C:/大宮司先生関連/大宮司先生原稿作業用1/圧縮性流れの解法3.dvi
|
|
|
- れいが さんきち
- 7 years ago
- Views:
Transcription
1 8 aldwn-lomax hen 8. +ru = t (8.a) u+r(uu+) =r +f t (8.b) e +rhu = r ( u);r q+f u t (8.c) u e = (+u 2 =2) H = h+u 2 =2=(e+)= q f (8.) (comressble Naver-Stokes equatons) T h = += = RT d = c v dt dh = c dt c v c R = c =c v R = c ;c v c = RT M = juj=c (DNS, drect numercal smulaton) (vscous stress tensor) (heat ux) q j = ; u j +u j ; 2 3 ju k k ( j = 2 3) (8.2a) q = ;T = ; c 2 ( = 2 3) (8.2b) ; P r x u j = u j =x j P r = c = (Prandtl number)
2 2 8.. Naver-Stokes (ensemble-averaed Naver-Stokes equatons) (Favre mean) u u = u+u u = (8.3) u u u u = eu+u eu = u= u = ; u = (8.4) eu u u = u u = eu;u = u = eu = eu = u = u+ u 2 (8.) + ru = t u + r(uu+) =r + f t (8.5b) E + r(e+) u = r u ;rq + f u t (8.5c) (8.5a) u = u;eu = u; u = (u+u );(+ )(u+u ) = (u ; u )=u ; u a = a ab = a b eab = ea b f ab = a e b 2 eu = (+ ) u = u+ u = u
3 3 u = eu uu = (eueu+2euu +u u )= eueu + u u E = (+u u=2) = e + 2 eu eu + ] 2 u u E e (E+)u = (h+u u=2)u = E e u+eu+ e h u + u u eu+ ^ 2 u u u (ensemble-averaed Naver- Stokes equatons) + reu = t t eu + r(eueu+) =r( f ; u u )+f t E e + r(e+) e ; eu = r (f ; u u )eu ; q ; h u + f u u^ u u =2 3. (8.6a) (8.6b) (8.6c) (8.5) (8.6) (8.) j q j = ; u j +u j ; 2 3 ju k k ; u u j ( j = 2 3) q = ; c 2 + h ; P u ( = 2 3) r ;u u j = ; u u j (Reynolds stress) h u = h u (turbulent heat ux) 2 (8.) j q ) u ) eu e ) e E ) H ) e E+= (8.6) (8.) e e ) e E = ; e + 2 eueu + 2 u u 3. ; e h = e+ = f = f ; = = =
4 4 = R e T de = c v d e T d e h = c de T (8.7a) =~e =~ e E; f 2 eh = e E+ = e E; f 2 = ~ ( f c2 +f 2 ) (8.7b) (8.7c) ~ = ; f 2 = 2 ~(eu eu+ ] u u ) f c2 = Re T ec = q fc 2 ` ' ` e ' 8..2 Naver-Stokes (8.) (cartesan coordnates) x q t + F +D+ = x q = u u 2 u 3 e D = ; x F = 2 3 u u u + u 2 u + 2 u 3 u + 3 Hu = ; j u j ;q f u ( = 2 3) f f 2 f 3 (8.8a) (8.8b) q F D (eneral curvlnear coordnates) (8.) J Jr = J(r ) U = ur t J u + J e U uu +r = (Jr ) HU + J u;q u
5 5 ^q t + ^F + ^D+^ = ^q = J u u 2 u 3 e ^D = ; J j ^F = J j j2 j3 U u U + u 2 U + 2 u 3 U + 3 HU ^ = ;J jk u k ;q j f k u k ( = 2 3) f f 2 f 3 (8.9a) (8.9b) ^q ^F ^D ^ 4 J = (x y z)=( ) j = =x j (8.9) (8.8) x (8.9) (curvlnear coordnate rd) J 8. J = x x x y y y z z z (x ;x )(x ;x )(x ;x ) J x x = x x 2 = y x 3 = z = 2 = 3 = Jr Jr = J x J y J z = y y (x ;x )(x ;x ) z z x x! z z x x y y 6 : H Hj H HH 6 H H HH W U H H : Hj V : V U H H Hj H 6 H H HH H W H 8.:
