.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

Similar documents
.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

201711grade1ouyou.pdf

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

LLG-R8.Nisus.pdf

2011de.dvi


Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

本文/目次(裏白)

Part () () Γ Part ,

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

untitled

untitled

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P


chap10.dvi


keisoku01.dvi

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

untitled

: , 2.0, 3.0, 2.0, (%) ( 2.

2000年度『数学展望 I』講義録

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.



gr09.dvi

抄録/抄録1    (1)V

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

ohpmain.dvi

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

日本内科学会雑誌第98巻第4号

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

日本内科学会雑誌第97巻第7号

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

st.dvi

B

パーキンソン病治療ガイドライン2002

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

研修コーナー

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 Tokyo Daily Rainfall (mm) Days (mm)

R R 16 ( 3 )

tokei01.dvi

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

統計学のポイント整理

waseda2010a-jukaiki1-main.dvi

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Chap9.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I II III IV V

Note.tex 2008/09/19( )

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

i

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II 2 II

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

untitled


() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

入試の軌跡

II III II 1 III ( ) [2] [3] [1] 1 1:

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Z: Q: R: C: sin 6 5 ζ a, b

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

DVIOUT

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

基礎数学I

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

70 : 20 : A B (20 ) (30 ) 50 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

Transcription:

20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N )......................................... 3 2.2 (LN3 )..................................... 4 2.3 III (P3 )................................... 6 2.4 III (LP3 )................................ 7 2.5............................................ 8 2.6 (GEV ).................................... 9 2.7 (SQRT-ET )............................ 0 2.8 (3 )....................................... 2 3. 4 4. 4 5. 5 No.540 998 5 () No.540 998 5 (2) No.54 998 6 L-moments B2( ) Vol.B2-65 No. 2009 pp6-65 Derek A. Roff( ) ( ) 20 3 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T 5 0 30 00 200 500 000 5000 N 5 5 5 0 20 50 00 500 P 0.328 0.590 0.844 0.904 0.905 0.905 0.905 0.905.2 x = x j (4) N S 2 = N C s = N (x j x) 2 (5) ( ) 3 xj x (6) S ˆσ 2 = N N S2 (7) N(N ) ˆγ = C s (8) N 2.3 L (PWM : Probbility Weighted Moments) L (L Moments) L (PWM) β r = 0 xf r df (r = 0,, 2,... ) (9) PWM L λ = β 0 (0) λ 2 = 2β β 0 () λ 3 = 6β 2 6β + β 0 (2) PWM L

b 0 = N b = b 2 = x (j) (3) N(N ) (j )x (j) (4) N(N )(N 2) (j )(j 2)x (j) (5) x (j) N j.4 F [x (i) ] = i α N + 2α (6) N i x (i) F [x (i) ] α i ( ) Weibull Blom Cunnne Gringorten Hzen α 0 0.375 0.40 0.44 0.5 2

2. 2. (N ) x () f(x) = [ exp 2πσx 2 ( ) ] 2 x µx σ x (7) (2) ( ) x µx F (x) = Φ σ x Φ(z) = 2π z exp ( 2 ) t2 dt (8) (3) p x p z = x µ x σ x x = µ x + σ x z (9) x p = µ x + σ x z p z p p = Φ(z) z (20) (4) (L ) b 0 = N x (j) b = N(N ) (j )x (j) b 2 = N(N )(N 2) (j )(j 2)x (j) (2) x (j) N j b i = β i λ i λ = β 0 λ 2 = 2β β 0 λ 3 = 6β 2 6β + β 0 (22) L { µ x = λ σ x = πλ 2 (23) 3

2.2 (LN3 ) x 3 () f(x) = { (x ) exp 2πσ y 2 [ ] } 2 ln(x ) µy σ y y = ln(x ) (24) (2) ( ) ln(x ) µy F (x) = Φ σ y Φ(z) = 2π z exp ( 2 ) t2 dt (25) (3) p x p z = ln(x ) µ y σ y x = + exp(µ y + σ y z) (26) x p = + exp(µ y + σ y z p ) z p p = Φ(z) z (27) (4) ( ) = x 2 () x (N) x m x () + x (N) 2x m > 0 x () + x (N) 2x m µ y = N N ln(x j ) (28) σ 2 y = N N [ln(x j ) µ y ] 2 x () x (N) x m ( ) x j x (j) (5) ( ) ( ) 3 xj x (29) x = N x j S 2 x = N (x j x) 2 C sx = N S x N(N ) µ x = x σ x = [N/(N )] /2 S x γ x = C sx (30) N 2 γ x Bobee Robitille ( ) ( ) B C sx 3 γ x = C sx (A + B C 3 sx ) (3) A =.0 + 7.0/N + 4.66/N 2 B =.69/N + 74.66/N 2 (32) µ x = + ɛ φ σ x = ɛ φ(φ ) γ x = (φ + 2) φ (33) ɛ = exp(µ y ) φ = exp ( 2 σ ) y (34) 4

