G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R

Similar documents
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

高校生の就職への数学II

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

熊本県数学問題正解

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

29

本文/目次(裏白)

( )

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

R R 16 ( 3 )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

TOP URL 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Jacobson Prime Avoidance

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2000年度『数学展望 I』講義録

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

untitled

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

Z: Q: R: C: sin 6 5 ζ a, b

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

『共形場理論』

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

Part () () Γ Part ,

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

( ) ( )


IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a


DVIOUT-HYOU

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

Note.tex 2008/09/19( )

all.dvi

( ) (, ) ( )


さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

48 * *2

newmain.dvi

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

mobius1

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

6.1 (P (P (P (P (P (P (, P (, P.

n ( (

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

keisoku01.dvi

新たな基礎年金制度の構築に向けて

I II

第86回日本感染症学会総会学術集会後抄録(I)

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

プログラム

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

Z: Q: R: C:

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

c 2009 i

85 4

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

function2.pdf

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

6.1 (P (P (P (P (P (P (, P (, P.101


_TZ_4797-haus-local

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

i

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

untitled

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

( )

Transcription:

1 1.1 SL (R 1.1.1 SL (R H SL (R SL (R H H H = {z = x + iy C; x, y R, y > 0}, SL (R = {g M (R; dt(g = 1}, gτ = aτ + b a b g = SL (R cτ + d c d 1.1. Γ H H SL (R f(τ f(gτ G SL (R G H J(g, τ τ g G Hol f(τ f(gτj(g, τ 1 Hol 1

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G 1.1.3 α, β C α = α iθ (θ R α β = α β iθβ θ π < θ π θ α β 1.1.4 Γ multiplir systm J(g, τ G r J(g, τ = cτ + d r g = ( a c d b G J(g, τ r g H J(g, τ/(cτ + d r 1 g G v(g = J(g, τ (cτ + d r τ J(g, τ multiplir

1.1.5 Γ G r J 1, J multiplir v 1, v J 1 (g, τ J (g, τ = v 1(g v (g τ v 1 (g/v (g G G G/[G.G] [G, G] G 1. SL (R 1..1 n SL (R n G n (.g. Yoshida [9] G n = {(g, ϕ(g, τ; ϕ(g, τ n = (cτ + d} µ(g, τ cτ + d n g G n n G n (g 1, ϕ(g 1, τ(g, ψ(g, τ = (g 1 g, ϕ(g 1, g τψ(g, τ G n G n SL (R SL (R Z n G n 1.. SL (R Γ G n SL (R Γ SL (R 1/n J(M, τ Γ = {(M, J(M, τ; M Γ} G n G n Γ G n 3

SL (R G n Γ split n G n (g, ϕ(g, τf = f(gτϕ(g, τ 1 Hol.1 Γ SL (R ±1 γ Γ 1 1 γ γ(x = x R x Γ Γ SL (Z Q SL (Z (commnsurabl Γ SL (Z Γ Γ\SL (Q/(P SL (Q. P SL (R SL (Z Borl {( a Γ = Γ 0 (4 = c } b SL (Z; c 0 mod 4 d i, 0, 1/. Γ r multiplir systm v(m J(M, τ 4

M Γ v(m = 1 M Γ (f J [M](τ = f(gτj(m, τ 1 Dfinition.1 H f M Γ f J [M] = f Γ r multiplir v(m r T SL (R µ r (g, τ = (cτ + d r S, T σ(s, T = µ r(s, T τµ r (T, τ µ r (ST, τ µ r (T, τ Γ r J(M, τ multiplir v Γ L 1 ΓL r J L (L 1 T L, τ, multiplir systm v L T Γ J L (L 1 T L, τ = J(T, Lτµ r(l, τ µ r (L, L 1 T Lτ, v L (L 1 T L = v(t σ(t, L σ(l, L 1 T L Lmma. (1 J L (L 1 T L, τ L 1 ΓL L 5