6 6 Jr = const. x = const. (8.9) J U =const. Jjr j x U l u r l (8.b) Jr l Jr l u = JU l Jr l (ruu+) =r l J(U u+r )= J(U U l + l ) ; J(U u+r ) r l ^q t + ^F + ^D+^ = ~q t + F ~ + R+ ~ D+~ ~ = ~q = J U U 2 U 3 e ~ F = J ~R = ;J(U u+r ) ~D = ;J j x k = k j 2 3 u U U U + U 2 U + 2 U 3 U HU r r 2 r 3 ; J j k T j ( = 2 3) ~ = ;Jf r r 2 r 3 u (8.a) (8.b) (8.c)
7 7 (8.b) ~q F ~ R ~ D ~ ~ (8.c) u U j = k j k (a b)= = a b= (8.) (mass ux)ju JU x = const. 3 (8.9) 3 (8.) R ~ 8..3 aldwn-lomax hen 2 aldwn-lomax l ( ) hen k ; k aldwn-lomax (978) hen (982) 2 q j =(+ t ) u j +u j ; 2 3 ju k k ; 2 3 jk ( j = 2 3) (8.a) q = ; ; P r + t P rt c 2 x ( = 2 3) (8.b) t (eddy vscosty) k = u u =2 (turbulent knetc enery) P rt (turbulent Prandtl number) P r = :72 P rt =:9() =:5( ) (8.a) (8.b) (8.2a) (8.2b) t = (8.a) (Reynolds stress) t (8.b) (turbulent heat ux) ;T=x (thermal eddy vscosty) t = c t =P rt t 2
8 8 aldwn-lomax 2 t = ( (t ) nner (d d crossover ) ( t ) outer (d>d crossover ) (8.2a) d d crossover ( t ) nner =( t ) outer d Prandtlvan Drest ( t ) nner = l 2 jj (8.2b) l = df;ex(;y + = + ) = ru =:4 Karman + =26 y + = u d= w = w w d= w u = w = w w lauser ( t ) outer =:6KF wake F Kleb (d) (8.2c) K =:68 lauser F wake = mn ; d max F max :25d max u df 2 =F max F Kleb (d) = h :3d +5:5 d max 6 ; d max F (d) =d jjf;ex(;y + = + ) F max d ex(;y + = + )= u df = juj max ;juj mn juj mn = F Kleb Klebano ( t ) max < 4 (8.3) t = aldwn-lomax ( t ) max (8.3) (8.) aldwn-lomax (8.2) hen k ; y = const. hen t = c f k 2 = (8.4a) k ^q t t + ^F t + ^D t +^ t = (8.4b)
9 9 ^q t = J k ^ t = ;J! ^Ft = JU k! P ;;D k (c P ;c 2 f;f 3 D) ^Dt = ; J j (+ t ) k j + t j (8.4c) P = ;u u j u =x j ;u u j D =2k=d2 d c =:9 c =:35 c 2 =:8 =:3 f =;e ;c3y+ f =; :4 2 :8 e;(ret=6) f 3 = e ;c4y+ c 3 =:5 c 4 =:5 Re t = k 2 = Re t y + du = =4 k k k = = k ; k q 2 q 3 k P k k 3 k
10 8.2 k ; k k (lnearzaton) (daonalzaton) 8.2. k k (8.4) +ru = t (8.5a) u+r(uu+) = t (8.5b) e +rhu = t (8.5c) k +rku = t (8.5d) +ru = t (8.5e) q t + F x = ( = 2 3) (8.6a) 2 3 q F q = u u 2 u 3 e k F = u u u + u 2 u + 2 u 3 u + 3 Hu ku u 2 ( = 2 3) (8.6b)
