untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 (substantal dervatve) Euler Naver-Stkes ur t u 2 (streamlne).(a) x ( ) A (prperty ) ' B 'ur' ' t (path lne) ru =0 d dt ' r(u') (cnservatve frm) (nncnservatve frm) (gradent frm) 2 (ur') 00 u 00 ' 0 ' 0 2x ' 0 ' 0 v 00 2y (ru') 00 (u') 0 (u') 0 (v') 0 (v') 0 2x 2y ru' Gauss ZZ ru' dxdy = nu' ds nu' ' IX JX = j= IX JX = j= (ur') j xy (ru') j xy

2 2 (shcks) (slp surfaces) (nterfaces) B 3 '' tur' u A ' (a) Path lne H ' n n ' ' (b).:. dt ur' = (') (') Naver-Stkes 2 CFD 2 (Rchardsn ) (upstream-derence scheme, upwnd-derence scheme) (f x ) x x (f f )O(x) (u 0) x (f f )O(x) (u < 0) (.2a) u (' ' )u (' ' ) O(x) (.2b) Reynlds Naver-Stkes Euler USA 20 CFD 5 CFD 5

3 3 f = u' u =(ujuj)=2 u = u u ' ' (f x ) = u ju j 2x {z } 2x (' 2' ' ) {z } 2 O(x) 2 (=2)ju 2 '=@x 2 ' = u 2 (secnd-rder central-dernce) (artcal vscsty dusn) (cnservatve) (f x ) = x (h =2 h =2 ) (.3) h =2 (numercal ux) x =2 f 2 h =2 = u =2 ' ' 2 (.) h Re =2 = 2 (f f ) 2 ju =2j' =2 (.5) ' =2 = ' ' Re 3 2 (f x ) = = 2x (f 2 f 3f )O(x 2 ) (u 0) 2x (3f f f 2 )O(x 2 ) (u <0) x x f f 2 (f 3=2 f =2 ) O(x 2 ) (u 0) f f 2 (f =2 f 3=2 ) O(x 2 ) (u <0) 2 2 Re h =2 = h Re =2 u ' =2 =2 u ' =2 3= (f f f x ) = O(x 2 ) 2x = x x f f 2 (f =2 f =2 ) O(x 2 ) (u 0) f f 2 (f =2 f =2 ) O(x 2 ) (u <0) 3 Re, P.L., Apprxmate Remann slvers, parameter vectrs, and derence schemes, J. Cmput. Phys., 3, 357{372. (.6)

4 h =2 = h Re =2 2 ju =2j' =2 (.7) Chakravarthy-Osher 2 2 n h CO =2 = hre =2 u ()' =2 =2 ()' =2 (u =2 0 ) n u ()' =2 3=2 (u =2 < 0 ) (.) {z } 2 ()' =2 {z } 2 = 2 = 2 e t e t = 2 (3)x2 (f xxx ) O(x 3 ) u 0 u 0 2 (f 2 f 3f )=2x O(x 2 ) 0 (f 2 5f 3f f )=x O(x 2 ) /3 3 (f 2 6f 3f 2f )=6x O(x 3 ) /2 QUICK (f 2 7f 3f 3f )=x O(x 2 ) 2 (f f )=2x O(x 2 ) 3 u < ==3 O(x 3 ) Chakravarthy-Osher ==2 QUICK 3 Lenard QUICK h =2 h =2 u 0 3 f f f 2 x =2 f 2 f f 2 x =2 h =2 = (f 6f 3f ) u (' =2 6' 3' ) h =2 = (f 2 6f 3f ) u (' =2 2 6' 3' ) QUICK (.3) u <0 QUICK h =2 = u=2 (' 9' 9' ' 2 )ju =2 j(' 3' 3' ' 2 ) (.9) 6 QUICK (f x ) (f 2 0f 0f f 2 )=6x (jujx 3 =6)' () juj(' 2 ' 6' ' ' 2 )=6x Lenard, B.P., A stable and accurate cnvectve mdellng prcedure based n quadratc upstream nterplatn, Cmputer Meth. Appl. Mech. Engng., 9(979), 59{9.

