り, 缶が斜めに立つまで繰り返す ショート缶および標準缶は傾き角 φ 6 で斜めに立つ. 傾き角 φ が大きいほど水の容積 V min は小さく,V max は大きい. 傾斜角 φ =8 のロング缶は斜めに立った. 傾き角 φ が缶が斜めに立つ主支配因子である. 各種缶に対する総質量 W min および W max は 章の解析結果と共に後述の表 に示す. CaseⅠ (K) (a) (N) (b) 解析.1 モデル化解析を容易にするため, 缶の形状を簡略化するモデル化を行う. 前章の図 (a), (b) に示した缶の上部の絞り部とタブ (pull tab) は無視し, 底部の絞り部のコーナー KNより下の KLQと NMPの和と上げ底部分の円弧部 PQに相当する体積が互いに打ち消し合うとし, 底部の絞り部も無視する. 缶は円筒容器で近似する. 缶の内径 d = d t を代 表直径とし, 質量 mおよび重心高さh を与える. 傾斜缶の水の最小容積 (CaseⅠ) および最大容積 (CaseⅡ) を与える場合の水面 HH', 座標系と記号を図, 5 に示す. 図 の最小容積の場合, 水面 HH' がコーナー Kより下である. 解析を容易にするため, 缶は図 (b) に示すように鉛直に置く. 座標軸 x,zの原点を缶底部の中心にとる. 喫水位置 a, b(a > b) とする. 缶の傾き角 φ であるから水面 HH' と缶の側壁との交差角も φ である. ここで, x-y 面を図 (c) に示すように半径 の円座標で表示する. 図 5(a) の最大容積の場合, 水面 HH' がコーナー Kより上である. 図 5 (b) のように缶は鉛直に置き, 座標軸 x,zの原点を缶底部の中心にとる. 喫水位置 a, b(a > b) とする. 水の容積を領域 Ⅰ,Ⅱに分ける. 領域 Ⅰは円筒, 領域 Ⅱは図 (b) でb = の場合に相当する. 解析では前者の結果が利用できる.. 水の最小容積の解析..1 水の容積図 (b), (c) に示した水の最小容積を解析する. (K) (c) 図 Mdeling, crdinate system and symbls fr the minimum vlume f drink CaseⅡ (N) 図 5 Mdeling, crdinate system and symbls fr the maximum vlume f drink このときa, b, d, φの間には次の関係がある. tanφ = ( d b) / a (1) 任意位置 x における水面の高さ z は次式で与えられる. z = { a/( d b)}{ + b)} = ct φ{ x ( + b)} () まず, 位置 xにおいて微小幅 Δxで y 方向にスライスする. y 方向の幅は d[ 1 { ].5 となるから, この微小部分の水の容積 ΔVは次式で与えられる. V = ct φ{ + b)} d[1 { ].5 x ()

