2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

Similar documents
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

D 24 D D D

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

Jacobson Prime Avoidance

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

II Time-stamp: <05/09/30 17:14:06 waki> ii

?

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

TOP URL 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

2 0 B B B B - B B - B - - B (1.0.6) 0 1 p /p p {0} (1.0.7) B m n ϕ : B ϕ(m) n ϕ 1 (n) = m /m B/n 1.1. (1.1.1) a a n > 0 x n a x r(a) a r(r(a)) = r(a)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

数学Ⅱ演習(足助・09夏)

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

線形空間の入門編 Part3

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Note.tex 2008/09/19( )

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d


Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

16 B

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

−g”U›ß™ö‡Æ…X…y…N…g…‰

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f


ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

main.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

meiji_resume_1.PDF

( )

DVIOUT

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

I

I , : ~/math/functional-analysis/functional-analysis-1.tex

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

function2.pdf

2000年度『数学展望 I』講義録

difgeo1.dvi

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

I II III 28 29

Mathematical Logic I 12 Contents I Zorn

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

,2,4

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1


one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

°ÌÁê¿ô³ØII

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

目次

Microsoft Word - 信号処理3.doc

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


量子力学 問題


1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

linearal1.dvi

, 1993.,,., implement, ( )., 1970,,, I.N. Bernstein, ( D- ),., D-,., D-, ( ), ( ) (singular locus),, 3,. (Gröbner basis), 1960 B. Buchberger,.,,, impl

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

untitled

A

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

keisoku01.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

Transcription:

2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I A x I a A ax I. A (prime ideal) I, I A, a, b A ab I a I b I.. A Spec(A). Spec(A) := {p A }. 1.1.1. k, k 1 k[x]. k k[x] r, k f k[x] f = a 0 i=1 (x a i) er 1. Spec(k[x]) = {(0)} {(x a) a k}. = (0) Spec(k[x]) = { } k.. A. Spec(A), f A D(f) := {p Spec(A) f / p} A (spectrum), Spec(A). Spec(A) Zariski. Spec(A), Λ l Λ D(f l ). 1.1.2. A I D(I) Spec(A). D(I) := {p Spec(A) I p}. (2) D(I) Zariski. *1 2018/11/08, ver. 0.5.

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = D(IJ). IJ := {a 1 b 1 + + a n b n a k I, b k J} A, I J ( ). (4) A {I l l Λ} D( l Λ I l) = l Λ D(I l ). l Λ I l := { l a l a l I l, }. 1.1.3. k 1 k[x]. 1.1.1 Spec(k[x]) = { } k. f k[x] D(f). (i) 0 k[x] D(0) =, (ii) a k \ {0} D(a) = Spec(k[x]) = { } k. (iii) a k D(x a). (0) (x b) (x b) D(x a) (x b) / x a b a. D(x a) = { } (k \ {a}). r (iv) f = a 0 i=1 (x a i) er D(f) = r i=r D((x a i) ei ) = r i=1 D(x a i). (iii) D(f) = { } (k \ {a 1,..., a r }). Spec(k[x]),,, 3., Spec(k[x]) Hausdorff ( T 2 ). = (0) Spec(k[x]). 1.1 ( ). k.. (1) k[x] (0) := {g(x)/f(x) f(x), g(x) k[x], f(0) 0} Spec(k[x] (0) ) = {(0), (x)}. Spec(k[x] (0) ) = {, 0},, { }, {, 0} 3. (2) k 2 k[x, y] 3. (0). f (f). (a, b) k 2 (x a, y b). 1 A Spec(A), φ : A B. 1.1.4. φ : A B, a φ : Spec(B) Spec(A), p φ 1 (p) well-defined, f A ( a φ) 1 (D(f)) = D(φ(f)), Zariski. a φ φ.