[ φ = β + ] /3 [ β 2 + β ] /3 β 2 (β = + γ x 2 ) 2 (35) σ x ɛ = φ(φ ) (36) σ y = ln φ µ y = ln ɛ = µ x ɛ φ (37) 5

2.3 III (P3 ) x III Person type 3 distribution ( ) () f(x) = Γ(b) ( x c ) b ( exp x c ) > 0 : c x < (38) (2) ( ) x c F (x) = G G(w) = Γ(b) w 0 t b exp( t)dt ( > 0) (39) (3) p x p w = x c x = c + w (40) x p = c + w p w p p = G(w) w (4) (4) ( ) ( ) 3 xj x (42) x = N x j S 2 x = N (x j x) 2 C sx = N S x N(N ) µ x = x σ x = [N/(N )] /2 S x γ x = C sx (43) N 2 γ x Bobee Robitille ( III ) ( ) B C sx 2 γ x = C sx (A + B C 2 sx ) (44) A = + 6.5/N + 20.2/N 2 B =.48/N + 6.77/N 2 (45) µ x = c + b σ x 2 = 2 b γ x = 2 b 2 b = 4/γ x (b > 0) = σ x / b (γ x < 0 = σ x / b < 0) c = µ x b (46) (47) γ x < 0 < 0 w p p γ x III 6

2.4 III (LP3 ) x y = ln x III () f(x) = Γ(b) x ( ln x c ) b ( exp ln x c ) > 0 : exp(c) < x < (48) (2) ( ) ln x c F (x) = G G(w) = Γ(b) w 0 t b exp( t)dt ( > 0) (49) (3) p x p w = ln x c x = exp(c + w) (50) x p = exp(c + w p ) w p p = G(w) w (5) (4) ( ) ( ) 3 yj ȳ (52) y j = ln x j ȳ = N y j S 2 y = N (y j ȳ) 2 C sy = N S y N(N ) µ y = ȳ σ y = [N/(N )] /2 S y γ y = C sy (53) N 2 γ x Bobee Robitille ( III ) ( ) B C sy 2 γ y = C sy (A + B C 2 sy ) (54) A = + 6.5/N + 20.2/N 2 B =.48/N + 6.77/N 2 (55) µ y = c + b σ y 2 = 2 b γ y = 2 b 2 b = 4/γ y (b > 0) = σ y / b (γ y < 0 = σ y / b < 0) c = µ y b (56) (57) γ y < 0 < 0 w p p γ y b b Wilson-Hilferty p x p x p = exp(µ y + σ y K p ) K p = 2 ( + γ yz p γ y 2 ) 2 (58) γ y 6 36 γ y z p N(0, ) Wilson-Hilferty b < 0, 000 γ y < 0 z p p K p γ y γ y p γ y 7

2.5 x (Gumbel distribution) () f(x) = [ exp x c ( exp x c )] < x < (59) (2) [ ( F (x) = exp exp x c )] (60) (3) p x p [ ( p = exp exp x c )] x = c ln[ ln(p)] (6) x p = c ln[ ln(p)] (62) (4) (L ) b 0 = N x (j) b = N(N ) (j )x (j) b 2 = N(N )(N 2) (j )(j 2)x (j) (63) x (j) N j b i = β i λ i λ = β 0 λ 2 = 2β β 0 λ 3 = 6β 2 6β + β 0 (64) L { = λ 2 / ln 2 c = λ 0.5772 (65) 8

2.6 (GEV ) x (Generlized Extreme Vlue distribution) () f(x) = ( k x c ) [ /k ( exp k x c ) ] /k (k 0) (66) (2) F (x) = exp [ ( k x c ) ] /k (k 0) (67) (3) p x p p = exp [ ( k x c ) ] /k x = c + k { [ ln(p)] k} (68) x p = c + k { [ ln(p)] k} (69) (4) (L ) b 0 = N x (j) b = N(N ) (j )x (j) b 2 = N(N )(N 2) (j )(j 2)x (j) (70) x (j) N j b i = β i λ i λ = β 0 λ 2 = 2β β 0 λ 3 = 6β 2 6β + β 0 (7) L k = 7.8590d + 2.9554d 2 d = 2λ 2 ln(2) λ 3 + 3λ 2 ln(3) kλ 2 = ( 2 k ) Γ( + k) c = λ [ Γ( + k)] k (72) 9

2.7 (SQRT-ET ) x (SQRT exponentil-type distribution of mximum) () f(x) = b [ 2 exp ( bx + ) ( bx exp )] bx (x 0) (73) (2) [ ( F (x) = exp + ) ( bx exp )] bx (x 0) (74) (3) p x p [ ( p = exp + ) ( bx exp )] bx = exp [ ( + t p ) exp( t p )] (t p = bx) (75) x = t p 2 ln( + t p ) t p = ln [ ] b ln(p) (76) x p = t p 2 b ln( + t p ) t p = ln [ ] ln(p) (77) ( ) t p g(t p ) = ln( + t p ) t p ln [ ] ln(p) (78) g (t p ) = + t p (79) g(t p ) g(0) > 0 Newton- Rphson g(t p ) = 0 t p t p(n+) = t p(n) g(t p(n)) g (t p(n) ) (n) (80) t p p x p x t p = b x mx t p (4) ( ) b L L(, b) = ln f(x j ) = N ln + N ln b N ln 2 bxj exp ( ) bx j + bxj exp ( ) bx j (8) 0