5 199 缶の中の水の容積 V は次式で与えられる. + b.5 V = ct φ { x+ ( b)} d[1 { ] dx () ここで, 変数変換 x = () cs θ を行う. ただし, θ は x 軸から反時計方向の角度である. 積分範囲 の上限は x = のとき θ =, 下限は x = +b のとき θ = θ とする.θ は次式で与えられる. d / + b = ( ) cs θ (5) また, dx = () sin θ dθ より式 () は次のように変 形される. V = ( ) ct φ (cs θ cs θ) sin θ dθ θ V/( ) ct φ = cs θ = cs θ θ θ = cs θ [ θ (1/) sin θ] sin θ dθ θ (1/)[sin θ (1/) sin θ] V /( ) ct φ = A θ θ sin θ sin θ dθ θ (1 cs θ) dθ (1/) (cs θ cs θ) dθ = θ cs θ + sin θ (1/) sin θ (6).. 水の重心 水の重心 W (X W, Z W ) を求める. まず X W を求める. x 方向の微小要素 Δx の y 軸に関する微小モーメン ト ΔM y は式 () の右辺に ρx をかける. My = ρx ct φ{ + b)} d [1 { ] dm = ρx ct φ{ + b)} d [1 { ] y y 軸に作用する全モーメント M y は次式となる. M = ρct φ y + b.5.5 x{ x + ( b)} d [1 { ] 前節と同様に上式を整理し, 次式を得る. M / ρ( ) ct φ = y θ cs θ (cs θ = (1/) cs θ [sinθ (1/) sinθ] θ ( 1/)[ θ (1/) sin θ] θ x dx.5 dx (7) cs θ) sin θ dθ (8) M y / ρ( ) ct φ = B = 1/){ θ (/) sin θ (1/) sin θ } (9) ( 重心の x 座標 X W はモーメント M y と M y = ρvx W の 関係があり, 式 (6), (9) を代入して求まる. Xw (1/){ θ (/) sin θ (1/1) sin θ} B = = θ θ + θ θ A cs sin (1/) sin (1) 次にZ W を求める.X W と同様に微小部分の x 軸に関する微小モーメントΔM x は式 () の右辺に ρ(z/) をかけて, 次式で与えられる. M x = ρ( z/) ct φ{ + b)} d [1 { ) ].5 x 上式の zの項に式 () を代入して次式を得る..5 dmx =ρ(1/) ct φ{ + b)} d [1 { ) ] dx 全モーメントM x は次式となる. x M / ρct φ = (1/) { x + b + ( b)}.5 d [1 { ] dx (11) 変数変換 x = () cs θ を行い上式を整理する. x = cs θ M / ρ( ) ct θ φ = sin (cs θ cs θ) sin θ θ dθ cs θ + θ θ θ θ cs sin d θ θ θ θ dθ cs θ sin = (1/)cs [θ sin θ] (1/) cs θ [sin θ (1/) sin θ] + (1/8)[ θ (1/) sin θ] M / ρ( ) x ct = (1/8){( + cs θ φ = C ) θ θ θ θ dθ 1/1) sin θ (7/) sin θ } (1) ( 重心の z 座標 Z W はモーメント M x と M x = ρvz W の 関係があり, 式 (6), (1) を代入して求まる. Zw = ct φ[(1/8){( + cs θ (1/1) sin θ /{ θ (7/) sin θ cs θ ) θ + sin θ }] (1/) sin C φ = ct (1) A.. 系の重心と缶の平衡条件 空き缶の質量 m (g), 重心 can (, h ) とする. θ }

6 水の質量 ρvは式 (6), 重心 W (X W,Z W ) の座標 X W, Z W は式 (1), (1) で与えられる. 系の重心 (X,Z ) は次の関係にある. X = X W (ρv)/(m+ρv) = X W /{(m/ρv) + 1} X /() = {X W /(/{(m/ρv) + 1} (1-1) Z = {m h + Z W (ρv)}/(m + ρv) = {(h )(m/ρv) + Z W }/{(m/ρv) + 1} Z /() = {(h /d)(m/ρv) + Z W /(/{(m/ρv) + 1} (1-) 次に, 水の入った缶が斜めに立つための平衡条件を求める. 水線面 HH' の傾きは式 (1) より φ である. 図 6 に示すように KN = φ' とすると, 直線 N の傾きは次式で与えられる. Z / ( X ) = tan φ Z ( ) = tan φ {1 X /( / φ ' > φ のとき系の重心 は支点 Nの右側になり缶は倒れる. Z / ( ) > tan φ {1 X /( : (falling) (15) 缶が斜めに立たない場合, b =, すなわちθ = π のとき上式が成り立つ. 式 (7),(1),(1) よりV = π () ct φ, X W /() =.5, Z W /() = (5/8)ct φ となる. これを式 (1-1), (1-), (1) および式 (15) に代入, 整理する. { ( h / d) tan φ} M > (/) tan φ (5/8) ct φ : (falling) (16) M = m/ ρπ ( ) ct φ (17) φ' = φ のとき, 系の重心 (X, Z ) と支点 N (, ) を結ぶ鉛直線 Nが水線面 HH' と直交し, 重心 は支点 Nの鉛直線上にある. このとき, 缶は斜めに立ち水の最小容積を与える. またφ' < φ のとき, 重心 は支点 Nの左側である. 缶はつの支点 MNに支えられ倒れない. 喫水位置はb = ~, すなわちθ = π ~ の間にある. 結局, 次式が成り立つとき, 缶は斜めに立つ. Z /() tan φ {1 X /( : (standing) (18) 式 (6) より, 系の重心 (X, Z ) を式 (1-1), (1-) より求める. これが平衡条件式 (18) を満たすかを判断すればよい. 次の図式解法が有効である. 与えられた缶に対し角度 θ =9 ~18 の範囲の適当な θ に対し, 得られたX, Z を関係を図 7(a) ~ (d) のようにX /() - Z /() の座標にプロットする. (a) 図 6 Crrelatin between the center f gravity and its equilibrium state f the can (b).. 図式解法以上の解析より得られた関係式は, 水線面の位置 b に対応する変換変数 θ を含んだ複雑な関数である. 直接水の最小容積 V min を求めることは難しい. そこで, あらかじめ θ を与える. 容積 Vを (c) (d) 図 7 Crrelatin between the reduced angle θ f the water line at the minimum weight f the standing slanting can cntaining drink and the center f gravity f the can; Z /() = tan φ {1 X /(

