1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

Similar documents
1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

和佐田P indd

TQFT_yokota

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


tnbp59-21_Web:P2/ky132379509610002944

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

研修コーナー

パーキンソン病治療ガイドライン2002

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

本文/目次(裏白)

i

( ) ) AGD 2) 7) 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

SPring-8_seminar_

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

陦ィ邏・2

日本内科学会雑誌第102巻第4号

2012専門分科会_new_4.pptx

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

chap1_MDpotentials.ppt

1 2 2 (Dielecrics) Maxwell ( ) D H

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

QMI13a.dvi

DVIOUT-fujin

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

液晶の物理1:連続体理論(弾性,粘性)

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

4/15 No.

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

第90回日本感染症学会学術講演会抄録(I)

橡超弦理論はブラックホールの謎を解けるか?

Ł\”ƒ-2005

プリント

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

TOP URL 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

: , 2.0, 3.0, 2.0, (%) ( 2.

02-量子力学の復習


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

ohpmain.dvi

第5章 偏微分方程式の境界値問題

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Microsoft Word - 九大物理集中講義テキスト'13.doc

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

MS#sugaku(ver.2).dvi

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

第8章 位相最適化問題

eto-vol1.dvi

untitled

スライド 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef


TOP URL 1

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

A

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE


68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

1

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

TOP URL 1

総研大恒星進化概要.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

QMI_10.dvi

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

meiji_resume_1.PDF

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Transcription:

11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA 1 2 2 N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r j R I (4) Z I N Ψ HΨ = EΨ (5) e 3 3 6 Ψ N r j Ψ = Ψ (r 1,, r N ) (6) 2

Ψ (r 1... r N ) = ϕ 1 (r 1 ),, ϕ N (r N ) (7) 7 N 3 [ 2 + V ion (r) + V H (r) ] σ =σ ϕ iσ (r) j ˆF jσ,iσ(r)ϕ jσ (r) = ε iσ ϕ iσ (r) (8) ˆF jσ,iσ(r) r 8 i It is now perfectly clear that a single configuration (Slater determinant) wave function must inevitably lead to a poor energy Coulson (1960) N N Ψ N K = {ϕ 1 ϕ N } Ψ N = K c K Ψ(K) (9) 3 3

CI Configuration Interaction CI CI 10 8 1 8 α 2/3 α Xα 3 3.1 Hohenberg-Kohn N Hohenberg-Kohn HK [1] N v 1 ( ) E G ρ(r) ρ(r) v 2 ( ) E G [ρ] N ρ (r) ρ (r) ρ(r) E G [ρ(r)] < E G [ρ (r)] (10) Hohenberg-Kohn 4

ψ ~ e ikr E = h2 k 2 2m ρ ~ const 1: E v [Ψ] Ψ Hohenberg-Kohn HK Ψ Ψ N 7 N N N 1 Ψ ρ HK ρ Ψ 1 Kohn 5

1 ψ k = e ikr k k k 2 ρ(r) = ψ(r) 2 k HK ψ ρ v ρ v ψ (11) HK ρ ψ v Hohenberg-Kohn ρ v v ρ v ψ ρ (12) 12 v ψ ρ 12 v ψ HK Hohenberg-Kohn 12 ρ v (13) 6

ρ ρ ψ v v 2: ρ v ρ v v ρ Hohenberg-Kohn v ρ 2 12 13 11 E G [ρ] E G [ρ] = F HK [ρ] + ρ(r)v(r)dr (14) Hohenberg- Kohn F HK [ρ] F HK [ρ] N Ψ F HK [ρ] = Ψ ˆT + ˆV ee Ψ F HK [ρ] ρ v ρ v Löwdin A. J. Coleman, 1963 7 (15)

Q ρ ψ 3: Levy ρ v n Hohenberg-Kohn 3.2 ρ n ρ HK Hohenberg Kohn Sham ρ v ρ v Levy n [3] 3 v ρ ρ v F HK [ρ] v ρ ψ ρ 8