11 F q df = F q dq = dq F = q d q = (8.7) (8.6) q t + q = x ( = 2 3) (8.8a) = F =q 5 = 2 3 ;u u + 2 D 2 u ; ~u 2 3 u ; ~u 3 ~ ;u 2 u u 2 ; 2 ~u D 2 3 u 2 ; 2 ~u 3 2 ~ ;u 3 u u 3 ; 3 ~u 2 u 3 ; 3 ~u 2 D 3 3 ~ ;Hu + 2 u H ;~u u 2 H ;~u 2 u 3 H ;~u 3 u u ;ku k 2 k 3 k u ;u 2 3 u (8.8b) D j = u + j (;~)u j ~ = ; 2 =~u 2 =2 H = e+ = c2 + 2 ~ = e ;2 (8.5) + ur + r u = t (8.9a) u t + uru+ r = (8.9b) t + ur + c2 r u = k + urk = t (8.9d) + ur = t (8.9e) (8.9c) q q t + = ( = 2 3) (8.2a) x 5 F q q
12 2 q = u u 2 u 3 k = u 2 3 u = u 2 = u 3 = c 2 2 c 2 3 c 2 u u u (8.2b) (8.2) dq = q dq = Ndq q (8.2) (8.8) N = N N ; q q q = Nq dnq = N = q =q N ; 6 N = N ; = ;u = = ;u 2 = = ;u 3 = = ~u 2 =2 ;~u ;~u 2 ;~u 3 ~ ;k= = ;= = u u 2 u 3 u 2 =2 u u 2 u 3 =~ k (8.22a) (8.22b) = N ; N = N ; R L N = R L (8.23) 6 N q q q
13 3 k L l k R = L; r k k l k ( ) k 7 j ; Ij = u ; 2 3 u ; = u ; 2 = u ; 3 = c 2 2 c 2 3 c 2 u ; u ; u ; = = u (5 ) 2 = u +c 3 = u ;c l k = u l ( ; I) =(l k l2 k = u c l ( ; I)=(l k l 2 k l7 k ) l 7 k ) 2 3 = 2 = 3 = c 2 2 c 2 3 c 2 c 2 3 c = c 2 = c 3 = c 2 2 c 2 3 c 2 c c = c 7 L u u +c u u ;c u k u L R L L L = L N =
14 4 R = N ; R = L = R = N ; u u + c u + 2 c u + 3 c u ;c u u ;=c 2 =c 2 =c 3 =c 2 3 ;=c =2c 2 =2c 3 =2c ;=2c ; =2 =2 ; 2 =2 2 =2 ; 3 =2 3 =2 c=2 2 c=2 3 c=2 ;c=2 N (8.24a) (8.24b) (8.24c) (8.2) L (8.6) L q L t + F = L q x t + L q = (8.25) x ; t +u ; ; x c 2 t +u = x n t +(u + j c) o u j + n j x c t +(u +c) o = (j = 2 3) (8.26) x n t +(u ;c) ou ; n x c t +(u ;c) o = x ; t +u ; k = x t +u = x dx =dt = u dx =dt = u +c dx =dt = u ;c =t+u =x =t+(u + c)=x =t+(u ;c)=x dx =dt = u dx =dt = u dx =dt = u +c dx =dt = u ;c dx =dt = u k
15 k t J + JU = t Ju + J(uU +r )= t Je+ JHU = t Jk + JkU = t J + JU = (8.27a) (8.27b) (8.27c) (8.27d) (8.27e) ^q t + ^F = ( = 2 3) (8.28a) ^q = J u u 2 u 3 e k ^F = J U u U + u 2 U + 2 u 3 U + 3 HU ku U ( = 2 3) (8.28b) ^F ^q j ^F ^q Euler d ^F = ^F ^q d^q = ^ d^q ^F = ^ ^q d ^ ^q = (8.29) (8.28) ^q t + ^ ^q = ( = 2 3) (8.3a) ^ = ^F = ^q ^ = 2 3 ;u U + 2 ^D 2 u ;~ u 2 3 u ;~ u 3 ~ ;u 2 U u 2 ;~ 2 u ^D2 3 u 2 ;~ 2 u 3 ~ 2 ;u 3 U u 3 ;~ 3 u 2 u 3 ;~ 3 u 2 ^D3 ~ 3 ;HU + 2 U H ;~U u 2 H ;~U u 2 3 H ;~U u 3 U ;ku k 2 k 3 k U ;U 2 3 U (8.3b)
16 6 ^D j = U +(;~) j u j ~ = ; 2 =~u 2 =2 j = =x j (8.9) ur = U = r = r = t + U + r u = (8.3a) u t + U u + r = (8.3b) t + U + c 2 r u = (8.3c) k t + U k = (8.3d) t + U = (8.3e) ^q t + ^ ^q = ( = 2 3) (8.32a) ^q = q = u v w k ^ = U 2 3 U = U 2 = U 3 = c 2 2 c 2 3 c 2 U U U (8.32b) (8.32) (8.3) ^q = ^q = N=J d^q =( ^q = ^q)d^q =(N=J)d^q (8.32) ^ ^ ^ ^ = N ; ^ N = N ; ^R ^ ^L N = ^R ^ ^L (8.33) ^ ^ = U (5 ) ^ 2 = U + c ^3 = U ; c j = k j k ^ ^ = U U + c U c U c U ; c U U (8.34a)