7 1 このプロット点が図中の直線の下側であれば式 (18) を満足する. 図 7(a) は傾き角 φ = 7,8 のショート缶とロング缶の場合で, 求める換算角度 θ はショート缶のθ =98 に対し, ロング缶はθ =168 と大きい. 図 7 (b) はφ = 7 の標準サイズの場合でアルミ缶のθ =1 に対し, スチール缶は θ =16 と大きい. 図 7 (c),(d) はφ = 5,5 の標準缶の場合で, 傾き角 φが大きいと換算角度 θ は小さくなる. 換算角度 θ が確定すれば, 式 (6) より水の最小容積 V min が求まり, 水を含んだ缶の最小重さW min が次式で与えられる. W min = m + ρv min (19). 水の最大容積の解析..1 水の容積と重心図 5 に示した水の最大容積を解析する. この系を次のつ, 1 空き缶, 底から高さ b の円筒形の領域 Ⅰの水, 蹄形の領域 Ⅱの水に分割する. 領域 Ⅱは前節の最小容積で扱った蹄形の角度 θ = π の結果が利用できる. このとき, a, b, d, φ の間には次の関係がある. a b = d/ tan φ = dct φ () 1 空き缶の質量 m (g), 重心の座標 can (, h ) は既知である. 領域 Ⅰの水の容積 V 1 (ml), 重心 1 (X 1, Z 1 ) は次式で与えられる. V = π ( b, X 1 =, Z 1 = b/ (1) 1 ) 領域 Ⅱの水の容積 V (ml) は前節の水の容積 V の式 (7) に角度 θ = π を代入して求められる. V = π ( ) ct φ () 水の全容積 V (= V 1 + V ) は次式で与えられる. V = π ( ) { b/( ) + ct φ} = π ( d /) ( β + ct φ) () 領域 Ⅱの水の重心 (x, z ) は, 前節の式 (11), (15) の重心 W (X W,Z W ) に角度 θ = π を代入して得られる. X /() = 1/, Z /() = (5/8) ct φ + b/() ().. 系の重心次に, 系の重心 ( X, Z ) を求める.x 方向に関し, 空き缶および領域 Ⅰの水の重心は x 軸上に あるから両者のモーメントはゼロである. 重心の x 座標 X は次式で与えられる. X (m/ρ + V) = X V (ρ = 1) (5) 上式のV およびV, X に式 (), (), () を代入し, X が求まる. X { m/ ρ + π( ) X ( β + ct φ)} = ( π/)( ) ( π/)( ) ct φ /( ) = m/ ρ + π( ) ( β + ct φ) ct φ X /( ) = 1/( M + 1+ β tanφ) (6) 次に重心の z 座標 Z を求める. Z (m/ρ + V) = h (m/ρ) + Z 1 V 1 + (b + Z )V (7) 上式のV, V 1, Z 1 およびV, Z に式 (), (1) および式 (), () を代入し, Z が求まる. Z { m/ ρ + π ( ) = h ( β + ct φ) ( m/ ρ) + ( b/) π ( ) b + { b + (5/8)( ) ct φ} π ( ) ct φ ここで, M, β を用いて上式を簡略化する. Z /( ) ( h = / d) M + (1/) β tan φ + β + (5/8) ct φ (8) M + 1+ β tan φ.. 平衡条件と水の最大容積図 5 に示したように系の重心 と支点 Nを結ぶ直線 Nが水線面 HH' と直交しなければならない. ct φ{ Z /( X )} = 1 Z ( ) = {1 X /( tan φ (9) / 上式に式 (6), (8) で与えられるX, Z を代入し, 整理する. {( h ( h / d) M + (1/) β tan φ + β + (5/8) ct φ} ( M + 1+ β tan φ) = {1 (1/)( M + 1+ β tan φ)} tan φ = M + / + β tan φ / d) M ct φ + (1/) β + β ct φ + (5/8) ct φ β (tan φ ct φ) β + M{( h / d) ct φ 1} + (5/) ct φ / = () 上式は無次元喫水線 β = b/() に対する 次方程式で, 解 (β > ) の存在条件は次式である. E = (tan φ ct φ) + / (5/) ct M {( h / d) ct φ 1} (1) φ

