JMP V4 による生存時間分析

Similar documents
2 H23 BioS (i) data d1; input group patno t sex censor; cards;

201711grade1ouyou.pdf

untitled

総合薬学講座 生物統計の基礎

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Part () () Γ Part ,

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

こんにちは由美子です

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

meiji_resume_1.PDF

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

k2 ( :35 ) ( k2) (GLM) web web 1 :


II III II 1 III ( ) [2] [3] [1] 1 1:

1 Tokyo Daily Rainfall (mm) Days (mm)

*1 * Wilcoxon 2 2 t t t t d t M t N t M t n t N t n t N t d t N t t at ri

³ÎΨÏÀ

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

gr09.dvi

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

²¾ÁÛ¾õ¶·É¾²ÁË¡¤Î¤¿¤á¤Î¥Ñ¥Ã¥±¡¼¥¸DCchoice ¡Ê»ÃÄêÈÇ¡Ë

10:30 12:00 P.G. vs vs vs 2

数学概論I

chap9.dvi

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

untitled

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

構造と連続体の力学基礎

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

lecture

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

chap10.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Microsoft Word - 章末問題

TOP URL 1

untitled

数学の基礎訓練I

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

OHP.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

( ) Loewner SLE 13 February

Chapter 1 Epidemiological Terminology

keisoku01.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

II 2 II


QMII_10.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

limit&derivative

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4


入試の軌跡

推定モデル

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

I

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

tokei01.dvi

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.



I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

PDF

v_-3_+2_1.eps

2011de.dvi

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

H.Haken Synergetics 2nd (1978)

tnbp59-21_Web:P2/ky132379509610002944


1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

極限

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

30


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

29

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

研修コーナー

パーキンソン病治療ガイドライン2002

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

: , 2.0, 3.0, 2.0, (%) ( 2.

Note.tex 2008/09/19( )

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I ( ) 2019

untitled

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h

Transcription:

V4 1 SAS 2000.11.18

4

( ) (Survival Time)

1 (Event)

Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time

Start of Study End Start of Observation Censor Died Died Censor Died Time

()

Survival Time Analysis Proportion Survival Function 5000 10

,Weibull

(Survival Function) S(t) t (Proportion) F(t) S(t)=1-F(t) f(t) f(t) t

(Survival Function) S(t) 1 S(t) 1-S(t)=F(t) t

(hazard function) (rate) h(t) f(t)/s(t) 40 40 40 1

S(t) ( ) ds t dt S(t)

( ) = Pr ( ) ( ) = 1 St ( ) St obt t Ft ( ), ( ) = ( ) f t Ft f udu ( ) ht t 0 ( ) ( + ) ( ) ( < + ) Pr ob t T t tt t = lim t 0 t ( ) ( ) ( ) ( log St) St St t ds t 1 d = lim = = t 0 t St dt St dt

ht { Ht } ( ) ( ) ( ) ( logst ( )) Ht = hudu= log St St = exp d = t ( ) ( ) ( ) 0 dt

( ) ( ) ( ) ( ) ha t a ht ha ( t) = a ht ( ), = = a ht ht t t ( ) = exp ( ) = exp ( ) Sa t a h u du a h u du 0 0 t = exp h u du = 0 ( ) S( t) a a a a

3

t

Weibull Weibull ( ) f t S t β 1 β t t = exp α α α t = 1 F t = exp α ( ) ( ) β β h t ( ) f ( t) β t = = S( t) α α β 1

Weibull Weibull3 0 Weibull 1 1 1

Weibull f

Weibull 63.2 JMP(Beta) JMP(Alpha)

1 Weibull.JMP Weibull 1 2 3 3

time 10000 2.5 Weibull time f(t),f(t),s(t) h1(t) 2.5 h2(t) 1.0 h3(t) 0.5 40

1.1 1.Overlay Plot 2.

1.2 3.f(t) 1.Time 4.Y 2.X 5.OK

1.3 1.Connect Thru Missing 2.

