アトラスバレルSCT用量産モジュールの品質保証のシステム

Similar documents
ATLAS 2011/3/25-26

LEPS

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

untitled

25 3 4

MPGD GEM

AN15880A

加速器の基本概念 V : 高周波加速の基礎

TOS7200 CD-ROM DUT PC 1.0X p.15 NEMA Vac/10 A [85-AA-0003] m : CEE7/7 : 250Vac/10 A [85-AA-0005] : GB1002 : 250Vac/10A [ ] 2016

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

untitled

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Undulator.dvi

03J_sources.key

Microsoft PowerPoint - 島田美帆.ppt

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

AD5933: 1 MSPS、12 ビット・インピーダンス・コンバータネットワーク・アナライザ

QTC LSI Analog Timing Module QTC LSI

ATLAS アップグレードに向けた ミューオン検出器読み出し回路の研究開発

DAC121S101/DAC121S101Q 12-Bit Micro Power, RRO Digital-to-Analog Converter (jp)

EURAMET EURAMET/cg-15/v.01 "Guidelines on the Calibration of Digital Multimeters" EURAMET e.v. "General Conditions for the translation of EURAMET publ

Triple 2:1 High-Speed Video Multiplexer (Rev. C

PowerPoint Presentation

R1LV0416Dシリーズ データシート


XAPP858 - High-Performance DDR2 SDRAM Interface In Virtex-5 Devices

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

news

(CERN) (LHC) 7 HL-LHC ATLAS ATLAS ASIC ASIC (DAQ) FPGA ASIC Gbps DAQ ASIC DAQ ATLAS ASIC DAQ FPGA FPGA ASIC DAQ PCI Express FPGA DAQ 5.83 Gbps

2

LHC- ATLAS 実験アップグレードに向けた新しいミューオントリガー装置読み出しの研究開発 日本物理学会 2014 年春季大会東海大学 加藤千曲, 坂本宏, 二ノ宮陽一, 徳永孝之, 浦野祐作, 鈴木翔太佐々木修 A, 石野雅也 B, 田代拓也 B, 池野正弘 A,C, 内田智久 A,C 他 A

Mott散乱によるParity対称性の破れを検証

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Thick-GEM 06S2026A 22 3

LMC7101/101Q Tiny Low Pwr Op Amp w/Rail-to-Rail Input and Output (jp)

Cyclone IIIデバイスのI/O機能

ADC082S021 2 Channel, 50 ksps to 200 ksps, 8-Bit A/D Converter (jp)


JAJP.indd

観測波形 赤いエリアに波形が入り込まなければ規格を満足しています.5mではより厳しいTP2の規格でも満足しています.5mケーブル使用時 TP2規格 TP3規格 -.1-5mケーブル使用時 2

CMOS リニアイメージセンサ用駆動回路 C CMOS リニアイメージセンサ S 等用 C は当社製 CMOSリニアイメージセンサ S 等用に開発された駆動回路です USB 2.0インターフェースを用いて C と PCを接続

R1LV1616H-I シリーズ

AD8212: 高電圧の電流シャント・モニタ

非圧縮の1080p60ビデオをサポートする3Gbps SDIコネクティビティ・ソリューション

DS90LV V or 5V LVDS Driver/Receiver (jp)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Transcription:

1

2

(LHC) ( ) CERN 2006 4 14 TeV LHC 1989 2000 (LEP) LHC 40 MHz 10 34 cm 2 1 ( 3 10 33 cm 2 s 1 ) LHC 10 (ATLAS) LHC LHC 22 m 46 m 15,000 t (SCT) (TRT) SCT (Semi-Conductor Tracker) ( ) SCT SCT 4 ASIC12 2 (40 mrad) 2112 SCT 700 24 30 60 24 SCT DAQ VME VME (PC) Site Qualification SCT 5 (2002 )2 3

1 5 1 LHC 5 2 6 2 SCT 8 1 SCT 8 2 SCT 9 3 10 4 14 5 ABCD3T 17 6 21 3 SCT DAQ 22 1 SCTDAQ 22 4 25 1 25 2 27 5 37 1 37 2 40 6 55 4

1 1 LHC (LHC) ( ) (CERN) 2006 4 14 TeV LHC 1989 2000 (LEP) LHC 27 km 14 TeV 40 MHz 10 34 cm 2 s 1 ( 3 10 33 cm 2 s 1 ) 10 LHC 1.1 [1] LHC 10 t W b t Z 0 c Bd Bs µ µ 5

主リング周長 陽子エネルギー ルミノシティー 入射エネルギーバンチ衝突間隔 バンチ陽子数 バンチ数 ルミノシティー寿命 双極電磁石数 1232 台 (14.2 m 長 ) 双極電磁石磁場 四極電磁石数 26.66 km 7.0 TeV 10 33 cm - 2 s - 1 ( 低ルミノシティーで 3 年 ) 10 34 cm - 2 s - 1 ( 高ルミノシティーで 7 年 ) 450 GeV 25 nsec 1 10 11 個 2835 バンチ 10 時間 1232 台 8.4 T アーク部四極磁場勾配 223 T/m 衝突点でのビーム径 16 µm ビーム衝突角度 アーク部に 386 台 (3.1 m 長 ) 他に 402 台 200 µrad 1.1 LHC 2 (ATLAS) LHC 4 ( CMS LHCb ALICE) LHC 22 m 46 m 15,000 t (SCT) (TRT) 1.1 1.2 検出器 テクノロジー 性能 ピクセル 3 層 50 µm 300 µm 内部飛跡検出器 シリコンストリップ 4 層 80 µm ピッチ ストローチューブ 36 層 ~200 µm/ 層 電磁カロリメータ 液体アルゴン ( アコーディオン型 ) 10%/ E 0.7% ハドロンカロリメータ タイルファイバー バレル部 50%/ E 3% 前後方部 100%/ E 10% ミュー粒子検出器 ドリフトチューブ 10% pt = 1 TeV 1.2 6