8 逆に式 (1) が成立たない E < の場合は缶は倒 れる. 式 (1) が成立てば, β は次式となる. 1/ β = (tan φ ct φ) + E () 結局, 水の最大容積 V max は式 () に上式を代入し て求められる. 1/ V = π ( ) ( tan φ + E ) () max 水を含んだ缶の最大総質量 W max = (m + ρv max ) は 次式で与えられる. W = ρπ ( ) ct φ ( M + 1+ β tan φ) () max. 解析結果と実験との比較..1 ショート缶と標準缶 ショート缶と標準缶は傾き角 φ が 6 以上, 重 心高さ h /d が低く, 缶の無次元質量 M = m/ρπ () ct φ も小さい. すべての缶は斜めに立 つ条件式 (18), (1) を満たしている. 水を含んだ缶 の最小総質量および最大総質量の解析結果 W min = m + ρv min および W max = m + ρv max と実験結果を表 に示す... ロング缶 第 1 章で 多くのロング缶が斜めに立たないと 述べた. 実際にロング缶が斜めに立つ条件式 (18) を満たしているかを確認する. 解析から傾き角 φ = 6 のキリン一番搾りと φ = 7 のコカコーラ は条件式 (18) を満足せず, 式 (1) の E < となり缶 は斜めに立たない. 傾き角が φ = 8 と大きい氷 結は条件式 (18) と式 (1) の E を満たし斜めに 立つ. 実際, 前述の実験とも一致している. この結果は表 に示した... 解析結果と実験値との比較上述の解析結果と実験値との比較を図 8 に示す. 複雑な缶の形状を円筒に単純化したが, 解析結果と実験値との誤差は ±1% 以内である. 実際の実験おいて, 床面の平滑度や実験者の手先の器用さ等により実験値に1% 程度の差異が現れる. 本解析結果は実験値をよく予測している. 結論 清涼飲料水等の缶は適量の飲料水が入っていれ [W min ]exp, [W max ]exp ( g ) 表 Minimum and maximum wight f the standing slanting can cntaining drink btained by a stable analysis and experiments. type shrt 1 6 Min minimum weight (g) Trpicana Kyhu-syu Hyuketsu Max Pcari Sweat Cider Super ent kunama Cca Cla Calpis Water Autumn Brew Brau Natchan Suntry Olng [W min ]cal, [W max ]cal ( g ) maximum weight (g) trade name [W min ] cal [W min ] exp [W max ] cal [W max ] exp Trpicana Kyhu-syu Pcari Sweat Cider Super ent kunama Cca Cla standard Calpis Water lng Autumn Brew Brau Natchan Suntry Olng Kirin Ichiban Cca Cla Hyketsu 図 8 Cmparisn f the minimum and maximum weight f the standing slanting can cntaining drink btained by a stable analysis with experiments. ば斜めに立つ. この缶の安定解析を行った. 得られた主要結果は次の通りである.

