/ FPGA LSI [1] CDP DDP 2 LSI FPGA PicoProcessor(pP)[2] (STP)[1] DDP 1.27 i
|
|
|
- きょういち いせき
- 9 years ago
- Views:
Transcription
1 22 / FPGA A Study of FPGA Platform for Architecture Evaluation of a Data-Driven/Control-Driven Processor
2 / FPGA LSI [1] CDP DDP 2 LSI FPGA PicoProcessor(pP)[2] (STP)[1] DDP 1.27 i
3 Abstract A Study of FPGA Platform for Architecture Evaluation of a Data-Driven/Control-Driven Processor Hajime OOISO To improve the performance of LSI s only by increasing clock frequency cannot meet to market requirements due to increasing power consumption. Now, in order to further improve the processing performance, LSI must introduce parallel processing scheme achieving higher power-performance efficiency. Data-driven processor (DDP) can extract data parallelism inherent in the program and execute it in parallel[1]. In terms of instruction execution control scheme, control-driven processor (CDP) and DDP are located both ends. If we can assess the various trade-offs through the comparison of two kinds of architectures, there is potentiality of investigating more excellent performance architecture and more optimal LSI design. When comparing diverse architectures, flexible modification of common parameters such as data width and instruction memory should be allowed. In addition, it is important to easily evaluate target architectures in a short time. This paper proposes circuit description methods to enable easy modifications of high-speed FPGA platform. A pico-processor (pp)[2] and a simple DDP based on self-timed pipeline (STP) are implemented. In the implementation, by editing the macro configuration file, data field length and width can be changed and the additional circuit can be easily add or remove. As a result, performance-power of the DDP is 1.27 times better than the pp. key words Data driven processor, Control driven processor, self-timed pipelined ii
4 1 1 2 / STP HDL HDL iii
5 iv
6 CDP STP PS PS MM v
7 2.1 pp DDP CDP DDP CDP/DDP vi
8 1 1 CDP CDP DDP) CDP ( 1
9 DDP Dmem Dmem DDP MM) MM MM RAM MM MM MM Dmem 5 2 DDP/CDP 3 HDL HDL 4 Alterra CycloneII QuartusII 5 / FPGA 2
10 3
11 2 / CDP DDP CDP DDP CPD
12 2.1 シングルサイクル 方 式 CLK マルチサイクル 方 式 CLK IF IF : : Instruction fetch frtch ID ID :: Instruction decode EX EX :: Execution Exexute MEM MEM :: Memory access WB WB : : Write Write back back IF + ID + EX + MEM + WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF + ID + EX + MEM + WB IF ID EX MEM WB IF ID EX MEM WB CDP PicoProcessor(pP) [2] pp CDP DDP pp 2.2 pp Program counter(pc) Instruction memory(imem) PC 5
13 CDP Stack PC Stack pointer(sp) Stack push Interrupt register(int Reg) PC Register(Reg) Arithmetic Logic Unit(ALU) CC 6