5 5 O(x 2 ) (artcal dsspatn) O(x 3 ) O(x 2 ) (f x ) (f 2 f f f 2 )=2x 3 h =2 = u =2(' 7' 7' ' 2 )ju =2 j(' 3' 3' ' 2 ) (.0) 2 ==2 3 Kawamura- Kuwahara 5 == 3 (numercal vscsty) ju jx (' 2' ' ) ju j@ 2 '=@x 2 x ju jx (' 2 ' 6' ' ' 2 ) ju j@ '=@x x 3 ju jx (' 3 6' 2 5' 20' 5' 6' 2 ' 3 ) ju j@ 6 '=@x 6 x 5 ' ' t ' ' t ' ' (smthng) u u<0(x<x ) u 0(x x ) (.2) f j (f x ) = x (f f ) x (f f ) (f x ) = = u j ' j (j = ) x (f f ) (u 0) x f (u < 0 u 0) x f (u < 0 u 0) x (f f ) (u < 0) f f x 5 Kawamura, T. and Kuwahara, K., Cmputatn f hgh Reynlds number w arund crcular cylnder wth surface rughness, AIAA Paper {030, (9).

6 6 O(h 0 ) Re (.5) (f x ) x (f f ) (u =2 > 0) 2x (f f ) (u =2 =0) 0 (u =2 < 0 u =2 > 0) 2x (f f ) (u =2 =0) x (f f ) (u =2 < 0) O(h 0 ) 2 u Chakravarthy- Osher h CO =2 = f ()f =2 ()f =2 f {z } ()f 3=2 {z } 2 ()f =2 {z } 2 (u =2 0 ) (u =2 < 0 ) (.) f j (f x ) = = u =2 ' j nu =2 ' x ()' =2 ()' =2 u =2 ' ()' 3=2 ()' =2 nu =2 ' x ()' =2 ()' =2 u =2 ' ()' =2 ()' =2 nu =2 ' x ()' 3=2 ()' =2 u =2 ' ()' =2 ()' =2 (u =2 0) (u =2 < 0 u =2 0) (u =2 < 0) 3 (x 2 =2)(u xxx '3u xx ' x 6u x ' xx ) x 2 (3)x 2 =2 (u' xxx ) f = u ' j =2 j f = jsgn(u )jf j =2 j u =2 2 ==3 2 (x 2 =2)(u xxx '3u xx ' x 6u x ' xx u' xxx ) ==3 2 Chakravarthy-Osher u (.) f j=2 = u ' j=2 j=2 u

7 T VD 7 n 2 x f =2 ()f =2 (u 3=2 < 0 u =2 0) (f x ) = x ()(f =2f =2 ) (u =2 < 0 u =2 0) n x ()f =2 2 f =2 (u =2 < 0 u 3=2 0) (u x ') ()= (u' x ) O(x 0 ) u <0 u>0.2 TVD 2 TVD (.) 0 dt u@' =0 TVD '(x t) (ne parameter famly f characterstcs) dx=dt = u 6 ' (dscntnutes) 7 u ' xt (system) R (ttal varatn) TV j' x jdx TVD(ttal varatn dmnshng) TV TV(') X TVD j j' j ' j j (.3) TV(' n ) TV(' n ) (.) 6 (.2) xt '(x t) r' =(' x ' t) a (u ) 0 d=dt = ar a ' 0 ' a '(x t) =cnst. c '(x t) =cc '(x t) =c c c 7 ' x 99.2