L b 0 b L b = 0 = N bxj 2N N (bx j) exp ( ) = (82) bx j L 0 b 2 L = 0 = N N exp ( ) N bx j + bxj exp ( ) = 2 (83) bx j L = 2 h(b) = (b) 2 (b) = 0 b 2 > 0 > 0 b > 0 b > ( N ) 2 2N (84) xj b b (C ) /* Bisection method */ b=bb; /* >0 b ( ) */ b2=b+0.5; /* b+0.5 b2 */ bb=0.5*(b+b2); /* bb */ f=fsqr(nd,dtx,b,&,&2); /* h(b) */ f2=fsqr(nd,dtx,b2,&,&2); /* h(b2) */ ff=fsqr(nd,dtx,bb,&,&2); /* h(bb) */ do{ /* */ if(f*ff<0.0)b2=bb; if(ff*f2<0.0)b=bb; if(ff==0.0)brek; if(0.0<f*ff&&0.0<ff*f2){b=b2;b2=b+0.5;} /* */ bb=0.5*(b+b2); /* 0.5 */ f=fsqr(nd,dtx,b,&,&2); f2=fsqr(nd,dtx,b2,&,&2); ff=fsqr(nd,dtx,bb,&,&2); }while(0.00<fbs(-2)); /* h(b) <0.00 */

2.8 (3 ) x 3 (Weibull distribution) () f(x) = k ( ) [ k ( ) ] k x c x c exp (k = 0) (85) (2) [ ( ) ] k x c F (x) = exp (k 0) (86) (3) p x p [ ( ) ] k x c p = exp x = c + [ ln ( p)] /k (87) x p = x = c + [ ln ( p)] /k (88) (4) (L *) ) b 0 = N x (j) b = N(N ) (j )x (j) b 2 = N(N )(N 2) (j )(j 2)x (j) (89) x (j) N j b i = β i λ i λ = β 0 λ 2 = 2β β 0 λ 3 = 6β 2 6β + β 0 (90) L k = 285.3τ 6 658.6τ 5 + 622.8τ 4 37.2τ 3 + 98.52τ 2 2.256τ + 3.560 τ = λ 3 /λ 2 λ 2 = ( 2 /k ) Γ( + /k) c = λ Γ( + /k) (9) *) L-moments B2( ) Vol.B2-65 No. 2009 pp6-65 -2 k λ 3 τ 3 = λ3/λ 2 A k (5) ( ) 3 c k (I) c 2

x F (x) x [ ( ) ] k x c F (x) = exp (92) 2 ln{ ln[ F (x)]} = k ln(x c) k ln Y = A X + B (93) Y i = ln{ ln[ F (x i )]} X i = ln(x i c) k = A = exp( B/A) c c c 3 k c c k k Newton-Rphson (II) k c t = x c f(t) = k ( ) [ k ( ) ] k t t exp (94) L = N i= ln f(t i) k Newton-Rphson k c L k = 0 k + N i= ln t i N N i= [(ln t i) t i k ] N i= t i k = 0 (95) L = 0 = ( N i= t ) /k i k (96) N g(k) = k + T 0 N T 2(k) T (k) g (k) = k 2 T 3(k) T (k) [T 2 (k)] 2 [T (k)] 2 (97) T 0 = ln t i T (k) = i= i= t i k T 2 (k) = [ln t i t k i ] T 3 (k) = [ln t i ln t i t k i ] (98) i= i= k n k n+ = k n g(k n) g (k n ) (99) k ( N i= = t ) /k i k (00) N 3

3. Jckknife (JckKnife ) 2 3 N x (i) ˆθ i N ˆθ (i) n ˆθ (i) N ˆθ ( ) ˆθ ( ) = N ˆθ (i) (0) i= 4 N x (i) ˆθ N ˆθ ( ) jckknife θ θ = N ˆθ (N ) ˆθ ( ) (02) 5 θ (SE) (SE) = N (ˆθ(i) N ˆθ ) 2 ( ) (03) i= 4. bootstrp 2 3 N x (i) ˆθ N N θ (i) θ (i) (bootstrp ) B bootstrp ˆ θ = B B θ (i) (04) i= 4 bootstrp bootstrp (percentile method) 4

5. 2 3 N x ɛ N F (x) ( )q u ɛ u ɛ Φ q = F (x ɛ ) = Φ(u ɛ ) (05) 4 N F (, M ) F M(= N ) F = ( ) M 2 u ɛ M + (06) F 2ɛ ( ) M FM (2ɛ) 2 = u ɛ M + (07) 5 β ɛ ɛ 0 = ( β 0 ) /N (β 5%) (08) 5 ɛ ɛ 0 ɛ ɛ 0 ( ) ɛ > ɛ 0 ( ) (09) 5