2018/10/04 IV/ IV 3/12 1.2.. A (multiplicatively closed subset) *2 S A. (i) 1 A S. (ii) f 1, f 2 S f 1 f 2 S. 1.2.1. S A, M A. (1) S M (s, m) (s, m ) t S, f(s m sm ) = 0 S 1 M := (S M)/ A. (s, m) S M m/s. + : S 1 M S 1 M S 1 M m/s + m /s := (s m + sm )/(ss ), well-defined, S 1 M.. : A S 1 M S 1 M a.(m/s) := (a.m)/s *3, well-defined, S 1 M A. A S 1 M, M S (localization) S 1 M. (2) ψ M : M S 1 M ψ M (m) := m/1 A, well-defined, A. ψ M. 1.2.2. S A. (1) A A S 1 A, : S 1 A S 1 A S 1 A a/s a /s := (aa )/(ss ), well-defined, S 1 A. S 1 A A S. (2) 1.2.1 (2) A ψ A : A S 1 A (1). ψ A. 1.2.3. S A, M A.. : S 1 A S 1 M S 1 M a/s.(m/s ) := (a.m)/(ss ), well-defined, S 1 M S 1 A.. *2. *3 A M A M M (a, m) a.m..

2018/10/04 IV/ IV 4/12 1.2.4. S 1 A : φ : A B φ(s) B, φ : S 1 A B φ = φ ψ A. φ. 1.2 (tensor product) (short exact sequence). 1.2 ( ). A, S A. M A. ( 1.2.4). (1) S 1 A A M S 1 M. (2) A 0 M 1 M 2 M 3 0 S 1 A. 0 S 1 M 1 S 1 M 2 S 1 M 3 0. (3) S 1 S 2 A. 1.2.2 (2) A S2 1 A S 1 S 1, S 1 S 1 2 A, (S 1S 2 ) 1 M (S 1) 1 (S2 1 M). 1.2.5. 1.2 (1) (2), M S 1 A A M. A B, M B A M, (flat). ψ A : A S 1 A. D(f).,. 1.2.6. S 1 A (1) S 1 A, A I I(S 1 A). (2) Spec(S 1 A) = {p(s 1 A) p Spec(A), p S = }. 1.2.7. A. f A, S := {1, f, f 2,...} A. S S 1 A A f. A f := A[x]/(fx 1)., 1 A[x] fx 1 A[x] (fx 1). 1.2.8. A, f A, A f {1 A, f, f 2,...} ( 1.2.7 ). ψ : A A f., ψ a ψ : Spec(A f ) Spec(A) ( 1.1.4 ), a ψ(spec(a f )) = D(f), a ψ : Spec(A f ) D(f). 1.3 Hilbert. A, I. 1.1.2 D(I) V (I). V (I) := Spec(A) \ D(I) = {p Spec(A) p I}.

2018/10/04 IV/ IV 5/12 1.3 ( ). φ : A B. A/ Ker φ Im φ B. (1) φ, Spec B V (Ker φ) Spec(A), a φ V (Ker φ). a φ ( )1 1. (2) a φ V (Ker φ) = Spec A. Ker φ = p Spec(A) p. Hilbert,. 1.3.1 ( ). A, I. f A f V (I) = 0 f I. I.. A I, I := {f A f m I, m Z >0 } I (radical). f V (I) = 0. 1.3.2. A p, A \ p A p := (A \ p) 1 A, A p, Spec(A) p (local ring). 1.2.6.. Spec(A p ) = {qa p q Spec(A), q p}. 1.4 (2) A p (maximal ideal). B, B. m (quotient ring) *4 B/m. 1.4 ( ). A.. (1) A S, A \ S,. (2) Spec(A) p A p pa p. 1.3.3. 1. 1.4 (2) Spec(A) p A p,.. A, p Spec(A). (1) k(p) Spec(A) p (residue field) *5. k(p) := A p /pa p (2) f A p, f f. A A p k(p), f f/1 A f := (f/1 A mod pa p ). *4. *5 (field of fractions) (quotient field).,.