1 Weibull.JMP h(t) 1 1 1

Calculator Cols Column Info. Current Properties Formula Edit Formula, 2 Col Name

LnNormal.JMP,, f t ( ) 1 1 logt = exp σt 2π 2 σ µ 2

( x µ ) 2 1 f( x) = exp, x 2 < <+ σ 2π 2σ ( t µ ) 2 1 x 2 σ 2π 2σ F( x) = exp dt, < x<+

( ) ( ) f t = λexp λt t 0, λ> 0 ( ) ( λ ) F t f(t) = 1 exp t t 0, λ > 0 t

( ln t µ ) 2 1 1 f() t = exp t 0 2 σ 2π t > 2σ ( ) F t ( ln x µ ) 2 1 t 1 = exp dxt 0 2 > 0 σ 2π x 2σ f(t)

49

V4, weibull,3 weibull,, Weibull

Weibull S t t = 1 F t = exp α ( ) ( ) ( ) log S t t = α β β t α log S( t) = log{ log ( )} S t β log t = α log logs t = β logα + β logt { ( )} β

2 Weibull.JMP 2 Weibull Column 1 Calculator,-lnS(t) Analyze Fit Y X,X time,y -lns(t)

2 Weibull.JMP Weibull time S(time)

Wiring JMP Time Analyze Distribution Fit DistributionWeibull

Weibull Weibull

Part II Survival 57

1 2 3 4

Survival Survival Distribution Kaplan-Meier Parametric Regression Proportional Hazards Cox Recurrence

Weibull 64

(censor) (censor) 1. 2.

Censor Censor 0 1 2 0

3 Wiring.JMP, Survival Disuribution Survival Weibull Weibull Weibull

(Al ). Time( ) Censor( ) Distribution

3.1 1.Survival Distribution 2.Time 3.Y 4.OK

3.2 Weibull Weibull Plot Weibull Fit

3.3 Weibull

3.4 1.Survival Distribution 3.Y 2.Time 4.Censor 6.OK 5.Censor

3.5 1.Plot Options Show Confid Interval 2. Kaplan-Meier, 95

3.6 Weibull 1.Weibull Plot,Weibull Fit 2.Weibull 3.Save Estimates

3.7

3 Wiring.JMP Extreme-value Parameter Estimates Weibull Parameter Estimates Weibull 95 Delta Weibull Beta=1/Delta Lambda Weibull 63.2 Alpha=e Lambda Weibull Exponential Plot LogNormal Plot

Kaplan Meier n ( ) { t i} i= 1 t i d i t i n i,, ( ) ˆ d d d d S t = 1 1 1 = 1 n n i L n1 n2 nn ti < t ni ( ) 1 2

Kaplan Meier ˆ d d d d S t = 1 1 1 = 1 n n i L n1 n2 nn ti < t ni ( ) 1 2, n ˆ d i logs( t) = log 1 i= 1 n log ˆ d V S = V log 1 i= 1 n n i i i

Kaplan-Meier 1 V log Sˆ V Sˆ ˆ 2 S, V log Sˆ = V Sˆ = Sˆ 2 n d i di V log 1 = ni ni ni di d n i i= 1 ni ni i di n n d ( ) i= 1 i i i ( d ) ( )

Kaplan-Meier Sˆ = n 1 n i= 1 1 n d i ( ) 1 / 1 V Sˆ = Sˆ Sˆ n

t i ht ( ) i Dt = t, t ( ) i i t, n i + Dt 0 H t ( ) i i tk = k= 1 t 1 Ht ( i) = k= 1 i

39 79 90 115 66 96 ) Excel

=count( ) If F(t) A$1-C3+1 E3/D3 If

MON j = MON + j 1 n+ 1 MON n+ 1 ( i 1) MON(Mean Order Number) F(t) j 1

87

1 Kaplan-Meier Wilcoxon

Wilcoxon

j ( j 1,2,, k) = L t j t j 1 d 1 11 n11 d11 n d 11 1j n1j d1j n1j 1 d1k n1k d1k n1k L L 2 d 2 d 21 n21 d21 n 21 2 j n2 j d2 j n2 j 2 d2 k n2k d2k n2k d n d n d n d n d n d n j 1 1 1 1 j j j j k k k k m = d n / n, m = d n / n 1j j 1j j 2 j j 2 j j

( ) ( 1) n n n-d n n d n d v d n n n n 1j 1j j j 1j 2j j j j 1 j = j 1 = 2 j j n-1 j j j ------------------- ( ) ( 1) n n n-d n n d n d v d n n n n 2 j = j 2 j 2j j j 1j 2j j j j 1 = 2 j j n-1 j j j ------------------- n= d, p= n / n j 1 j j,