14 2.2 Data memory(dmem) decoder PC PC IMem decoder MUX Stack Reg ALU Dmem Reg Dmem IMem STP STP ( ) (Send ) Ack ) ( STP DDP Data Latch(DL) Logic DL C C C Reset = 0, Send = 7
15 2.2 STAGE Data Latch Logic Data Latch Logic Data Latch CK0 CK1 CK2 Send0 Ack0 C0 Send1 Ack1 C1 Send2 Ack2 C2 Send3 Ack3 reset 2.3 STP 1, Ack = 1, CK = 0 1. C0 C1 Send1 DL0 2. Send1 C1 Ack1 C0 3. Ack1 C0 Send Send Ack Merge(M) 8
16 2.2 M CS MM ALU B PS M : Merge CS : Constasnt Storage MM : Matchig Memory ALU : Aritching Logical Unit PS : Program Storage B : Branch 2.4 Constant Storage Constant Storage(CS) CS CS Matching Memory Matching Memory MM(Matching Memory) Arithmetic Logic Unit Arithmetic Logic Unit(ALU) Program Storage Program Storage(PS) 9
17 2.3 ALU Branch Branch(B) STP 2.3 DDP CDP pp pp pp Instruction Operation Function code ADD SUB AND CDP IMem Function code DDP Function code DDP MM 2 2 Function code Function code Function code DDP 2 DDP
18 DDP Instruction Operation R/L Function code Left opc Right opc ADD 0/ SUB 0/ AND 0/ DDP bit L/R) pp Function code 1bit(0) 6bit 6bit Function code 3bit bit Left opc 3bit Right opc L/R Function code Left opc Right opc MM Left opc Right opc bit DDP DDP CDP 2.4 CDP 1 pp STP DDP DDP MM MM CDP/DDP 11
19 2.4 12
20 HDL FPGA 13
21 3.3 代 入 型 プログラム 計 算 グラフ 型 プログラム カスタム 仕 様 (ex.データ 幅 IM/PS 容 量 ) CDP DDP CDP メタHDL 記 述 DDP メタHDL 記 述 合 成 + 配 置 配 線 FPGA 評 価 結 果 (ex. 回 路 規 模 消 費 電 力 処 理 性 能 ) CDP : 制 御 駆 動 プロセッサ DDP : データ 駆 動 プロセッサ IM : 命 令 メモリ PS : プログラムストレージ 3.1 subtype subtype CDP/DDP HDL HDL HDL HDL 14
22 3.3 cp : color : dest : L/R : con : opc : c : data : color dest c data DL1 コピー カラー 行 き 先 左 右 情 報 即 値 演 算 オペレーションコード キャリーフラグ データ PS DL : データラッチ PS : プログラムストレージ color dest L/R con opc c data データパス subtype SPIN is std_logic_vector(18 downto 0) subtype SPOUT is std_logic_vector(23 downto 0) DL2 3.2 PS HDL PS dest dest,l/r,con,opc color,c,data 3.1 PS dest 1. DL 15
23 3.3 DL : データラッチ PS : プログラムストレージ color DL1 color DL1 dest dest DL2 dest c data DL2 DL3 DL4 cp : コピー color : カラー dest : 行 き 先 L/R : 左 右 情 報 con : 即 値 演 算 opc : オペレーションコード c : キャリーフラグ data : データ PS L/R con opc L/R con opc c data データパス subtype color is std_logic_vector(2 downto 0) subtype dest is std_logic_vector(6 downto 0) subtype L/R is std_logic subtype con is std_logic subtype opc is std_logic_vector(2 downto 0) subtype c is std_logic subtype data is std_logic_vector(7 downto0) DL5 DL6 DL6 DL3 DL4 3.3 PS PS HDL PS HDL
24 3.3 CX2 : コピー 機 能 付 きC 素 子 CEX : 消 去 機 能 付 きC 素 子 MM : マッチングメモリ Up-Down Counter : アドレスカウンタ DL : データラッチ Dmem : データメモリ マクロ 設 定 ファイル 0 : Dmem 削 除 1 : Dmem 追 加 削 除 を 行 う ために 必 要 な ブロック DL CX2 1 0 MUX MUX2 feb MUX3 cpy match down dmem_empty up Dmem MM mm_full addr cp Up-Down Counter DL CEX Dmemを 追 加 するのに 必 要 な ブロック 拡 張 前 のMM ステージの ブロック 3.4 MM MM MM MM MM CDP MM MM Dmem Dmem 3.4 MM Dmem MM DL MM CEX CEX 17