17 7 ^L = ^R = N ; ;=c 2 2 ; ; 3 3 =c 2 2 ; ; =c 3 3 ; ; =c 2 3 ; =c 2 2 c 2 22 c D 3 2 2; ; ; D ; ; ; c ; 2 c N D c 2 c 3 c ; c D j = 3 2 j; j 2 +(; j ) (j = 2 3) (8.34b) (8.34c) (8.28) ^L J ^q t + ^F = ^L ^q t + ^ ^q ^L = (8.35) t +U ; c 2 t +U = n +; U + t o n c U + +; U + c t o c = ( j = ) t +U u j ; j t +U u = ( j 6= ) (8.36) n +; U ; t o n c U ; ;; U ; c t o c = t +U k = t +U = d =dt = U d =dt = U + c d =dt = U ; c =t+u = =t+(u + c) = =t+(u ; c) = k
18 k t J + JU = t JU + t Je+ JHU = t Jk + JkU = t J + JU = J ; UU +(r r) = (8.37a) (8.37b) (8.37c) (8.37d) (8.37e) ~q t + ~ F = ( = 2 3) (8.38a) ~q = J U U 2 U 3 e k ~ F = J U U U + U 2 U + 2 U 3 U + 3 HU ku U ( = 2 3) (8.38b) ~F ~q d ~ F = ~ F ~q d~q = ~ d~q ~ F = ~ ~q d ~ ~q = (8.39) (8.38) ~q t + ~ ~q = ( = 2 3) (8.4a) ~ = ~ F = ~q ~ = 2 3 ;U U + 2 ~ D 2 U ;~ 2 3 U ;~ 3 ~ ;U 2 U U 2 ;~ 2 ~ D2 3 U 2 ;~ 2 3 ~ 2 ;U 3 U U 3 ;~ 3 2 U 3 ;~ 3 2 ~ D3 ~ 3 ;HU + 2 U H ;~ U 2 H ;~ 2 U 3 H ;~ 3 U U ;ku k 2 k 3 k U ;U 2 3 U (8.4b)
19 9 ~D j = U + j U j ;~ j j =(x k = )u k = j U j j =(x k = )(x k = j ) t + U + U = (8.4a) U t + U U + r r = (8.4b) t + U + c 2 U = (8.4c) k t + U k = (8.4d) t + U = (8.4e) ~q t + ~ ~q = (8.42a) ~q = U U 2 U 3 k ~ = U 2 3 U = U 2 = U 3 = c 2 2 c 2 3 c 2 U U U (8.42b) (8.42) (8.4) ~q = ~q = N=J ~ N ~ = J~q = ~q N ~ ; ~N = ~N ; = ;U = = ;U 2 = = ;U 3 = = 2 ;~ ;~ 2 ;~ 3 ~ ;k= = ;= = U U 2 U 3 u 2 =2 2 3 =~ k (8.43a) (8.43b)
20 2 d~q =( ~q = ~q)d~q =( N=J)d~q ~ ~ ~ ~ = ~ N ; ~ ~ N = ~ N ; ~ R ~ ~ L ~ N = ~ R ~ ~ L (8.44) ~ ~ L ~ R ~ = L ~ ; ~ = ^ ~L = ~R = ~ N ; ;=c 2 ; 2 2 = 22 ; 3 3 = 33 =c ; 2 = ; 3 23 = =c ; 3 = ; 2 32 = =c 2 3 ; =c =2 c 2 =2 22 c 3 =2 33 c ;=2 c ; =2 2 2 = =2 33 =2 2 =2 ; 2 = = =2 3 = =2 22 ; 3 =2 3 =2 c=2 2 c= c=2 33 ;c=2 (8.38) ~L J (8.45a) ~N (8.45b) (8.45c) ~q t + F ~ = L ~ ~q t + ~ L ~ ~q = (8.46) (8.36) k
21 2 8.3 Euler ourant FL =maxj t=x j = maxj^ t= j y + > 4 y + = 4 ourant (8.8) hen 2 (8.4) (delta-form mlct method) ni +t o ( n +D ) q n = rhs n (8.47a) x rhs = ;t F +D+ q n+ = q n +q n x ni +t o ( n x +D ) q (m) = ;(q (m;) ;q n )+ 2; rhs n +rhs (m;) (8.47b) q (m) = q (m;) +q (m) q = u u 2 u 3 e k D = ; x F = 2 3 (+ t ) k x + t u u u + u 2 u + 2 u 3 u + 3 x Hu ku u = ; ( = 2 3) f f 2 f 3 f u P ;;D k (c P ;c 2 f;f 3 D) (8.47c) (D q n )=x =x q n (8.47a) q n