( v L multiplir systm (3 L, T Γ J L (L 1 T L, τ = v L (L 1 T Lµ r (L 1 T L, τ J L (L 1 T L, τ = J(L 1 T L, τ J L (L 1 T 1 T L, τ = J(T 1T, Lτµ r (L, τ µ r (L, L 1 T 1 T Lτ = J(T 1, T LτJ(T, Lτµ r (L, τ, µ r (L, L 1 T 1 T Lτ J L (L 1 T 1 L, L 1 T Lτ = J(T 1, T Lτµ r (L, L 1 T Lτ, µ r (L, L 1 T 1 LL 1 T Lτ J L (L 1 T L, τ = J(T, Lτµ r (L, τ µ r (L, L 1 T Lτ. (1 σ(t, Lµ r (T L, τ = µ r (T, Lτµ r (L, τ, σ(l, L 1 T Lµ r (T L, τ = σ(l, L 1 T Lµ r (LL 1 T L, τ = µ r (L, L 1 T Lτµ r (L 1 T L, τ. v L (L 1 T Lµ r (L 1 T L, τ = J(T, Lτµ r(l, τ µ r (L, L 1 T Lτ v(t σ(t, L = σ(l, L 1 T L. ( L Γ J(L, τ = v(lµ r (L, τ, J(L, L 1 T Lτ = v(lµ r (L, L 1 T Lτ J(T L, τ = J(LL 1 T L, τ = J(L, L 1 T LτJ(L 1 T L, τ = J(T, LτJ(L, τ 6

J L (L 1 T L, τ = (3 L SL (R J(T, LτJ(L, τ J(L, L 1 T Lτ = J(L 1 T L, τ (f r [L](τ = f(lτµ r (L, τ 1 = f(lτ(cτ + d r T Γ f(t τ = f(τj(t, τ (f r [L](L 1 T Lτ = (f r [L](τJ L (L 1 T L, τ f L (L 1 T Lτ = f(t Lτµ r (L, L 1 T Lτ = f(lτj(t, Lτµ r (L, L 1 T Lτ 1 = f(lτj L (L 1 T L, τµ r (L, τ = f L (τj L (L 1 T L, τ. Γ κ R κ L(i = κ L SL (R i L Γ J(L, τ J µ r f κ = f r [L] = f(lτµ r (L, τ 1 Γ κ κ Γ h 0 R ϵ = ±1 m 1 h0 {±1} { ; m Z}, ±1 Γ, L 1 Γ κ L = L 1 0 1 ΓL P = ( m 1 h0 { ϵ ; m Z} ±1 Γ. 0 1 7

{ h0 ±1 Γ ϵ = 1 h = h 0 ±1 Γ ϵ = 1 f Γ f κ L 1 ΓL f κ (L 1 T Lτ = J L (L 1 T L, τf κ (τ. f κ L 1 Γ k L f κ F F (τ + n = F (τ n R P R L SL (R σ(l 1 RL, L = σ(l, R = 1 (cf. [1] h U = ( 1 h 0 1 L 1 T L = U T Γ J L (U, τ = v L (U = v(t σ(lul 1, L σ(l, U = v(t = v(lul 1. multiplir systm 1 v(t = v L (U = πin κ (0 n κ < 1 f L (τ + h = πin κ f L (τ F (τ = πin κτ f L (hτ F (τ + 1 = F (τ F (τ = n= a(n πinτ 8

f L (τ = πinκτ/h n= a(n πinτ/h n < 0 a(n = 0 κ Γ L f κ a(n 0 n N κ n κ + N κ > 0.3 Rimann Roch rgular cusp irrgular cusp multiplir systm [] 9

3 3.1 Ddkind ta Ramanujan Dlta q = πiτ η(τ = q 1/4 (1 q n, n=1 (τ = η(τ 4. (τ SL (Z 1 η(τ SL (Z 1/ multiplir η(τ multiplir systm ( a b b c, d Z c 0 d ( c d = ( c d = c, d c ( 1 (sgn(c 1(sgn(d 1/4. d (/ 0 0 = = 1 ±1 ±1 Ptrsson c d d d ( c = = ( 1 c c d (c 1(d 1/4. a b M = SL (Z c d 10

Proposition 3.1 (Mrtns,Hrmit,Ptrsson,Radmachr tc whr ( d c v(m = ( c d = ( c d η(mτ = v(m(cτ + d 1/ η(τ, xp( πi((a + d bdc 3c + bd if c is odd 1 πi xp( ((a + d bdc 3dc + bd + 3d 3 1 ((a d bdcc + bd + 3d 3 if c is vn xp( πi 1 [] Knopp, Radmachr Ptrsson [6] T. Asai, H. Saito log(η(τ Ddkind η 1/ η(τ = πiτ/1 p Z ( 1 p πip(3p+1τ = πi/1 θ 1/6,1/ (3τ [8] p. 145 SL (Z Proposition 3.1 11