9 (1) 缶は底部外周の絞り部が支点となる. 缶の 形状は有限長円筒にモデル化でき, 缶の直径 d と質量 m および缶の重心高さ h と傾斜角 φ を 与える. () 喫水線が底部のコーナー K 以下で缶が斜 めに立つ条件は次式で与えられる. { ( / d) tan φ} M (/) tan φ (5/8) ct φ h ただし, M = m/ ρπ ( ) ct φ () 水を含んだ缶の最小総質量 W min = (m+ρv min ) は, 式 (1-1), (1-) で与えられる系の重 心 (X, Z ) が次式を満足するときである. Z /( ) = tan φ {1 X /( なお, 式 (1-1), (1-) に含まれる水の重心 W (X W, Z W ) は式 (1), (1) で与えられる. 式 (1), (1) は底 部の喫水線の換算角度 θ の関数である. この角度 θ を図式解法により確定すれば, 式 (6) より V min が求まる. () 喫水線が底部のコーナー K を越えて缶が 斜めに立つ条件は次式で与えられる. E = (tan φ ct φ) + / (5/) ct φ M{( h / d) ct φ 1} (5) 水を含んだ缶の最大総質量 W max は次式で与えられる. W max ただし, = ρπ ( ) ct φ ( M + 1+ β tan φ) β = (tan φ ct φ) + E (6) 各種缶が斜めに立つ最小および最大総質量 1/ の解析結果は実験値と誤差 ±1% 以内で一致した. 終りに, 本実験にご協力いただいた本学学生の高橋潤君に謝意を表します. 引用文献 1) 日本テレビ, 1999 年 8 月 17 日, 19:, 伊東家の食卓 で放映. ) 五十嵐保 大倉達也, 上壁のある円形衝突噴流により浮上する円盤に働く揚力 ( 第 1 報, 臨界流量 ), 日本機械学会論文集, 66-6, B (), ) 五十嵐保 大倉達也, 上壁のある円形衝突噴流により浮上する円盤に働く揚力 ( 第 報, 圧力分布と揚力 ), 日本機械学会論文集, 66-68, B (), -8. ) 五十嵐保 大倉達也, 上壁のある円形衝突噴流により浮上する円盤に働く揚力 ( 第 報, 小円盤の場合 ), 日本機械学会論文集, , B (1), ) 五十嵐保, 静水に浮く角材の姿勢, 日本流体力学会誌, ながれ, 19- (), ) 五十嵐保, 水流に引き上げられる卵, ゴルフボールおよび球まわりの流れに関する研究 ( 第 1 報, 臨界流量 ), 日本流体力学会誌, ながれ, -5 (1), 6-1.

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

例題1 転がり摩擦

例題1 転がり摩擦 重心 5.. 重心問題解法虎の巻. 半円 分円. 円弧. 扇形. 半球殻 5. 半球体 6. 厚みのある半球殻 7. 三角形 8. 円錐 9. 円錐台. 穴あき板. 空洞のある半球ボール 重心問題解法虎の巻 関西大学工学部物理学教室 齊藤正 重心を求める場合 質点系の重心の求め方が基本 実際の物体では連続体であるので 積分形式で求める場合が多い これらの式は 次元のベクトル形式で書かれている通り つの式は実際には