δ = d m, δ = d m 1j 1j 1j 2 j 2 j 2 j δ1j = ( d1j m1j), δ2j = ( d2j m2j)

n 1 n 1j n n 1j j δ1j = d1j dj = d1j = n j n j n n j n n v = 1j 2 j 1 2 n j 1 j 1 j

n δ1j = wj( d m 1j 1j) = wj d 1j n ( ) ( nj 1) n1jn2jd j nj dj v1 j = wj, wj = 1 n δ ( ) 1 1 j = w d m = w d 1j 1 j j j j j ( ) ( nj 1) n n d n d v w w n n 1j 2 j j j j 1 j = j, j = j j n 1 j j 1 j n j

δ n 1 n n = n = w d = ( nd n ) = S 1j 1 j 2 n 1 j 1j j j 1j n j ( ) ( nj 1) n n d n d 1j 2 j j j j 1j = wj = n1jn2 j n j j 1j 2j 1 j

4 Rats.JMP, Survival Time Modeling 2 Survival

2 day Group ) Censor )

4.1 1.Survival Distribution 2.days 3.Y 4.Censor 6.Group 8.OK 5.Censor 7.Grouping

5 4.2 2

4.3 ( ) Plot Options Show Conbined

4 Rats.JMP

days. 2Survival Survival=(At Risk - N Failed)/At Risk 3Failure Survival+Failure=1 SurvStdErr(Survival Standard Error)

N Failed 1 N Censored 1 At Risk Quantiles Mean StdDev Standard Deviation

PWB JMP Weibull

PWB 65 75 85

111

(, )

1

,

( ),m=1( ),

A

( ) ( ) No. time x; V d1: d2 1 140 2 170 i n 230 390 35 1 0 50 0 1 M M M M M 40 0 1 M M M M M 50 0 1

5 Unit.JMP Survival Time Modeling Survival Omit

Unit.JMP

2 time ) failure ) 2 Condenser Relay

5.1 1.Survival Distribution 2.time 4.OK 3.Y 5.Competing Causes 6.Falure

5.2 Weibull Plot Weibull

1.Omit Causes 5.3 Weibull Weibull 2.Condenser 3.OK

5.4

5 Unit.JMP Competing Causes condenser Omit condenser Failure Grouping

Part III 127

1

S ( ) a S ( t) o t = a S t = as t a ( ) ( ) o h ( ) a h ( t) o t = a S t = S t a ( ) ( ) a o

Weibull ( ) ( ) a Sa t = S0 t lns t = lns t lns t = ln S t a ( ) ( ) ( ) ( ) 0 a 0 { ( )} ( ) a { a } ( ) 0 0 { } ln lns t = ln lns t = ln aln S t a β t = lna+ ln = ( βlnα + lna) + β ln t α ln a,, ( ) a

Weibull, { S ( t) } S ( t) ln ln ln ln a { } β t t = lna+ ln ln = ln a α α Weibull Weibull 0 β

Ht ( ) = βt Ht ( ) = βln ( t/ α) α Ht ( ) e βt β Ht = t/ α = ( ) ( ) β

h ( ) ( ) ( ) x t = h0 t exp bx h 0 (t) x 0 h 0 (t) b hi( t) h0 ( t) exp( bxi) = = exp{ b( x )} i xj i j h ( t) h t exp bx j 0 ( ) ( ) j

PWB JMP Survival Distribution Y Time1 Grouping /kt K-M Log(Time) Log(-logS(t)) Group 1/kT

Weibull log Ht () = 9.326269+ 2.0330log( Time) log Ht () = 11.76942+ 2.0537log( Time) log Ht () = 12.98731+ 2.0451log( Time)

1/kT=32.** ( ) 33.** 32.** = 2.443 34.** 32.** = 3.661 1 1.92 kt COX

COX -2.1750,COX

L,,,

, 2 2

Arrhenius Life= exp b + b 1/ kt Eˆ = b, k = 8.62 10 { ( )} 5 0 1 a 1 Life= exp { ( ) } ˆ b0 + b1 ln 2 T b1 = 1/ θ Eyring Life/ T = exp{ b + b ( 1/ kt) } Eˆ a = b (n) Life= exp{ b ( )} ˆ 0 + b1 ln T n= b1 0 1 1

t Log-Normal Distribution Acceleated x

R= R0 exp B T T 0 α = 1 R log y = b + b x R dr dt 1 1 0 1 T x = 1/ ( 273+ t) T = B T logyˆ = 3.455+ 7.614log x R 1 yˆ R = 0.0316exp 2026.1 xt 2 T

PWB JMP Weibull

PWB 65 75 85

PWB,?