22 22 (8.47b) t q n =(q (m;) ;q n )+q (m) q (m;) ;q n q (m) (8.) hen 2 (8.4) ni +t o ( ~ n + D ~ ) ~q n n = rhs (8.48a) rhs = ;t ^F + ^D+^ ni +t o ( ~ n + D ~ ) ~q (m) =~q (m;) +~q (m) ~q n+ =~q n +~q n ~q (m) = ;(~q (m;) ; ~q n )+ 2; rhs n + rhs (m;) (8.48b) ~q = J U U 2 U 3 e k ^D = ; J j ^F = J U u U + u 2 U + 2 u 3 U + 3 j j2 j3 jk u k ;q j HU ku U k j (+ t )k= k k j + t = k ( = 2 3) ^ = ;J f f 2 f 3 f k u k P ;;D k (c P ;c 2 f;f 3 D) (8.48c)
2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
untitled
9 9. 9. 9. (FEM, nite element method) 4 9.. (element) (mesh discretization) DT LOK DT M([ ],[ ] )=[ ] DIMENSION M(,NF) DT M/,4,5,,5,,,5,6,,6,,,6,7, 4,8,9, 4,9,5,.../ DIMENSION M(4,NF) DO I=,IF- DO J=,JF
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2
3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1
B ver B
B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................
名称未設定
! = ( u v w = u i u = u 1 u u 3 u = ( u 1 u = ( u v = u i! 11! 1! 13 % T = $! 1!! 3 ' =! ij #! 31! 3! 33 & 1 0 0%! ij = $ 0 1 0 ' # 0 0 1& # % 1! ijm = $ 1 & % 0 (i, j,m = (1,,3, (, 3,1, (3,1, (i, j,m
合併後の交付税について
(1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
取扱説明書 [F-02F]
F-02F 4. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d a b cd 9 e a b c d e 20 2 22 ab a b 23 a b 24 c d e 25 26 o a b c p q r s t u v w d h i j k l e f g d m n a b c d e f g h i j k l m n x 27 o
000 001
all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic
13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x
閨75, 縺5 [ ィ チ573, 縺 ィ ィ
39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
数値計算:有限要素法
( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ
B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語
A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE
u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1
5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
Abstract :
17 18 3 : 3604U079- Abstract : 1 3 1.1....................................... 4 1................................... 4 1.3.................................. 4 5.1..................................... 6.................................