8 TVD (TVD scheme) TVD (.) TVD () ' () ' TVD (.) (.2) d'=dt = g R t dx=dt = u ' = ' 0 gdt t0 ' TVD (.) TVD (.) TVD ' TVD () () TVD () () Re TVD (.2) ' n (h =2 h =2 ) n = ' n ()(h =2 h =2 ) n (.5) = t=x (.5) Re (.5) RHS = ' n () 2 = ' n () 2 (f f )ju =2 j' =2 (f f )ju =2 j' =2 n u=2 ' =2 u =2 ' =2 ju =2 j' =2 ju =2 j' =2 n = ' n () u =2 ' =2 u =2 ' =2 n (.6) TV TV(RHS) =X ()(u j=2 u j=2 ) ' j=2 3 ()(u j=2 ' j=2 u j3=2 ' j3=2) u 0 u 0 ()juj (.7) TV(RHS) X f()(u j=2 u j=2 )gj' j=2j ()(u j' j=2 j=2ju j' n j3=2 j3=2j) X = j' n j=2 j = TV('n ) 9 TV(RHS) TV(' n ) 0 TV(LHS) =X (u j=2 u j=2 ) ' j=2 (u j=2 ' j=2 u j3=2 ' j3=2) X f(u j=2 u j=2 )gj' j=2j(u j=2 j' j=2ju j3=2 j' j3=2j) n = X j' n j=2 j = TV('n ) 9 a b c 0 jabcj jajjbjjcj 0 a b c 0 jabcj jajjbjjcj n n

9 T VD 9 TV(' n ) TV(LHS) =TV(RHS) TV(' n ) Re 3 (.7) TVD (.) TVD Taylr 2 TVD TVD TVD TVD (lmter) Chakravarthy-Osher mnmd TVD h CO =2 = hre =2 () ~ f =2 () ~ f =2 () ~ f 3=2 () ~ f =2 (.) ~ f j=2 = u =2 mnmd(r j=2 b)' j=2 (j = ) ~ f j=2 = u =2 mnmd(r j=2 b)' j3=2 (j = ) (.9) mnmd(x y) sgn(x) max[ 0 mnfjxj sgn(x)yg] (.20) = x y (jxj jyj x y ) (jxj > jyj x y ) 0 (x y ) r j=2 = ' j=2=' j=2 f j=2 = u ' =2 j=2 (j = ) (.9) mnmd(mnmum-mdulus) ' j=2 ' j=2 mnmd(r ).2 b b 0 2 (slpe lmter) Chakravarthy-Osher TVD TVD

10 0 (.5) (.) RHS = ' n () hu =2 ' =2 u =2 ' =2 u =2 mnmd(r =2 b)' =2 u =2 mnmd(r 3=2 b)' =2 u =2 mnmd(r =2 b)' =2 u =2 mnmd(r =2 b)' 3=2 u =2 mnmd(r 3=2 b)' =2 u =2 mnmd(r =2 b)' =2 u =2 mnmd(r =2 b)' 3=2 u =2 mnmd(r =2 b)' =2 n = ' n () hu =2 ' =2 u =2 ' =2 u =2 mnmd( br =2 )' =2 u =2 mnmd(r 3=2 b)' =2 u =2 mnmd(r =2 b)' =2 u =2 mnmd( br 3=2 )' =2 u =2 mnmd(r 3=2 b)' =2 u =2 mnmd( br =2 )' =2 u =2 mnmd( br 3=2 )' =2 u =2 mnmd(r =2 b)' =2 Chakravarthy-Osher RHS Re RHS (.6) RHS (.6) u =2 ~u =2 = u =2 ~u =2 = u =2 h n u =2 u =2 n u h n u =2 u =2 =2 u =2 n u =2 u =2 mnmd( br =2 )mnmd(r 3=2 b) mnmd(r =2 b)mnmd( br 3=2 ) mnmd( br =2 )mnmd(r 3=2 b) mnmd(r =2 b)mnmd( br 3=2 ) n (.2a) (.2b) ~u LHS =2 (r) r.2: Re's superbee max[0 mn(r 2) mnmd(r )