25 3.3 C MM Dmem CX2 MUX1 Dmem Up-Down Counter CX2 C 2 C MUX1 Dmem MM Dmem Dmem Ram Up-Down Counter Up-down Counter Dmem LIFO MUX2 MUX3 MUX2 MUX1 MUX1 feb Dmem 1 0 MUX2 feb 0 1 feb 0 0 MUX3 CX2 0 MUX2 MUX3 MUX1 CX2 Dmem Dmem 0 MUX1 CX2 0 MUX1 CX Dmem Dmem 18
26 CDP/DDP 19
27 4 4.1 DDP/CDP 4.2 Altera CycloneII P/CDP CDP Reg Dmem 8 bit 8 8 bit bit CDP [2] 8bit CDP DDP 8bit STP MM 32 DDP 20
28 DDP MM Dmem 7 8 bit bit DDP ALU ALU CDP DDP Reg Dmem CDP QuartusII PowerPlay Power Analyzor (LE) LE CDP 86% DDP 32%. DDP. CDP 25MHz DDP 102MHz 21
29 CDP/DDP CDP DDP LE 86% 32% CLK 25.54MHz 102MHz 50.32mW mW 0.507MHz/mW 0.648MHz/mW. DDP CDP.. CDP 0.507MHz/mW DDP 0.648MHz/mW DDP 27%. DDP.STP. 22
30 5 1 CDP/DDP CDP DDP MM MM MM FPGA 2 DDP/CDP 3 23
31 HDL HDL 4 Alterra CycloneII QuartusII CDP 0.507MHz/mW DDP 0.648MHz/mW DDP 27% CDP/DDP DDP FPGA CDP DDP CDP 2 DDP pp 24
32 , 25
33 [1] H. Terada, et al, DDMP s: Self-Timed Super-Pipelined Data-Driven Multimedia Processors, Proceedings of the IEEE, 87(2), pp , Feb [2] D.A.Patterson and J.F.Hennessy, Computer Organization and Design, Morgan Kaufmann, p.912,
Microsoft PowerPoint - NxLecture ppt [互換モード]
011-05-19 011 年前学期 TOKYO TECH 命令処理のための基本的な 5 つのステップ 計算機アーキテクチャ第一 (E) 5. プロセッサの動作原理と議論 吉瀬謙二計算工学専攻 kise_at_cs.titech.ac.jp W61 講義室木曜日 13:0-1:50 IF(Instruction Fetch) メモリから命令をフェッチする. ID(Instruction Decode)
Microsoft PowerPoint - NxLec-2010-11-01.ppt
2010 年 後 学 期 レポート 問 題 計 算 機 アーキテクチャ 第 二 (O) 4. シングルサイクルプロセッサの 実 装 とパイプライン 処 理 大 学 院 情 報 理 工 学 研 究 科 計 算 工 学 専 攻 吉 瀬 謙 二 kise _at_ cs.titech.ac.jp S321 講 義 室 月 曜 日 5,6 時 限 13:20-14:50 1 1. 1から100までの 加 算
.,. 0. (MSB). =2, =1/2.,. MSB LSB, LSB MSB. MSB 0 LSB 0 0 P
, 0 (MSB) =2, =1/2, MSB LSB, LSB MSB MSB 0 LSB 0 0 P61 231 1 (100, 100 3 ) 2 10 0 1 1 0 0 1 0 0 100 (64+32+4) 2 10 100 2 5, ( ), & 3 (hardware), (software) (firmware), hardware, software 4 wired logic
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment
28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment 1170288 2017 2 28 Docker,.,,.,,.,,.,. Docker.,..,., Web, Web.,.,.,, CPU,,. i ., OS..,, OS, VirtualBox,.,
soturon.dvi
12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm
3 SIMPLE ver 3.2: SIMPLE (SIxteen-bit MicroProcessor for Laboratory Experiment) 1 16 SIMPLE SIMPLE 2 SIMPLE 2.1 SIMPLE (main memo
3 SIMPLE ver 3.2: 20190404 1 3 SIMPLE (SIxteen-bit MicroProcessor for Laboratory Experiment) 1 16 SIMPLE SIMPLE 2 SIMPLE 2.1 SIMPLE 1 16 16 (main memory) 16 64KW a (C )*(a) (register) 8 r[0], r[1],...,
「FPGAを用いたプロセッサ検証システムの製作」
FPGA 2210010149-5 2005 2 21 RISC Verilog-HDL FPGA (celoxica RC100 ) LSI LSI HDL CAD HDL 3 HDL FPGA MPU i 1. 1 2. 3 2.1 HDL FPGA 3 2.2 5 2.3 6 2.3.1 FPGA 6 2.3.2 Flash Memory 6 2.3.3 Flash Memory 7 2.3.4