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
P MB-Z.indd
エアシリンダ ø, ø, ø, ø, ø, ø 質量 New 16%削減 1.69kg RoHS ø-ストローク CJ1 CJP 従来品 2.01kg CM3 ロッドカバー ヘッドカバー 形状変更により質量削減 CG3 1 CS1 CS2 D- -X 技術 資料 383 øøøøøø MD D -Z- N V -M9W N 2 V 1 V1 W2 D2 T W 2 D2 N2 C1 G L V1 N
(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h
6 6.1 6.1.1 O y A y y = f() y = f() b f(b) B y f(b) f() = b f(b) f() f() = = b A f() b AB O b 6.1 2 y = 2 = 1 = 1 + h (1 + h) 2 1 2 (1 + h) 1 2h + h2 = h h(2 + h) = h = 2 + h y (1 + h) 2 1 2 O y = 2 1
2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )
http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
d bd o o p p i i u u j j du d f f g h h -
- d bd o o p p i i u u j j du d f f g h h - 3 d p dp d 3 p -3 -4 -5 -6 u d d y f b d v p bd Uu XdXd Xd Xf Pp -7 h zj x j h 3 t y -8 -9 i id f d o p u i Wy Xd Ii r i v d -0 c c w r w q q q w q - - u u d
50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq
49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r
7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E
B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................
(2) ( 61129) 117, ,678 10,000 10,000 6 ( 7530) 149, ,218 10,000 10,000 7 ( 71129) 173, ,100 10,000 10,000 8 ( 8530) 14
16 8 26 MMF 23 25 5 16 7 16 16 8 1 7 16 8 2 16 8 26 16 8 26 P19 (1) 16630 16,999,809,767 55.69 4,499,723,571 14.74 9,024,172,452 29.56 30,523,705,790 100.00 1 (2) 16 6 30 1 1 5 ( 61129) 117,671 117,678
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
slide1.dvi
1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +
取扱説明書[L-02E]
L-02E 13.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 a a a 35 a a a 36 37 a 38 b c 39 d 40 f ab c de g h i a b c d e f g h i j j q r s t u v k l mn op
A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.
A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,
Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1
Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization
1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1
1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................
(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)
(5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V
K E N Z OU
K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................
構造と連続体の力学基礎
II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton
http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
IA [email protected] Last updated: January,......................................................................................................................................................................................
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A
1
1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y
KENZOU
KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................
ae9 t Y Y v I o t y V U t y qv d, nfufil.lu9lfi1utia{'}un0a51.i nanls:?iln10{ila1?41il't5tru'tzua{1!fl0fit1nta{r,iltj't:?tlftl}.j1lljttfift{t!uzua.i't
ae9 t Y Y v I o t y V U t y qv d, nfufil.lu9lfi1utia{'}un0a51.i nanls:?iln10{ila1?41il't5tru'tzua{1!fl0fit1nta{r,iltj't:?tlftl}.j1lljttfift{t!uzua.i'tu 1$ ra n a 1 : uuu frr u ro n a r :d : v n a or
Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x
University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )
A
A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................
Fubini
3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................
22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34
22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34 35 10 12 36 10 12 37 10 38 10 11 12 39 10 11 12 40 11 12 41 10 11
p = mv p x > h/4π λ = h p m v Ψ 2 Ψ
II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r
2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)
( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )
1.... ( ) 5. VSS.. 8. 9. (VIM ) 1. ( ) 11. (ANN ) 1. 1. ( ) 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M
各位 平成17年5月13日
9000 1 6 7 8 8 9000 1960 1 2 2 3 3 1471 4 1362 5 2006 6 7 8 1967 9 1988 1988 10 1000 1348 5000 3000 2 11 3 1999 12 13 14 9000 A 15 9000 9000 9000 10000 16 6000 7000 2000 3000 6800 7000 7000 9000 17 18