11 T VD Chakravarthy-Osher (.) (.7) 3 ~u 0 ~u 0 ()j~uj (.22) TVD (.22) 2 (.2) [ ] ( 0) r =2 =0 r 3=2 b 2 r =2 =0 r 3=2 b [ ] f()=gbf()=g b (3)=() (.23) (.22) 3 j~uj (.2) [ ] u =2 u =2 r 3=2 =0 r b =2 2 r 3=2 =0 r =2 b [5()b]= ()b juj b = f5()bg (.2) Chakravarthy-Osher (.) (.23) b CFL = jujt=x t (.2) TVD b Chakravarthy-Osher ==3 b 3 b = ( =0) CFL 0. ( =) CFL CFL LU-SGS CFL Crank-Nchlsn ( ==2) CFL 0. CFL b 2.5 f (x) b f (x) 3 b > < h CO =2 = f 6 mnmd(f =2 f =2 ) 3 mnmd(f =2 f =2 ) (u 0) f 6 mnmd(f 3=2 f =2 ) 3 mnmd(f =2 f 3=2 ) (u <0) (.25) u? 0 f =2? 0 u>0 f =2 > 0 =0 f =2 =f =2 = r n h CO =2 = f 0 6 mnmd( r) 3 mnmd(r ) f =2 (.26) = f 0 :5f =2 (r>) ( 2 mnmd ) f 0 (2r)f =2 =6 (= <r ) (3 ) f (0 <r =) ( mnmd ) f 0 (r 0) (, 2 mnmd ) (.27)

12 2 Chakravarthy-Osher TVD r f =2 f =2 r h =2.3 = r h =2 3 h =2 =(f 5f 0 2f )=6 f 2 h =2 f f 0 f [ p ].3: h =2 = f 0 f(=6)mnmd( r)(=3)mnmd(r )gf =2 (u >0 f =2 > 0 ) (.5) ( =0) ' n = ' n (hn =2 hn =2 ) u ' n 0 u>0 'n 0 ' n ' n 0 'n 0 'n =2 0 'n =2 0 u >0 f n =2 0 f n 0 mnmd =2 h n =2 = f n (=6)mnmd(f n 3=2 f n =2 )(=3)mnmd(f n =2 f n 3=2 ) f n f n =2 =6f n =2 =3=f 0 n (.23) hn =2 f 0 n b h n =2 = f 0 n hn 2=3 f n 3f n =2 =2 'n 0 ' n 0 'n ' n 5f n =2 =2 (.2) ' n ' n 0 t ( >0) (h n =2 hn =2 )(hn =2 hn =2 ) u u<0(x<x ) u 0(x x )

13 T VD 3 (f x ) 0 = nu =2 '0 6 mnmd(' =2 ' =2 ) 3 mnmd(' =2 ' =2 ) u =2 ' 6 mnmd(' 3=2 ' =2 ) 3 mnmd(' =2 ' 3=2 ) x x (u =2 0) nu =2 '0 6 mnmd(' =2 ' =2 ) 3 mnmd(' =2 ' =2 ) u =2 '0 6 mnmd(' =2 ' =2 ) 3 mnmd(' =2 ' =2 ) x (u =2 < 0 u =2 0) nu =2 ' 6 mnmd(' 3=2 ' =2 ) 3 mnmd(' =2 ' 3=2 ) u =2 '0 6 mnmd(' =2 ' =2 ) 3 mnmd(' =2 ' =2 ) (u =2 < 0) mnmd 3 u 2 2 mnmd r 3 u ' 2 (f x ) 0 =(u =2 u =2 )' 0 =x 0 mnmd 2 2 h (2) =2 = h() =2 2 ju =2j (r =2 )' =2 (u = u ) (.2) h () (r) (r) = 2 =2 TVD Re 'superbee' (r) = max[0 mn( 2r) mn(2 r)] = 0 (r 0) ( ) 2r (0 <r<=2) (=2 r ) (2 ) r ( <r 2) (2 ) 2 (r >2) <r2 2 r<=2 r>2 (r) = mnmd[2r (r2)=3 2] = 0 (r 0) ( ) 2r (0 <r<0:) r2 3 (0: <r ) (3 ) 2 (r >) Sweby, P.K., Hgh reslutn schemes usng ux lmters fr hyperblc cnservatn laws. SIAM J. Numer. Anal., 2(9), 995{0.

