untitled

Similar documents
1

2変量データの共分散・相関係数・回帰分析

.....Z...^.[ \..

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

tokei01.dvi

Microsoft Word - 研究デザインと統計学.doc


x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

1 1 ( ) ( % mm % A B A B A 1

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

yamadaiR(cEFA).pdf

( ) x y f(x, y) = ax

分布


( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

untitled


Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,


untitled

untitled


Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

k2 ( :35 ) ( k2) (GLM) web web 1 :

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

平成13年度日本分析センター年報

1.1 1 A

表紙

1 Tokyo Daily Rainfall (mm) Days (mm)

(pdf) (cdf) Matlab χ ( ) F t

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

untitled

untitled

Microsoft Word - News 18 本文.doc

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel = =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E E

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

untitled

Microsoft PowerPoint - Econometrics pptx

Japan Research Review 1998年7月号

1 はじめに

RF_1

ii : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27 (1) Excel : : : : : : : : : : : : : : : : : : : : : :

自由集会時系列part2web.key


10:30 12:00 P.G. vs vs vs 2

講義のーと : データ解析のための統計モデリング. 第2回

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

Microsoft Word - 99

PDF


ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」


2 3

10

untitled

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2 1 Introduction

最小2乗法


撮 影

数理.indd

(Frequecy Tabulatios)

こんにちは由美子です

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

toukei13.dvi

データの位置を代表する値

確率論と統計学の資料

D _SR_DENSEI_QX



好きですまえばし

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)


相関係数と偏差ベクトル

東海道新幹線でDS



JA2008

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

yoo_graduation_thesis.dvi

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

70の法則

2016

A_chapter3.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

AC-2

エンジョイ北スポーツ

こんにちは由美子です

stat-base_ppt [互換モード]

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

こんにちは由美子です

Microsoft Word - 計算力学2007有限要素法.doc

ii

名称未設定


Transcription:

1

Hitomi s English Tests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 2 0 0 1 1 0 0 0 0 0 1 1 1 1 0 3 1 1 0 0 0 0 1 0 1 0 1 0 1 1 4 1 1 0 1 0 1 1 1 1 0 0 0 1 1 5 1 1 0 1 1 1 1 0 0 1 0 1 0 0 6 0 0 0 0 0 1 1 0 0 1 1 0 1 0 7 1 1 0 1 0 1 1 0 0 1 0 0 0 1 8 1 0 1 0 0 0 1 0 0 0 1 0 0 1 9 0 0 1 1 1 1 1 0 0 1 1 0 1 1 10 1 0 0 0 0 0 1 0 0 0 0 0 1 1 2

True Scores of 1000 Tests Density 0.0 0.1 0.2 0.3 0.4 3 2 1 0 1 2 3 Scores of randomly chosen tests 3

1( )?? 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 178 165 168 152 175 175 165 162 164 170 169 155 153 162 168 4

2( )?? 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5

1 3(1 ) 1 1 one-dimensional data 1 6

4( ) 2 2 two-dimensional data 1 high-dimensional data 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 178 165 168 152 175 175 165 162 164 170 169 155 153 162 168 63 62 69 41 71 61 62 48 52 55 69 48 44 49 69 7

5( )?? time series data 1000 15 20 25 30 35 40 45 50 55 60 71,933 72,147 83,200 89,276 93,419 98,275 103,720 111,940 117,060 121,049 8

1000 120000 110000 Population 100000 90000 80000 20 30 40 50 60 Year 9

1.5 1 0.5 0-0.5-1 -1.5 0 2000 4000 6000 8000 10000 10

373 0 10 5 12 0.032 12 0.032 10 20 15 10 0.027 22 0.059 20 30 25 19 0.051 41 0.110 30 40 35 42 0.113 83 0.223 40 50 45 72 0.193 155 0.416 50 60 55 82 0.220 237 0.635 60 70 65 54 0.145 291 0.780 70 80 75 38 0.102 329 0.882 80 90 85 25 0.067 354 0.949 90 100 95 19 0.051 373 1.000 373 1.00 11

frequency relative frequency cumulative frequency cumulative relative frequency 12

6( ) class frequency frequency distribution 7( ) histogram 13

: n k 1 + log n/ log 2 n = 373 k =9.543 14

10 80 60 Frequency 40 20 0 20 40 60 80 100 Score 15

( ) 5 150 125 Frequency 100 75 50 25 0 20 40 60 80 100 Score 16

: 8( ) n ȳ = 1 n n y i i=1 = 1 n (y 1 + y 2 + + y n 1 + y n ) sample mean 17

( ) 9( ) order statistics: y 1,y 2,,y n 1,y n y (1) y (2) y (n 1) y (n) 10 ( ) median: n y med = y (m+1) n =2m +1 y med = y (m)+y (m+1) 2 n =2m 18