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

<4D F736F F D F90B782E88FE382AA82E C882AA82EA8CA48B86836D815B83678DC58F498CB48D652E646F63>

<4D F736F F D F90B782E88FE382AA82E C882AA82EA8CA48B86836D815B83678DC58F498CB48D652E646F63> 11 研究ノート 容器の縁から盛り上がる水面の高さに関する実験と解析 * 防衛大学校名誉教授五十嵐保 コップに水を注ぐとその縁を越えて水面は盛り上がる. この現象はよく知られていて, 理科教育や教養書でも 表面張力の説明に使われている. しかし, その水面の高さ求めた報告例はない. この盛り上がった水面は限界 水量を超えたとき, 溢れ出る. この直前と直後の状態をフェーズ A, B とする. 容器の直径

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 剛体の重心と自由運動 -1/8 テーマ 07: 剛体の重心と自由運動 一般的に剛体が自由に運動できる状態 ( 非拘束の状態 ) で運動するとき, 剛体は回転運動を伴った運動をします. たとえば, 棒の端を持って空中に放り投げると, 棒はくるくる回転しながら上昇してやがて地面に落ちてきます. 剛体が拘束されない状態で運動する様子を考察してみましょう.

More information

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 による立体の断面積を とする 図 1の から までの斜線部分の立体 の体積を とすると, 図 2のように は 底面積 高さ の角柱の体積とみなせる よって 図 2 と表せる ただし とすると,

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63> 1/1 平成 3 年 6 月 11 日午前 1 時 3 分 4 ベクトルの線積分 4 ベクトルの線積分 Ⅰ. 積分の種類 通常の物理で使う積分には 3 種類あります 積分変数の数に応じて 線積分 ( 記号 横(1 重 d, dy, dz d ( ine: 面積分 ( 記号 縦 横 ( 重 線 4 ベクトルの線積分 重積分記号 ddy, dydz, dzdz ds ( Surface: 1 重積分記号

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

IPSJ SIG Technical Report Vol.2009-CVIM-169 No /11/ Stereo by the horizontal rotary movement of the upswing fisheye camera Sat

IPSJ SIG Technical Report Vol.2009-CVIM-169 No /11/ Stereo by the horizontal rotary movement of the upswing fisheye camera Sat 1 1 1 9 36 3 Stereo b the horiontal rotar oveent of the upswing fishee caera Satoru Yoshioto, 1 Kubo Maoru 1 an Muraoto Kenichiro 1 In this paper, the upswing fishee caera that can shoot up once the enith

More information

Microsoft Word - 力学12.doc

Microsoft Word - 力学12.doc 慣性モーメント. 復習 角運動量と角速度 L p υ, L 質点の角運動量 : ( ) ( ) 剛体の角運動量 L ( ) ρ ( ) ( ) d 注 ) この積分は普通の三重積分 d d d ( ) ( ) A B C A C B A B より ベクトル三重積の公式 ( ) ( ) ( )C ( ) L ( ) ( ) R 但し 慣性モーメント (oent of net): I R( ) ρ ;

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

宇宙機工学 演習問題

宇宙機工学 演習問題 宇宙システム工学演習 重力傾度トルク関連. 図に示すように地球回りの円軌道上を周回する宇宙機の運動 を考察する 地球中心座標系を 系 { } 軌道面基準回転系を 系 { } 機体固定系を 系 { } とする 特に次の右手直交系 : 地心方向単位ベクトル 軌道面内 : 進行方向単位ベクトル 軌道面内 : 面外方向単位ベクトル 軌道面外 を取る 特に この { } Lol Horiotl frme と呼ぶ

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので,

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので, If(A) Vx(V) 1 最小 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M) y = f ( x ) の関係から, 任意の x のときの y が求まるので, 未測定点の予測ができること. また (M3) 現象が比較的単純であれば, 現象を支配 する原理の式が分かることである.