14 3 (r) () = ('(x) ' =2 ) 2 (r) = 2 (r) =r ( ) mnmd( r) superbee van Leer (rjrj)=(r) (0)=0 () = () =2 2 h (2) =2 = h() =2 2 ju =2j (r =2 )' =2 (u = u ) (.29) 3 TVD (r) = mnmd[2r (2r)=3 2] = 0 (r 0) ( ) 2r (0 <r<0:25) 2r 3 (0:25 <r 2:5) (3 ) 2 (r >2:5).3 TVD 2 (.) 2 2 ==3 3 h (3) =2 = h() =2 6 f =2 3 f =2 6 f 3=2 3 f =2 (.30) f 3 f 2 f f f f 2 (u 0) =2x h =2 / h =2 / =2x 0 h =2 /2 7 7 h =2 /2 7 7 u 0 h =2 = f 2 (f 25f f 3f )=f 2 (f 3=2 f =2 3f =2 ) h =2 = f 2 (f 5f 7f f 2 )=f 2 (f =2 6f =2 f 3=2 ) 2 Yamamt, S. and Daguj, H., Hgher-rder-accurate upwnd schemes fr slvng the cmpressble Euler and Naver- Stke equatns, Cmput. & Fluds, 22(993), 259{270.

15 TVD 5 u<0 Chakravarthy-Osher (.) h =2 = h () =2 2 (f 3=2 f =2 3f ) =2 2 (f =2 6f =2 f 3=2 ) {z } 2 (3f =2 f 3=2 f 5=2 ) 2 (f =2 6f =2 f 3=2 ) {z } = h (3) =2 2 3 f =2 2 3 f =2 2 3 f 3=2 2 3 f =2 (.3) 3 f j=2 = 2 f j 2 f j = f j=2 2f j=2 f j3=2 (j = ) (.3) 3 (.30) 3 Df =2 = f =2 3 f =2 Df j=2 = f (.32) j=2 3 f (j = ) j=2 Df j=2 h =2 = h () =2 6 Df =2 3 Df =2 6 Df 3=2 3 Df =2 (.33) (.3) e t ( ) n e t = ! x f (5) O(x 5 )= 5 x f (5) O(x 5 ) 5! /5 5 /5 5 5 Df Df =2 = f 3 = f =2 Df j=2 = f j=2 5 3 f j=2 (j = ) (.32) ()= =()= ==3 Df (.3) Df j=2 = f j=2 6 3 f j=2 (j = ) (.35) =2x f xf 0 x 2 f 00 =2! x 3 f 000 =3! x f () =! x 5 f (5) =5! f f f f 0 0 f 3 f

16 6 (.33) (.) TVD TVD h =2 = h () =2 6 D~ f =2 3 D~ f =2 6 D~ f 3=2 3 D~ f =2 (.36) D f ~ j=2 = mnmd(df j=2 bdf ) (j = ) j=2 D f ~ (.37) j=2 = mnmd(df j=2 bdf j3=2 ) (j = ) ==5 5 Df Df =2 = f = f =2 Df j=2 = f j=2 5 3 f j=2 (j = ) (.3) ==3 Df j=2 = f j=2 6 3 f j=2 (j = ) (.39) 3 f 3 5 [ p ].: f j=2 D ~ f j=2 Df j=2 3 f Df TVD 2 TVD (.2a) TVD ~u =2 = u =2 h n u C 6 C n u 3 =2 u =2 =2 u =2 mnmd( br =2 )mnmd(r =2 b) mnmd(r =2 b)mnmd( br =2 )