3. α (α = πiα m = (m, m Q τ H, z C θ m (τ, z = 1 (p + m τ + (p + m (z + m p Z charactristic ( m a b M = SL (Z M m c d d c M m = m + 1 cd b a ab Proposition 3. ( aτ + b θ M m cτ + d, z cz = κ(m(ϕ m (M(cτ+d 1/ θ m (τ, z. cτ + d (cz + d (cτ + d 1/ ϕ m (M = (bdm + acm bcm m ab(dm cm /, κ(m τ m κ(m 8 = 1 Igusa [4] Sigl Igusa [4] Igusa I II 3.3 κ(m M SL (Z SL (Z 1

Proposition 3.3 M = ( a c d b SL (Z c 0 κ(m = 1 c 1/ πi abcd 4 sgn(c + acd a a(b + d 4 8 c x + x x mod c abcd = + acd a(1 + bc + cd x 4 8 c x mod c Thorm 3.4 M SL (Z κ(m ( abcd + acd c a c 4 8 8 c κ(m = ( c d ( 1 (d 1 = ( c 8 d ϵ 1 d c. d 1 mod 4 d 3 mod 4 ϵ d = 1 i M SL (Z κ(m M SL (Z θ 00 θ(τ = θ 00 (τ = p Z (p τ Γ 0 (4 Proposition 3.5 M = ( a c d b Γ 0(4 aτ + b ( c θ = ϵ 1 d (cτ + d cτ + d d 1/ θ(τ. 13

a b 1 c d k 1/ Γ 0 (4 j(m, τ = (θ(mτ/θ(τ k 1 4 4.1 θ 00 θ m (τ, z m mod 1 n = t (n, n Z (n i Z θ m+n (τ, z = (m n θ m (τ, z θ m (τ, z m mod 1 θ m (τ, z m mod 1 charactristic m Q 0 = t (0, 0 1 θ m (τ, z = m τ + m (τ + m θ 0 (τ, z + m τ + m. θ 0 (τ, z θ m (τ, z m = 0 ϕ m (M = 0 (M SL (Z 4. θ 00 (τ, z τ H, a, z C (x = πix Poisson formula n Z 1 (n + a τ + z(n + a = ( iτ ( 1/ 1 (z n τ 1 + na. n Z 14

( θ 00 1 τ, z = (τ/i 1/ τ ( z τ θ 00 (τ, z. U = ( 1 1 0 1 U 0 = (0, 1/. 01 θ 01 (τ + 1, z = θ 00 (τ, z SL (Z 0 1 1 1 1 0 0 1 up to constant κ(m 4.3 κ(m κ(m θ 00 (τ τ τ 1 4.3.1 Sigl [7] M0 = 1 cd ab M SL (Z θ M 0 (Mτ/θ(τ c = 0 a = d = ±1 θ M 0 (Mτ = θ M 0 (τ + d 1 b = ( 1 p (τ + d 1 b + p( ab. p Z d 1 bp / abp/ mod 1 θ 0 (τ d = 1 d = 1 cτ + d = d = 1 i 15

c = 0 d = 1 d = 1 κ(m = 1 i 1 c 0 c 0 1/ ( cτ + d = c 1/ πi ci 4 sgn(c (cτ + d 1/. M z = τ + d c, z 1 = 1 z Mτ = a c + z 1 c. ( a θ M 0 c + z 1 = ( 1 c (p + cd ( a c + z 1 c + (p + cd ab p Z p = p 1 + cp 0 (p 0 p 1 c ( a p 1 + cp 0 + cd a ( p 1 + cd mod 1 c c θ M 0 (Mτ = p 1 mod c ( a c (p 1 + cd ( 1 (p 0 + p 1 c + d 4 (4z 1 + (p 0 + p 1 c + d 4 abc. p 0 Z p 0 1/ 4z1 i p 0 Z ( z 1/ = 4i p 0 Z ( 1 (abc p 0 (4z 1 1 + p 0 ( p 1 c + d 4 ( p 0 8 z + (p 0 + abc( p 1 c + d 4. p 1 ( a c (p 1 + cd + (p 0 + abcp 1 c p 1 mod c 16