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の 7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,

More information

Template For The Preparation Of Papers For On-Line Publishing In JSME

Template For The Preparation Of Papers For On-Line Publishing In JSME A Cnstitutive Equatin f Strain Rate Deendency fr Varius Cyclic Ladings Akihir HOJO, Jianxun SHEN, Akiyshi CHATANI and Hirshi TACHIYA * * * * Det. f Mechanical Systems Engineering, Kanazawa University,

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

untitled

untitled 熱対流現象 山中透 2005 年 3 月 概要 流体を熱源に接触させ, 流体に温度傾度を与えたときを考える. 流体の温度傾度が小さいときは, 熱拡散のみが起こるが, 流体の温度傾度が閾値を越えると, 熱拡散だけでは温度傾度を解消できなくなって不安定となり, 対流が生じる. これをベナール対流とよぶ. ここでは, ベナール対流を記述する非線型方程式の線型安定性の解析によって, 流体が不安定化する条件を求め,

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ 3. 変位とひずみ 3.1 変位関数構造物は外力の作用の下で変形する いま この変形により構造物内の任意の点 P(,,z) が P (',',z') に移動したものとする ( 図 3.1 参照 ) (,,z) は変形前の点 Pの座標 (',', z') は変形後の座標である このとき 次式で示される変形前後の座標の差 u ='- u ='- u z =z'-z (3.1) を変位成分と呼ぶ 変位 (

More information

川崎医会誌一般教, 32 号 : (2006) 39 非心ベキ正規分布のパラメータの推定 川崎医科大学 教材教具センター *, 情報科学教室 ** 格和勝利 * 近藤芳朗 ** ( 平成 18 年 11 月 208 受理 ) On Estimation of Parameters in

川崎医会誌一般教, 32 号 : (2006) 39 非心ベキ正規分布のパラメータの推定 川崎医科大学 教材教具センター *, 情報科学教室 ** 格和勝利 * 近藤芳朗 ** ( 平成 18 年 11 月 208 受理 ) On Estimation of Parameters in 川崎医会誌一般教, 32 号 : 39-51 (2006) 39 非心ベキ正規分布のパラメータの推定 川崎医科大学 教材教具センター *, 情報科学教室 ** 格和勝利 * 近藤芳朗 ** ( 平成 18 年 11 月 208 受理 ) On Estimation of Parameters in Power-Normal Distribution Katsutoshi KAKUW A* and Y

More information

えられる球体について考えよ 慣性モーメント C と体積 M が以下の式で与えられることを示せ (5.8) (5.81) 地球のマントルと核の密度の平均値を求めよ C= kg m 2, M= kg, a=6378km, rc=3486km 次に (5.82) で与えら

えられる球体について考えよ 慣性モーメント C と体積 M が以下の式で与えられることを示せ (5.8) (5.81) 地球のマントルと核の密度の平均値を求めよ C= kg m 2, M= kg, a=6378km, rc=3486km 次に (5.82) で与えら 5.5 慣性モーメント (5-42) 式で与えられたマッカラーの公式は 扁球惑星体の重力加速度とその主な慣性モーメントを関連づけている その公式を使うことで 探査飛行や軌道上を周回する宇宙船によって 例えば慣性モーメントを束縛している惑星の重力場を計測することができる 慣性モーメントは惑星全体の形や内部の密度分布を反映するため 惑星の内部構造を調べるために慣性モーメントの数値を利用することができる

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A No.1/2 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A,B,C の座標はそれぞれ A (,6,-2), B (4,-5,3),C (-5.1,4.9,.9) である. 次の問いに答えよ. (1) を求めよ. (2) および の向きを解答用紙の図 1 に描け. (3) 図 1 の平行六面体の体積

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

物理学 (4) 担当 : 白井 英俊

物理学 (4) 担当 : 白井 英俊 物理学 (4) 担当 : 白井 英俊 Email: sirai@sist.chukyo-u.ac.jp 4 章力のモーメントとモーメントのつり合い 物体に力を加えた時 作用点の位置によるが 並進運動 --- 物体全体としての移動回転運動 --- 物体自体の回転をおこす回転運動をおこす能力のことを力のモーメントという 4 章では力のモーメントについて学ぶ 4.1 力のモーメント 剛体 (rigid body):