PWB?,

PWB!!!

PWB

( ),

6 Creep.JMP 1 ( ), Survival Time Modeling (Weibull )

. temp ( ) 1/ time Censor( ) Life= exp(b 0 +b 1 /(273+temp)) exp(b 0 +b 1 /T)

T ( C + log L) = Q L = exp( Q/T - C) T L

Larson-Miller Larson-Miller

8.Run Mode 6.1 1.Proportional Hazards 2.time 3.Time to Even 5.Censor 4.Censor 6.1/T 7.Add

6.2 65 10 75 Risk = h h 75 65 ( t) ( t) ( ) { } = exp 18303.289 0.002874 0.002959 = 4.74 4.74

8.Weibull 9.Run Model 5.Censor 6.3 1.Parametric Regression 2.time 3.Time to Event 4.Censor 6.1/T 7.Add

6.4 Weibull =1/ 95 1 (1 ), 1 ˆ α = exp 23.42711+ 10266.8942 T 1.844

6.5 1. Columns 2 2., 3.Formula, 1 αˆ = exp 23.42711+ 10266.8942 T ln( time) ln ( ) res = exp 4. Survival Distribution,Y,Censor Censor,Weibull 5. 11 Weibull

6.5 Weibull

6 Creep.JMP Parameter Estimates 1/ 95. RiskRatio (exp(-16603.743)). Baseline Survival at time. weibull Parameter Estimates 1/

{ 5 T } α ˆ = exp 1.0266 10 / 23.42711 ˆ exp 1.0266 10 A F 1 1 T1 T2 5 = ˆ h ( t) exp 1.8303 10 1 1 1 5 HR = = h ( ) 2 t T 1 T 2

167

Survival fit model

h i 1 0 exp( 0 1 0 0 β1 Ti Ea 1 = h 0( ti ) exp( β1 / Ti ) = h0 ( ti ) exp( ) k T ( t) = h ( t) β + β ) = h ( t) exp( β ) exp( / T ) i E = b k a 1 i AF = 1 exp β1 Ti 1 T j = E exp k a 1 Ti 1 T j

( 1/ T ) ( ) i + β2 Si β RHi zi = β 0 + β1 ln + 3 ( ) ( ) ( ) ( ) β t h t exp exp / T S ( RH ) 2 = β β β h i 0 j 0 1 i i exp 3 i AF S β 2 i = exp β S 1 exp j Ti T 3 j 1 1 { β ( S S )} i j

7 Reliable.JMP ( ) Survival Weibull

.. Glue( )---- Temp( ) 1/(k ) RH( ) Day Censor( )

7.1.Day 1.Parametric Regression 3.Time to Event 8.Weibull 9.Run Model 5.Censor 7.Add.Censor 6.glue,1/kT,RH

7.2 Weibull

7 Reliable.JMP 1/ =1.8596. 1 exp(0.2575423)=1.294 1.3. exp(-4.8603917+0.28443285/kt-0.0330083rh) 0.28443285(eV) 95 0.1033674 0.4646598(eV)

LnReg.JMP,,,,,, 1. 2.1/ T,, 3., 4.

1 1 L exp β 0 exp β 1 exp 2 log10 T β T σ = ln L = C + 1 log T + 1 β β σ T + 1 2 10 ε N(0, 2 ) 3962.6295 1 σ T T ˆ 4 = 1.0345 10 exp exp 1063.091 log10 L

L T E a n = expa exp T I kt B ( ) ( ) E a n L= expa exp T I kt B ( ) ( ) temp 1/ k T, T ln T I ln I B k k

1/(k B T) ln( ) ln( T) m 7 0.1578 ηˆ = 3.0578 10 exp T kt B 1.7651 1.8129 I ( ) ( )

1/(k B T) ln( ) ln( T) m 4 0.1920 ηˆ = 2.8338 10 T exp T I kt B ( ) ( ) 1.7650 1.8126

184

( ) Prentice1974.JMP

VA Lung Cancer.JMP. COX,