2018/10/04 IV/ IV 6/12 f A T Spec(A), p T f 0, f T = 0. f V (I) = 0. 1.3.1,. 1.3.4. A I p V (I) p = I. 1.3.4. 1.3.1 1.3.4. 1.3.5. A I, J (1) Spec(A) = A = 0. (2) V (I) V (J) I J. (3) V (I) = V (J) I = J. 1.4 Zariski 1.1.3, A Spec(A) Hausdorff.,.,, D(f) Spec(A). Zariski.. A f A, D(f) (quasi-compact) *6. D(f) = i I D(f i ), J I i J D(f i ).. {f i A i I} a := i I (f i) V (f) = V (a). Hilbert ( 1.3.1) f m a m Z 1. f m = i J f ig i J I g i A. f m i J (f i), V (f) = V (f m ) i J V (f i ). D(f) = i J D(f i ). 1. Hausdorff 1, 1.4.1. A, p Spec(A). 1 {p} Spec(A), {p} = V (p)... {p} = F : p F = I p V (I) = V (p).. X x X, {x}, (closed point). 1.4.1. p Spec(A) p.. *6 Hausdorff.

2018/10/04 IV/ IV 7/12. X (irreducible), X = F 1 F 2 X = F 1 X = F 2. 1.4.2. I A, V (I) I. 1.5 ( ). (1) Hilbert 1.3.5 1.4.2. (2) {p} Spec(A),.. 1.4.3. X x, y X, (1) y {x}, x y (generalization), y x (specialization). (2) {x} = X, x X (generic point). 1.6 ( ). 1.4.3 X = Spec(A), x = p, y = q, *7. {x} y p q. 1.6 {x} = {y} p = q.. Spec(A) 1. 1.7 ( ). Spec(A) 1, 2. (1) Spec(A) T 0, 2 x, y Spec(A) U x U y / U. (2) T 0 1. 1.5..,.. X. (1) X Open(X) (Sets) F, X (presheaf of sets)., F (I) (II). (I) X U, F(U). (II) U 1 U 2 r U1,U 2 : F(U 1 ) F(U 2 ), 2. (a) id U : U = U r U,U = id F(U) : F(U) = F(U). (b) U 1 U 2 U 3 r U2,U 3 r U1,U 2 = r U1,U 3 : F(U 1 ) F(U 3 ). r U1,U 2 (restriction map). *7 ver. 0.5 typo.

2018/10/04 IV/ IV 8/12 (2) X F (sheaf of sets). (III) U = i I U i s, t F(U) i I r U,Ui (s) = r U,Ui (t) s = t. {s i F(U i ) i I} U i U j i, j I r Ui,U i U j (s i ) = r Uj,U i U j (s j ), s F(U) i I s i = r U,Ui (s). (locality), (gluing). (3), (Sets),, (Grp), (Mod), (Ring),, ((pre)sheaf of groups, modules, rings).., s V := r U,V (s). F r F U,V. stalk germ *8. (inductive limit) (direct limit) lim *9.. X F x X, (1) F x := lim U x F(U) F x stalk., x. (2) F x x germ... x X F germ, U x s F(U) (U, s), U, s. (U, s) (V, t) W x W U V s W = t W.. Spec(A). Spec(A) {D(f) f A}. 1.2.8 D(f) Spec(A f ). 1.5.1. Spec(A) Ã Ã(D(f)) = A f.. A Spec(A) Ã (Spec(A), Ã) A (affine scheme). Ã (structure sheaf). 1.5.1. D(f) = D(g) A f A g. D(f) = D(g) = D(fg), A f A fg a/f m ag m /(f m g m )., Hilbert 1.4.2 (3) D(f) = D(g) (f) = (g). D(f) D(g) = D(fg), r D(f),D(fg) : A f A fg a/f m ag m /(f m g m ). *8 stalk, germ,. *9 (colimit), colim.

2018/10/04 IV/ IV 9/12 U Spec(A) U = i I D(f i ). s = (s i ) i I, s i A fi, s i D(f i f j ) = s j D(f i f j ) i, j I. U = j J D(g j ) t = (t j ) j J. s t s i D(f i g j ) = t j D(f i g j ) i I, j J, Ã(U) := { s}/.., U = D(f) D(f) = i I D(f i ). 2. a A f i I a D(f i ) = 0 a = 0 A f. {a i A fi i I} i I, j J a i D(f i f j ) = a j D(f i f j ), a A f a i = a D(f i ). [H77, p.71, Proposition 2.2, Chap.II 2] * 10. A Spec(A) Ã, A Spec(A) Ã. Ã 1.5.2. X, O X. X O (sheaf of O-modules) M, X 2. U X M(U) O(U). O(U)., ru,v O O, rm U,V M, a O(U) m M(U) ru,v O (a).rm U,V (m) = rm U,V (a.m). Ã 1.. A M f A, S := {1, f, f 2,...} M S 1 M M f. 1.2.3 M f A f. 1.5.3. M A. Ã M M(D(f)) = M f.. 1.5.1, U = i I D(f i ) M(U) := {(m i ) i I m i M fi, m i D(f i f j ) = m j D(f i f j )}/. Ã M f A f. Ã M stalk. p Spec(A) A p ( 1.3.2),. p Spec(A), S := A \ p A M S 1 M M p. *10 [H77].