HK ψ v ψ ρ Levy Q[ρ] = min Ψ ρ ˆT + ˆVee Ψρ Ψ ρ Q[ρ] HK 16 ρ ρ Ψ ρ ˆT + ˆV ee Ψ ρ Q[ρ] Q[ρ] ρvdr E[ρ] ρ v Q[ρ] 15 F HK [ρ] v 16 ρ v HK 3 ρ (16) 3.3 Thoms-Fermi HK N 15 N E[ρ] = T [ρ] + ρ(r)v(r)dr + U ee [ρ] (17) U ee [ρ] U ee [ρ] = 1 ρ(r)v H (r)dr + E xc [ρ] (18) 2 V H ρ(r ) V H (r) = r r dr (19) U ee 17 17 Thoms-Fermi T [ρ] = C TF dr [ρ(r)] 5/3 (20) 9

5 3 C TFρ(r) 2/3 + v(r) + ρ(r ) r r dr = µ (21) µ N 21 ρ(r) v(r) Thoms-Fermi 4 4.1 Thoms-Fermi Kohn-Sham [2] ρ(r) N {ϕ i (r)} ρ(r) = N ϕ i (r) 2 (22) i 22 2 T T s [ρ] = N ϕi 2 ϕ i i (23) 23 N E xc T s [ρ] T E xc 2 v xc (r) = δe xc[ρ] δρ 2 ρ(r) Ψ 22 ρ(r) (24) 10

ρ N N 2 ε i E = N ε i 1 2 i=1 ρ(r)v H (r)dr + E xc [ρ] ρ(r)v xc (r)dr (25) N 2 22 ϕ i (r) 22 {ϕ i (r)} ρ(r) {ϕ i (r)} 4.2 E xc [ρ] E xc [ρ] E xc [ρ] = Exc HOM (ρ) E xc [ρ] LDA ɛ xc (ρ(r)) [] () 11

LDA LDA LDA [9] LDA E xc [ρ] E xc [ρ] LDA LDA E xc [ρ] It is advisable to stop at the simple LDA W. Kohn (1984) LDA Exc HOM (ρ) Exc HOM (ρ) LDA LDA LDA 4.3 KS KS KS 12

i i ε i I i i E(n 1,, n i,, n N ) E(n 1,, n i 1,, n N ) I i = E(, n i, ) E(, n i 1, ) (26) I (1) = I N I (2) N 0 E(N) = N I (i) (27) N 27 E = i ε i I i = ε i 27 I (i) = ɛ N+1 i 25 I i = ε i I (i) = ɛ N+1 i N i=1 E(, n i, ) E(, n i 1, ) = ε i (28) 28 E n i = ε i (29) 13

Janak [4] 29 28 29 E i E(, n i, ) n i E(, n i,, n N ) E(n 1,, n i 1, ) ε i (, n i 0.5, ) (30) KS ε N 0 < n N 1 n N [5] 29 28 E(N) E(N 1) = ε N (31) 27 28 31 E(N) = N ε i (i) (32) i=1 N ɛ i = ɛ i (N) 4.4 1 14

1: HF DFT Ψ(x 1,, x N ) ρ(r) Ψ ρ ρ Ψ Ψ Ψ H Ψ E[ρ] LDA HF(S) KS [ 2 + V ion (r) + V H (r) + V Xα (r) ] [ 2 + V ion (r) + V H (r) + V xc (r) ] ϕ i (r) = ε i ϕ i (r) ϕ i (r) = ε i ϕ i (r) CI CI N LDA N 5 1. 2. ρ(r) ρ (r) ρ (r) ρ (r) ρ (r) 2 2 ρ αβ (r) LDA LSD 15

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136 B864 (1964). [2] W. Kohn and L. Sham, Phys. Rev. 140 A1133 (1965). [3] M. Levy, Proc. Natl. Acad. Sci. USA 76 6062 (1979). [4] J. F. Janak, Phys. Rev. B 18 7165 (1978). [5] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys. Rev. Lett. 49 1691 (1982). [6] O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Phys. Rev. B 20, 3136 (1979). [7] S. Lundqvist and N. H. March, eds., Theory of the Inhomogeneous Electron Gas (Plenum, New York, 1983). [8] J. Callaway and N. H. March, Solid State Physics 38 (Academic, New York, 1984) p. 135. [9] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989) [10] S. B. Trickey ed., Adv. in Quantum Chemistry 21, (Academic, San Diego, 1989) [11] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford, New York, 1989). [12] C. Fiolhais, F. Nogueira, M. Marques, eds., A Primer in Density Functional Theory (Springer, Berlin, 2003). 16