( ) 11 ( ) percentile: 0 p 1 y (1) y (2) y (n 1) y (n) 100p 100p% 12 ( ) quantile: y (1) y (2) y (n 1) y (n) 4 25% 1 50% 2 75% 3 19

( ) 13 ( ) mode: 14 ( ) mid-range: : y mid = y (1) + y (n) 2 20

: 15 ( ) variance: n Sn 2 = 1 (y i ȳ) 2 n i=1 = 1 { (y1 ȳ) 2 +(y 2 ȳ) 2 + +(y n ȳ) 2} n S 2 n = 1 n n i=1 y 2 i nȳ2 21

: / 16 ( ) standard deviation: : S n = S 2 n = 1 n n i=1 (y i ȳ) 2 17 ( ) coefficient of variation: : CV = = S n ȳ 22

y 1,,y n z 1 = y 1 ȳ S n,z 2 = y 2 ȳ, z n = y n ȳ S n S n standardization z 1,,z n (Z ) standard score z 1,,z n 0 50 10 z 1 =10z 1 +50,,z n =10z n +50 23

3 2 : 24

2 18 (2 ) two-dimensional data 1 2 1( )??, 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 178 165 168 152 175 175 165 162 164 170 169 155 153 162 168 63 62 69 41 71 61 62 48 52 55 69 48 44 49 69 25

2 ( ) (x 1,y 1 ), (x 2,y 2 ),, (x n,y n ) 19 ( ) scattergram 2 (x 1,y 1 ), (x 2,y 2 ),, (x n,y n ) (x, y) n 26

2 15 70 65 60 Weight 55 50 45 155 160 165 170 175 Height 27

2 vs. 3 2 1 0 C2-1 -2-3 -4-4 -2 0 2 C1 28

x s xx = 1 n i x) n i=1(x 2 = 1 n y n s yy = 1 i ȳ) n i=1(y 2 = 1 n (x, y) ( covariance ) n n i=1 n i=1 s xy = 1 i x)(y i ȳ) = n i=1(x 1 n x 2 i x2 y 2 i ȳ2 n i=1 x i y i xȳ 29

( ) 20 (correlation coefficient) 2 (x 1,y 1 ), (x 2,y 2 ),, (x n,y n ) x y r = = s xy sxx s yy ni=1 (x i x)(y i ȳ) ni=1 (x i x) 2 ni=1 (y i ȳ) 2 1( : ) 1 r 1 r>0: ; r<0: ; r =0: 30

r = 1 r 1 ni=1 (x i x)(y i ȳ) ni=1 (x i x) 2 n i=1 (y i ȳ) 2 a i =(x i x), b i =(y i ȳ) i =1,,n Schwarz : n i=1 a i b i 2 n a 2 n i b 2 i i=1 i=1 Schwarz t 2 n i=1 (a i + b i t) 2 0 31

: u i = ax i + b, v i = cy i + d (i =1, 2,,n) s xy sxx s yy = s uv suu s vv (ac > 0) 32

2 33

21 ( ) confounding 34

3 3 4 35

22 ( ) spurious correlation: x y 3 23 ( ) partial correlation coefficient: r xy : x y r xz : x z r yz : y z z x y r xy z = r xy r xz r yz 1 r 2 xz 1 r 2 yz 36

5( ) K. Pearson (1898) 50 (stature), (, femur) (, humerus), tibia ; (, radius) ( Krzanowski and Marriott, 1994, p.23) F H T R S F 1 0.8421 0.8058 0.7439 0.8105 H 1 0.8601 0.8451 0.8091 T 1 0.7804 0.7769 R 1 0.6956 S 1 37

r SR =0.6956 H T R S H 1 0.5682 0.6068 0.4007 T 1 0.4574 0.3569 R 1 0.2367 S 1 r r SR F = SR r SF r RF 1 r 2 SF 1 r 2 RF = 0.6956 0.8105 0.7439 1 0.8105 2 1 0.7439 2 = 0.2367 38

T R S T 1 0.1772 0.1714 R 1 0.0088 S 1 r SR HF = r SR F r SH F r RH F 1 r 2 SH F 1 r 2 RH F = 0.2367 0.4007 0.6068 1 0.4007 2 1 0.6068 2 = 0.0088 39