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

, COMPUTATION OF SHALLOW WATER EQUATION WITH HIERARCHICAL QUADTREE GRID SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

, COMPUTATION OF SHALLOW WATER EQUATION WITH HIERARCHICAL QUADTREE GRID SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO , 2 11 8 COMPUTATION OF SHALLOW WATER EQUATION WITH HIERARCHICAL QUADTREE GRID SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO 1 9-2181 2 8 2 9-2181 2 8 Numerical computation of river flows have been employed

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

Microsoft Word - 付録A,Bとその図

Microsoft Word - 付録A,Bとその図 付録 A 1 自由度系 ( 自由振動 ) の解法 はじめに振動現象を解明するのに基本となる 1 自由度不減衰系 ( 自由振動 ) の運動方程式の作成方法とその微分 ( あるいは偏微分 ) 方程式の解法を説明する. 1 自由度系モデルには, 単振動のばね 質量モデルと数学振子を用いる. A.1 運動方程式 ( 微分方程式 ) を立てる A.1.1 ばね 質量の場合 ( 1) 単振動の運動から運動方程式を求める

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a 1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s) 2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

新日本技研 ( 株 ) 技術報告 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋

新日本技研 ( 株 ) 技術報告 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋 新日本技研 ( 株 技術報告 - 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋の採用が多くなっている この形式はおよそ 年前に 日本道路公団が欧州の少数鈑桁橋を参考にPC 床版を有する少数鈑桁橋の検討を始め

More information

Microsoft Word - .u.....P.P.doc

Microsoft Word - .u.....P.P.doc 傾斜, 折損した船舶の漂流抵抗推定法について 環境 エネルギー研究領域海洋汚染防止研究グループ星野邦弘, 原正一 山川賢次海洋開発研究領域海洋資源利用研究グループ湯川和浩 l/l 1. まえがき海難事故などにより航行不能となった船舶は 波や流れによって漂流する 航行不能船舶の漂流により生じる2 次的災害や油流出等による環境汚染を最小限に食い止めるためには 航行不能船舶の漂流防止と漂流予測ならびに航行不能船舶を安全な場所に曳航する技術を確立する必要がある

More information

< BD96CA E B816989A B A>

< BD96CA E B816989A B A> 数 Ⅱ 平面ベクトル ( 黄色チャート ) () () ~ () " 図 # () () () - - () - () - - () % から %- から - -,- 略 () 求めるベクトルを とする S であるから,k となる実数 k がある このとき k k, であるから k すなわち k$, 求めるベクトルは --,- - -7- - -, から また ',' 7 (),,-,, -, -,

More information

<4D F736F F D208CA48B86836D815B83675F8BF38B4392EF8D5282F08EF382AF82E993DD82A295A891CC82CC978E89BA895E93AE81462E646F63>

<4D F736F F D208CA48B86836D815B83675F8BF38B4392EF8D5282F08EF382AF82E993DD82A295A891CC82CC978E89BA895E93AE81462E646F63> 45 研究ノート 空気抵抗を受ける鈍い物体の落下運動に関する解析と実験 * 防衛大学校名誉教授五十嵐保 神奈川工科大学自動車システム開発工学科 石綿良三 空気抵抗を受ける物体の落下運動は, 簡単に実験ができ中学生の理科教育のデモンストレーション用の教材として適している. また, 高校生や大学生の物理 数学の演習問題および基礎実験の教材として使える. そこで, 名刺サイズのカード, コースターやストロー,

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三 角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A>

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A> 06 年度大学入試センター試験解説 数学 Ⅱ B 第 問 () 8 より, 5 5 5 6 6 8 ア, イ また, 底の変換公式を用いると, log 7 log log 9 9 log 7 log ウエ, オ (), のグラフは, それぞれ = 89 = 右図のようになり, この つのグラフは 軸に関して対称 ここで, 0, のとき, と log カ のグラフが直線 に関して対称 であることから,

More information