7,, i
23 Research of the authentication method on the two dimensional code 1145111 2012 2 13 7,, i Abstract Research of the authentication method on the two dimensional code Karita Koichiro Recently, the two
if clear = 1 then Q <= " "; elsif we = 1 then Q <= D; end rtl; regs.vhdl clk 0 1 rst clear we Write Enable we 1 we 0 if clk 1 Q if rst =
VHDL 2 1 VHDL 1 VHDL FPGA VHDL 2 HDL VHDL 2.1 D 1 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; regs.vhdl entity regs is clk, rst : in std_logic; clear : in std_logic; we
Microsoft PowerPoint - Lec pptx
Course number: CSC.T341 コンピュータ論理設計 Computer Logic Design 10. シングルサイクルプロセッサのデータパス Datapath for Single Cycle Processor 吉瀬謙二情報工学系 Kenji Kise, Department of Computer Science kise _at_ c.titech.ac.jp www.arch.cs.titech.ac.jp/lecture/cld/
2017 (413812)
2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has
プロセッサ・アーキテクチャ
2. NII51002-8.0.0 Nios II Nios II Nios II 2-3 2-4 2-4 2-6 2-7 2-9 I/O 2-18 JTAG Nios II ISA ISA Nios II Nios II Nios II 2 1 Nios II Altera Corporation 2 1 2 1. Nios II Nios II Processor Core JTAG interface
1 1 2 2 2-1 2 2-2 4 2-3 11 2-4 12 2-5 14 3 16 3-1 16 3-2 18 3-3 22 4 35 4-1 VHDL 35 4-2 VHDL 37 4-3 VHDL 37 4-3-1 37 4-3-2 42 i
1030195 15 2 10 1 1 2 2 2-1 2 2-2 4 2-3 11 2-4 12 2-5 14 3 16 3-1 16 3-2 18 3-3 22 4 35 4-1 VHDL 35 4-2 VHDL 37 4-3 VHDL 37 4-3-1 37 4-3-2 42 i 4-3-3 47 5 52 53 54 55 ii 1 VHDL IC VHDL 5 2 3 IC 4 5 1 2
24 FFT Self-Timeed Pipeline Implementation of Adaptive FFT for Different Rate Signals
24 FFT Self-Timeed Pipeline Implementation of Adaptive FFT for Different Rate Signals 1155064 2013 2 5 FFT HetNet (FFT) FFT. (STP) FFT STP FFT FFT FFT FPGA(Altera stratixii) HetNet FFT STP i Abstract Self-Timeed
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display
14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display 1030281 2003 2 12 CRT [1] CRT. CRT von Kries PC CRT CRT 9300K CRT 6500K CRT CRT 9300K x y S L-2M x y von Kries S L-2M
,,,,., C Java,,.,,.,., ,,.,, i
24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children
Web Web Web Web Web, i
22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity
26 FPGA 11 05340 1 FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) FPGA FPGA FPGA FPGA Linux FreeDOS skewed way L1
FPGA 272 11 05340 26 FPGA 11 05340 1 FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) FPGA FPGA FPGA FPGA Linux FreeDOS skewed way L1 FPGA skewed L2 FPGA skewed Linux
FabHetero FabHetero FabHetero FabCache FabCache SPEC2000INT IPC FabCache 0.076%
2013 (409812) FabHetero FabHetero FabHetero FabCache FabCache SPEC2000INT 6 1000 IPC FabCache 0.076% Abstract Single-ISA heterogeneous multi-core processors are increasing importance in the processor architecture.