p 0 p 1 p 1 + c ( a p 1 + c + cd + (p 1 + c(p 0 + abc c c a c ( p 1 + cd + p 1(p 0 + abc + c ca(1 + d + b + p 0 mod 1. ac ad bc = 1 b, d 1 + d + b 0 mod. ac(1 + b + d 0 mod. (p 0 / p 0 0 mod p 0 = p 1/ cτ + d θ M 0 (Mτ = 4ci f(p 1, p = a c p 1 mod c p Z 1 p τ (f(p 1, p. ( p 1 + cd ( p1 + (p + abc c + d + d 4 c p p p p 1 p 1 dp bd(1 a c 0 mod f(p 1 dp, p a c p 1 + a(b + d p 1 + abcd + acd 4 8 a(b + d p a(b + d 1 p 1 mod 1 c 0 κ(m = 1 ( c 1/ πi abcd 4 sgn(c θ M 0 (Mτ = κ(m(cτ + d 1/ θ(τ = 1 ( c 1/ πi abcd 4 sgn(c + acd 4 8 4 + acd 8 17 x mod c x mod c a a(b + d c x + x a(1 + bc + cd x c

κ(m 1 1 8 cd 0 mod x x cd/ κ(m = 1 c 1/ ( πi 4 sgn(c x mod c ( a c x + ab x abx/ abx / mod 1 κ(m = 1 ( c 1/ πi a(1 + bc 4 sgn(c x c x mod c = 1 ( c 1/ πi a 4 sgn(c d c x. x mod c (a, c = 1 c a c cd 0 mod d x modc x ax κ(m = 1 ( c 1/ πi ( = c 1/ πi 4 sgn(c 4 sgn(c x mod c x mod c ( d c x ( d c x. 4.3. M SL (Z κ(m ( κ (M = a a(b + dx c x + x mod c 18

1. c c a κ (M = a/ x mod c = x mod c c x ( a/ c x a sgn(c = c ϵ c. c a b + d κ (M = a(1 + c x c x mod c = a(1 + c/ x c x mod c a sgn(c = c 1/ ϵ c. c c ( sgn(c sgn(c ( ϵ c = c 8 c 8 c κ(m = πi abcd 4 sgn(c + acd asgn(c ϵ c 4 8 c ( abcd = + acd c a 4 8 8 c ( ad bc = 1 a c ( = d c. c c a cd 0 mod κ(m κ (M = d c x x mod c 19

κ(m = 1 c 1/ ( 18 sgn(c κ (M c = s c 0 (s 1, c 0 s+1 x 0 + c 0 y 0 = 1 x 1 = xx 0, x = xy 0 x = s+1 x 1 + c 0 x ( ( s+1 d κ (M = x dc0 c 0 x 1 mod c 0 x 1 mod s+1 = c 0 1/ s+1 d sgn(c 0 ϵ c0 (s+/ ( dc 0 c 0 8 { 1 s ( 1 (d c 0 1/8 s x s+1 ( κ(m = πi 4 sgn(c c0 d 8 = d c 0 ( c 0(d 1 8 ( d sgn(c0 ϵ c0 ( c 0 1 s s d c 0 c 0 ( d s s Ptrsson d ( c d = c ( 1 (sgn(c 1(sgn(d 1/4 d c 0, d d c0 = ( 1 ( c 0 1( d 1/4 c 0 d d c0 = c 0 d d 0 ( 1 (c 0 1(d 1/4

( c κ(m = d = = = ( c d c d c d ( 1 8 c 0(d 1 1 8 (c 0 1(d 1 1 (d 1 8 ( 1 16 (d 1 + 1 (d 1 8 ϵ 1 d. 3.4 5 [1], [] [3] [1] R. A. Rankin, Modular forms and functions, Cambridg Univ. Prss, 1977. [] T. Ibukiyama, Modular forms of rational wights and modular varitis, to appar in Abhand. Math. Smi. Univ. Hamburg 70 (000. [3] 003 [4] J. Igusa, On th gradd ring of thta constants I, II, Amr. J. Math. 86(1964, 19 45; ibid. 88(1966, 1-36. [5] J. Igusa, Thta functions, Springr Vrlag 197. [6] H. Ptrsson, Übr di arithmtischn Eignschaftn ins Systms multiplikativr Modulfunktionn von Primzahlstuf, Acta Math.,95(1956, 57 110. 1

[7] C. L. Sigl, Indfinit quadratisch Formn und Funktionn thori I, Math. Ann. 14, (1951. [8] [9] H. Yoshida, Rmarks on mtaplctic rprsntations of SL(, J. Math. Soc. Japan, Vol. 44 No. 3 (199, 351 373. 560-0043 ibukiyam@math.wani.osaka-u.ac.jp