2018/10/04 IV/ IV 10/12 1.5.4. p Spec(A) Ã Ã M stalk (Ã) p = A p, ( M) p = M p. 1.3.3 A p ( )... X O (X, O) (ringed space). (X, O), x X stalk O x, (locally ringed space). 1.8 ( ).,.. 1.6, ( ) ( )... 1.6.1. X. (1) F G X. (morphism of presheaves) θ : F G, F, G., U X θ(u) : F(U) G(U), U V r G U,V θ(u) = θ(v ) rf U,V. (2) F G X. (morphism of sheaves) θ : F G, F, G, θ. 1.6.2. 1.6.1, x X, stalk θ x : F x G x, θ θ x (functorial). id : F = F id x, E σ F θ F (θ σ) x = θ x σ x. 1.6.3. 1.6.2, (natural) θ x. 1.6.4. f : X Y, F X. Y f F F f (direct image). (f F)(U) := F(f 1 (U)). 1.6.5. 1.6.4, x X, y := f(x), stalk (f F) y F x ( 1.6.3 ).. stalk (f F) y = lim(f F)(U) = lim F(f 1 (U)). U y U y f 1 (U) x, F(f 1 (U)) F x., (f F) y F x.,.

2018/10/04 IV/ IV 11/12. (X, O X ) (Y, O Y ). (morphism of ringed spaces) (X, O X ) (Y, O Y ), f : X Y Y f : O Y f O X (f, f ). (f,, f ), f f. 1.6.6. (1) (X, O X ) (Y, O Y ). (morphism of locally ringed spaces) (X, O X ) (Y, O Y ) (f, f ), x X f x : O Y,y (f ) y (f O X ) y O X,x. (f ) y 1.6.2, 2 1.6.5. (2) (isomorphism of locally ringed spaces)... A m, B n. φ : A B φ(m) n (local).. (morphism of affine schemes). (isomorphism of affine schemes). φ : A B a φ : Spec(B) Spec(A), 1.6.7.. φ : A B, f A. φ A f B φ(f) φ f. 1.6.7. φ : A B., f A ( a φ, φ) : (Spec(B), B) (Spec(A), Ã) φ(d(f)) : Ã(D(f)) = A f ( ( a φ) B) (D(f)) = B(D(φ(f))) = Bφ(f) φ f. φ ( a φ, φ).. φ, Ã., U Spec(A) U = i D(f i ), D(f i ) φ fi, φ(u) : Ã(U) ( a φ) B(U)., f, g A Ã(D(f)) A f φ f B φ(f) ( ( a φ) B) (D(f)) r D(f),D(fg) r D(f),D(fg) Ã(D(fg)) A fg φ fg B φ(fg) ( ( a φ) B) (D(fg)). ( a φ, φ).

2018/10/04 IV/ IV 12/12 p Spec(B), q := ( a φ)(p) = φ 1 (p), stalk ψ := φ p : Ãq B p. 1.5.4 Ãq = A q, ψ A q = lim A f lim B φ(f) B p f / q, φ., a q φ(a) p f / q, ψ(qa q ) pb p. ψ.. 1.6.8. (f, θ) : (Spec(A), Ã) (Spec(B), B), φ : B A ( a φ, φ).. [H77, p.73, Proposition 2.3 (c)]. 1.6.7 1.6.8, 1.6.9. Spec. [H77] R. Hartshorne, Algebraic Geometry, GTM 52, Springer, 1977;,, 1,2,3,, 2008..