17 TVD 7 r =2 = D' =2=D' =2 r =2 = D' 3=2=D' =2 C = D' =2 =' 3 =2 b (.23) C 0 <b6c 2 (.0) t (.2) b b = C(2b) (.) 6 b b =3C=2. f (x) D f(x) ~ D f ~ j=2 = f j=2 3 f j=2 =6 mnmd Df j=2 Chakravarthy-Osher TVD 2 f (x) f mnmd b 2 f mnmd f (x) f (x) 3 f j=2 = 2~ f j 2~ f j (j = ) (.2) 2~ f k = mnmd(2 f k b 2 2 f k ) 2~ f k = mnmd(2 f k b 2 2 f k ) 2 f k = f k=2 f k=2 (.3) Df Df j=2 = f j=2 6 (b 2) 2 f j (R>b 2 ) f j=2 6 (R)2 f j (=b 2 R b 2 ) ( ) f j=2 6 (b 2)R 2 f j (0 <R<=b 2 ) f j=2 (R 0) (3 ) (.) R = 2 f j = 2 f j (.37) mnmd 2. Df =2 = f =2 6 (b 2) 2 f f =2 2 (f 3=2f =2 ) Df 3=2 = f 3=2 6 (b 2) 2 f f 3=2 2 (f 3=2f =2 ) b 2 6 (b 2) 2 <b 2 (.5) 3 C C Daguj, H., Yuan, X. and Yamamt, S., Stablzatn f hgher-der hgh reslutn schemes fr the cmpressble Naver-Stkes equatns, Numer. Meth. Heat & Flud Flw, 7(997), 250{27.

18 (.0)(.) C C = D' =2 ' =2 = Df =2 f =2 = 6 (b 2)(r ) (R >b 2 ) 6 (r 2r ) (=b 2 R b 2 ) 6 (b 2)(r ) (0 <R<=b 2 ) (R 0) r = f =2 =f =2 R = 2 f = 2 f b 2 = C = (r )=2 (R >) (r r )=6 (= R ) (r )=2 (0 <R<=) (R 0) C 0 < C (.6) f 0 2 f 0 R == r =0 r =5= C = f < 0 2 f<0 f < 0 2 f 0 f 0 2 f < 0 R = r =0 r =5= C C TVD b b 2 Curant CFL 0 <b 0 3 ( ) (.7a) ()b CFL b = 39 (= 2:5) (.7b) 6 0 <b 2 (.7c) 3 TVD TVD (.36) (.37) (.39){(.3) b b b 2 (.7) TVD 3 Chakravarthy-Osher TVD 3 Chakravarthy-Osher f Df 3 Chakravarthy- Osher TVD (R <0) (.) 3 3. xt. x (unfrm rectangle grd) t (x t n )

19 9 ' n Z n t = ' t n (')dt (.) t n (.) (cnvectve-derence methd) ' n = ' n t (.9) t = t n t n x = x Z t n t n udt (.50) x x = u t (.5) (.9) ' (.5) tn ' Lagrange X X X u = jk C () C () C ()u j k C () ::: X = X = 2X =2 2X =2 3X =3 C ()u u e u=2 e u=2 C ()u u e u=2 2 () e 2 u C ()u u n eu=2 2 (m ) e 2 u n eu=2 2 () e 2 u C ()u u u=2 e n e 2 () 2 u 3 (m )( e 3 u =2 e 3 u =2 ) C ()u u n eu=2 2 (m ) e 2 u 3 (m m ) e 3 u 3=2 n eu=2 2 () e 2 u 3 (m ) e 3 u 3=2 = =x =2 = u t=x =2 =( jj)=2 6.3.