20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow
20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow 1115084 2009 3 5 3.,,,.., HCI(Human Computer Interaction),.,,.,,.,.,,..,. i Abstract Method for Recognizing Expression Considering
VHDL
VHDL 1030192 15 2 10 1 1 2 2 2.1 2 2.2 5 2.3 11 2.3.1 12 2.3.2 12 2.4 12 2.4.1 12 2.4.2 13 2.5 13 2.5.1 13 2.5.2 14 2.6 15 2.6.1 15 2.6.2 16 3 IC 17 3.1 IC 17 3.2 T T L 17 3.3 C M O S 20 3.4 21 i 3.5 21
1 1 tf-idf tf-idf i
14 A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles 1055104 2003 1 31 1 1 tf-idf tf-idf i Abstract A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles
Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking
23 An attribute expression of the virtual window system communicators 1120265 2012 3 1 Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual
, IT.,.,..,.. i
25 To construct the system that promote a interactive method as a knowledge acquisition 1140317 2014 2 28 , IT.,.,..,.. i Abstract To construct the system that promote a interactive method as a knowledge
Design at a higher level
Meropa FAST 97 98 10 HLS, Mapping, Timing, HDL, GUI, Chip design Cadence, Synopsys, Sente, Triquest Ericsson, LSI Logic 1980 RTL RTL gates Applicability of design methodologies given constant size of
,,.,,., II,,,.,,.,.,,,.,,,.,, II i
12 Load Dispersion Methods in Thin Client Systems 1010405 2001 2 5 ,,.,,., II,,,.,,.,.,,,.,,,.,, II i Abstract Load Dispersion Methods in Thin Client Systems Noritaka TAKEUCHI Server Based Computing by
189 2015 1 80
189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87
..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i
25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time
25 Removal of the fricative sounds that occur in the electronic stethoscope
25 Removal of the fricative sounds that occur in the electronic stethoscope 1140311 2014 3 7 ,.,.,.,.,.,.,.,,.,.,.,.,,. i Abstract Removal of the fricative sounds that occur in the electronic stethoscope
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe
Microsoft PowerPoint - Lecture ppt [互換モード]
2012-05-31 2011 年前学期 TOKYO TECH 固定小数点表現 計算機アーキテクチャ第一 (E) あまり利用されない 小数点の位置を固定する データ形式 (2) 吉瀬謙二計算工学専攻 kise_at_cs.titech.ac.jp W641 講義室木曜日 13:20-14:50-2.625 符号ビット 小数点 1 0 1 0 1 0 1 0 4 2 1 0.5 0.25 0.125
デザインパフォーマンス向上のためのHDLコーディング法
WP231 (1.1) 2006 1 6 HDL FPGA TL TL 100MHz 400MHz HDL FPGA FPGA 2005 2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
WebRTC P2P,. Web,. WebRTC. WebRTC, P2P, i
28 WebRTC Design of multi-platform file sharing system using WebRTC 1170336 2017 2 28 WebRTC P2P,. Web,. WebRTC. WebRTC, P2P, i Abstract Design of multi-platform file sharing system using WebRTC Harumi
29 jjencode JavaScript
Kochi University of Technology Aca Title jjencode で難読化された JavaScript の検知 Author(s) 中村, 弘亮 Citation Date of 2018-03 issue URL http://hdl.handle.net/10173/1975 Rights Text version author Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspa
スライド 1
1 1. 2 2. 3 isplever 4 5 6 7 8 9 VHDL 10 VHDL 4 Decode cnt = "1010" High Low DOUT CLK 25MHz 50MHz clk_inst Cnt[3:0] RST 2 4 1010 11 library ieee; library xp; use xp.components.all; use ieee.std_logic_1164.all;
21 Effects of background stimuli by changing speed color matching color stimulus
21 Effects of background stimuli by changing speed color matching color stimulus 1100274 2010 3 1 ,.,,.,.,.,,,,.,, ( FL10N-EDL). ( 10cm, 2cm),,, 3.,,,, 4., ( MSS206-402W2J), ( SDM496)., 1200r/min,1200r/min
AccessflÌfl—−ÇŠš1
ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS
NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i {
12 The eect of a surrounding light to color discrimination 1010425 2001 2 5 NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i { Abstract The eect of a surrounding light to color discrimination Ynka
IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple
1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa
2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun
10 1-14 2014 1 2 3 4 2 1 2 3 4 Web PubMed elbow pain baseball elbow little leaguer s elbow acupuncture electric acupuncture 2003 2012 10 39 32 Web PubMed Key words growth stage elbow pain baseball elbow
17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System
1. (1) ( MMI ) 2. 3. MMI Personal Computer(PC) MMI PC 1 1 2 (%) (%) 100.0 95.2 100.0 80.1 2 % 31.3% 2 PC (3 ) (2) MMI 2 ( ),,,, 49,,p531-532,2005 ( ),,,,,2005,p66-p67,2005 17 Proposal of an Algorithm of
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
24 Depth scaling of binocular stereopsis by observer s own movements
24 Depth scaling of binocular stereopsis by observer s own movements 1130313 2013 3 1 3D 3D 3D 2 2 i Abstract Depth scaling of binocular stereopsis by observer s own movements It will become more usual
MRI | 所報 | 分権経営の進展下におけるグループ・マネジメント
JOURNAL OF MITSUBISHI RESEARCH INSTITUTE No. 35 1999 (03)3277-0003 FAX (03)3277-0520 [email protected] 76 Research Paper Group Management in the Development of Decentralized Management Satoshi Komatsubara,
Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive
An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent
main.dvi
20 II 7. 1 409, 3255 e-mail: [email protected] 2 1 1 1 4 2 203 2 1 1 1 5 503 1 3 1 2 2 Web http://www.icsd2.tj.chiba-u.jp/~namba/lecture/ 1 2 1 5 501 1,, \,", 2000 7. : 1 1 CPU CPU 1 Intel Pentium
<95DB8C9288E397C389C88A E696E6462>
2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,
( )
NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya
26102 (1/2) LSISoC: (1) (*) (*) GPU SIMD MIMD FPGA DES, AES (2/2) (2) FPGA(8bit) (ISS: Instruction Set Simulator) (3) (4) LSI ECU110100ECU1 ECU ECU ECU ECU FPGA ECU main() { int i, j, k for { } 1 GP-GPU
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
kut-paper-template.dvi
26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju
EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo
2
L C -24K 9 L C -22K 9 2 3 4 5 6 7 8 9 10 11 12 11 03 AM 04 05 0 PM 1 06 1 PM 07 00 00 08 2 PM 00 4 PM 011 011 021 041 061 081 051 071 1 2 4 6 8 5 7 00 00 00 00 00 00 00 00 30 00 09 00 15 10 3 PM 45 00
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
Web Basic Web SAS-2 Web SAS-2 i
19 Development of moving image delivery system for elementary school 1080337 2008 3 10 Web Basic Web SAS-2 Web SAS-2 i Abstract Development of moving image delivery system for elementary school Ayuko INOUE
RW1097-0A-001_V0.1_170106
INTRODUCTION RW1097 is a dot matrix LCD driver & controller LSI which is fabricated by low power CMOS technology. It can display 1line/2line/3line/4line/5line/6lines x 12 (16 x 16 dot format) with the
SNS ( ) SNS(Social Networking Service) SNS SNS i
22 SNS Job-Hunting Activities situation Understanding Support System Using SNS 1110252 2011 03 01 SNS ( ) SNS(Social Networking Service) SNS SNS i Abstract Job-Hunting Activities situation Understanding
job-shop.dvi
21 GA GA for job-shop scheduling problem by plural chromosome expression 1100303 2010 3 1 GA 1,,,,,,,, 4, 4,, i Abstract GA for job-shop scheduling problem by plural chromosome expression Tatsuki Shinohara
untitled
PC [email protected] muscle server blade server PC PC + EHPC/Eric (Embedded HPC with Eric) 1216 Compact PCI Compact PCIPC Compact PCISH-4 Compact PCISH-4 Eric Eric EHPC/Eric EHPC/Eric Gigabit
( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst
情報処理学会インタラクション 2015 IPSJ Interaction 2015 15INT014 2015/3/7 1,a) 1,b) 1,c) Design and Implementation of a Piano Learning Support System Considering Motivation Fukuya Yuto 1,a) Takegawa Yoshinari 1,b) Yanagi
0630-j.ppt
5 part II 2008630 6/30/2008 1 SR (latch) 1(2 22, ( SR S SR 1 SR SR,0, 6/30/2008 2 1 T 6/30/2008 3 (a)(x,y) (1,1) (0,0) X Y XOR S (S,R)(0,1) (0,0) (0,1) (b) AND (a) R YX XOR AND (S,R)(1,1) (c) (b) (c) 6/30/2008
DRAM SRAM SDRAM (Synchronous DRAM) DDR SDRAM (Double Data Rate SDRAM) DRAM 4 C Wikipedia 1.8 SRAM DRAM DRAM SRAM DRAM SRAM (256M 1G bit) (32 64M bit)
2016.4.1 II ( ) 1 1.1 DRAM RAM DRAM DRAM SRAM RAM SRAM SRAM SRAM SRAM DRAM SRAM SRAM DRAM SRAM 1.2 (DRAM, Dynamic RAM) (SRAM, Static RAM) (RAM Random Access Memory ) DRAM 1 1 1 1 SRAM 4 1 2 DRAM 4 DRAM