20 20 X = X = 2X =2 2X =2 3X =3 C ()u u (jj)u u C ()u 2 ()u 2( 2 )u ()u C ()u u 2 ()u 2 2(2)u (3)u 2 (3)u 2(2)u ()u 2 C ()u 2 ()u 2( 2 )u ()u 6 (2 ) (u 2 3u 3u u ) (u 3u 3u u 2 ) C ()u u 6 ()(2)u 3 3()(3)u 2 3(2)(3)u (2)(3)5 u (3)(2)5 u 3(3)(2)u 6 3(3)()u 2 (2)()u 3 (.9) (.5) t C =max(jujt=x jvjt=y jwjt=z) Curant x x ( ) 2 t n ' (.9) ' n t (.) (.) ' n(c) = ' (')t (.52) (.9) ' n x t n f (c) =(f n f )=2 (.53) (.5) (c) = x x = u t (.5) t Curant C =max(jujt=x jvjt=y jwjt=z) t

21 2 (p)! u ' (c)! u! un(c)! (c)! u '! un(p) ' n(p)! n! un(c) ' n(c)! n ' 2 t n t n t n n ' ' n ' ' Path lne B.5: Path lne A Curant (mded cnvectve-derence methd) Curant 2 ' n Curant jcj (.5 Path lne A) (Path lne B) x ( ) t = t n t jk = max t u jk u jk v jk v jk w jk w jk x =2 x =2 y j=2 y j=2 z k=2 z k=2 t jk (.55) t jk = t = t n t n (jcj ) ' n (jcj > ) =t jk = u jk =x =2 x = x =t jk = u jk =x =2 x = x x = x = v jkt jk y j=2 = w jkt jk z k=2 (.56)

22 22 2 u = ( )u n (2 )u n (.57) u = u n ( )u n u = 2 ( )un (2 )u n 2 ( )(2 )un (.5) = t jk =t = u = u n xt yt yzt ' n t u n = u n.(a) ' (.) (.) t = t n t n ' t n t n 2 2 x ' ' n ' n ( ) ' n ' n

C:/大宮司先生関連/大宮司先生原稿作業用1/圧縮性流れの解法3.dvi

C:/大宮司先生関連/大宮司先生原稿作業用1/圧縮性流れの解法3.dvi 8 aldwn-lomax hen 8. +ru = t (8.a) u+r(uu+) =r +f t (8.b) e +rhu = r ( u);r q+f u t (8.c) u e = (+u 2 =2) H = h+u 2 =2=(e+)= q f (8.) (comressble Naver-Stokes equatons) T h = += = RT d = c v dt dh = c

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

untitled

untitled 9 9. 9. 9. (FEM, nite element method) 4 9.. (element) (mesh discretization) DT LOK DT M([ ],[ ] )=[ ] DIMENSION M(,NF) DT M/,4,5,,5,,,5,6,,6,,,6,7, 4,8,9, 4,9,5,.../ DIMENSION M(4,NF) DO I=,IF- DO J=,JF

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

名称未設定

名称未設定 ! = ( u v w = u i u = u 1 u u 3 u = ( u 1 u = ( u v = u i! 11! 1! 13 % T = $! 1!! 3 ' =! ij #! 31! 3! 33 & 1 0 0%! ij = $ 0 1 0 ' # 0 0 1& # % 1! ijm = $ 1 & % 0 (i, j,m = (1,,3, (, 3,1, (3,1, (i, j,m

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

8 1 1., y y (, +1) (-1, ) (, ) (+1, ) y (, -1) 1.1: (,y ) y y ±1 = ± y ±1 = y ± y (, ), = (,y ) (,y ) +1, = ( +, y )=, + 1, = (, y )=, (1.) (1.3) ( )

8 1 1., y y (, +1) (-1, ) (, ) (+1, ) y (, -1) 1.1: (,y ) y y ±1 = ± y ±1 = y ± y (, ), = (,y ) (,y ) +1, = ( +, y )=, + 1, = (, y )=, (1.) (1.3) ( ) 7 1 () Brgers 1.1 a + b y + c y + d + e + f + g =0. (1.1) y b 4ac > 0 t c =0 b 4ac =0 t = κ b 4ac < 0 + y =4πGρ 8 1 1., y y (, +1) (-1, ) (, ) (+1, ) y (, -1) 1.1: (,y ) y y ±1 = ± y ±1 = y ± y (, ), =

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

粒子法による流れの数値解析

粒子法による流れの数値解析 21 2002 230 239. Numercal Analyss of Flow usng Partcle Method Sech KOSHIZUKA 1 1 2 Los Alamos PAF Partcle-and-Force MAC Marker-and- Cell MAC PIC Partcle-n-Cell 319-1188 2-22 E-mal: kosh@utnl.jp PIC Los

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a <

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a < 22 9 8 5 22 9 29 0 2 2 5 2.............................. 5 2.2.................................. 6 2.3.............................. 8 3 8 4 9 4............................. 9 4.2 S(, a)..............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.  このサンプルページの内容は, 新装版 1 刷発行時のものです. C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009383 このサンプルページの内容は, 新装版 1 刷発行時のものです. i 2 22 2 13 ( ) 2 (1) ANSI (2) 2 (3) Web http://www.morikita.co.jp/books/mid/009383

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

untitled

untitled 1 2 3 4 5 6 7 8 9 10 11 12 13 13,996t 0% 2,379.3t 17.0% 4,630t 0% 532.4t 11.5% 72.9% 96.6% 3,000t 2.9% 3,000t 100.0% 20t BDF 75.0% 18t 90.0% 1,053t 1,053t 100.0% 1,068t 19.9% 854t 80.2% 670t 21.8% 670t

More information

G G 4 G G 1 c1 f 1 2 G G 3 4 123 1 G f123 4

G G 4 G G 1 c1 f 1 2 G G 3 4 123 1 G f123 4 8 1 15 2 G 3 f f A G f A 11 G G 2 G 1 2 f 2 A G C G G 4 G G 1 c1 f 1 2 G G 3 4 123 1 G f123 4 A G G 3 L f 1 G 2 1 3 4 2 G G G G f 1 12 g 2 G G f G g 3 G f 1 2 12 G G 1 1 G G 2 G 1 7 1 2 G 1 G 1 8 1 Gf

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π 8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B

More information

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Date 2017 URL http://hdl.handle.net/2433/229150 Right

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

C:/大宮司先生原稿/数値積分数値微分.dvi

C:/大宮司先生原稿/数値積分数値微分.dvi 6 u(x) 6. ::: x ; x x x ::: ::: u ; u u u ::: (dscrete) u = u(x ) ( = :::) x ;x = h =cnst: x

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

閨 [

閨 [ 1303000709 000 03. 070503 170, 0 3 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 03010708030060405 タ05 縺0400703 060504050ィ 03090405080050400909 03.03. 030007030000908 060005090809 0501080507 080500705030504040701

More information

表1_表4

表1_表4 HN- 95 HN- 93 HN- 90 HN- 87 HN- 85 HN- 82 HN- 80 HN- 77 HN- 75 HN- 72 HN- 70 HN- 67 HN- 65 HN- 60 HN- 55 HN- 50 HN- 45 HN- 40 HN- 35 HN- 30 HN- 25 HN- 20 HN- 15 HN- 10 H02-80H H02-80L H02-70T H02-60H H05-60F

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

取扱説明書[N906i]

取扱説明書[N906i] 237 1 dt 2 238 1 i 1 p 2 1 ty 239 240 o p 1 i 2 1 u 1 i 2 241 1 p v 1 d d o p 242 1 o o 1 o 2 p 243 1 o 2 p 1 o 2 3 4 244 q p 245 p p 246 p 1 i 1 u c 2 o c o 3 o 247 1 i 1 u 2 co 1 1 248 1 o o 1 t 1 t

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( ) 1.... ( ) 5. VSS.. 8. 9. (VIM ) 1. ( ) 11. (ANN ) 1. 1. ( ) 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information