1.1 7

2 SCT 1 SCT SCT (Semi-Conductor Tracker) ( ) SCT 1.4 1.4 2.5 2112 2373 ( 2.1) LHC SCT 10 2.1 10 14 /cm 2 1 MeV [2][3] SCT 2.1 SCT 8

2 SCT 4 6cm 6cm 63.96 mm 63.56 mm 285 µm SCT 8448 SCT 2 ASIC ASIC ASIC SCT ASIC 4 ASIC12 2 (40 mrad) 0 (link0) 1 (link1) ( 2.2) 2.2 SCT 9

3 ( ) 1 SCT 285 µm ( 2.3) ( ) ( ) AC ( 2.4) SCT 2 2.3 10

2.4 2 CMOS 1 µm 5 µm [1] SCT 80 µm 1 SCT x0 h x0 h/2 x0 /2 x RMS 2 σ x0 h 2 x0 h 2 = + ( x x 1/ 12 23 µm 0 ) 11 2 dx h = ( h ) 12 2

[4] 300 µm 8 nsec 25 nsec [1] SCT 50 nsec 100% LHC 100 500 V 300 µm 3 [4] V d εv N A + N D d = 2 (2.1) e N N A D e ε NA ND C C = S eε 2V N N A A N D + N D S p-n CV (IV ) 2.1 V I 12

[4] a T Eg (1.21 ev) kb (8.62 10 5 ev/k) 7 2 IV 2 3 I ( T ) = at Eg exp( ) 2k T 2.5 B 2.5 K3111 677 ( ) 13

4 ASIC ASIC 1 3 L1 L4 L2 L3 CO2 (through-hole) (via-hole) L1 L2 L1 L2 L3 L4 ( 2.6)[5] [6] [7] 2.3 2.6 2 2.7 L1 L2 L3 L4 L1 ABCD3T ( 14

) L2 ABCD3T ABCD3T L4 (Vcc, Vdd) L2 (HV) ABCD3T L3 L2 L1 ABCD3T ( ABCD3T ) ABCD3T (Vdd) (Vcc) L4 (HV) L1 L3 ABCD3T ( ) L4 ABCD3T 15

2.7 16

5 ABCD3T ABCD3T ATLAS Binary Chip DMILL ATLAS SCT ASIC CEA CERN DMILL BiCMOS 1 rad-hard 取り入れた 40 MHz 50 MHz 128 1576 12 ABCD3T 132 FIFO ( 2.8)[8] 2.8 ABCD3T 1 1 ( ) CMOS ( ) 17

50 mv/fc 0 4 fc 5 20 nsec ENC 1500 e 1 0 DAC DAC 2.5 mv 0 640 mv 0 12.8 fc 3.0 fc ( DAC ) 2 1 ( ) 0 1 1 0 0 ( ) 0 1 ( 4 2 ) 3 128 (FIFO ) 132 40 MHz 18

L1 L1 3.3 µs ) 4 L1 L1 L1 3 3 L1 3 1 128 ( ) 24 (3 8 L1) 8 L1 L1 100 khz 1 1 FIFO Barrel Store 2 Over Flow Empty L1 5 data-avail 3 data-valid end ( 2.1 ( X 1 0 ) 19

6 ID end No hit data send-id 7 ABCD Master Mode Master L1 ABCD Master L1 Master 4 8 L1 3 ( ) ( ) 9 4 4 (32 ) 100fF 20 (3σ) 0.625 mv (0.0625 fc) 0 160 mv (0 16 fc) 0.1 fc 20

(CAL0 CAL1 CAL2 CAL3) 4 1 4 8 6 0.8 nsec ± 0.2 nsec 64 ( 50 nsec) 40 MHz (25 nsec) DAC ( DAC) 4 DAC DAC ( DAC ) 2 ( 2.2) DAC DAC DAC 0 0 mv 60 mv 4 mv 1 0 mv 120 mv 8 mv 2 0 mv 180 mv 12 mv 3 0 mv 240 mv 16 mv 2.2 DAC 6 TPG1700 ( HVCPG) ( ) ( ) 0 100 Ω ( Pt100 ) 21

3 SCT DAQ SCT DAQ SCT DAQ VME VME PC PC ROOT SCTDAQ ( 3.1)[9] 3.1 SCTDAQ 1 SCTDAQ SCTDAQ SCT SCTDAQ Windows OS (DLL) ROOT ROOT C++ PAW CERN Windows PC National Instruments VME-MXI VME VME 22

1 SCT DAQ 3.2 4 VME HV MuSTARD (Multi-channel SCT ABC (D) Readout Device) SCT 12 FIFO MuSTARD LVDS (Low Voltage Differential Signaling) [10] SLOG (SLOw command Generator) SLOG ABCD SCT SLOG LVDS CLOAC 12 SCT 40MHz SLOG RAM 3 14 (14-bit Output Enable Register) [11] CLOAC (CLOck And Control) SCTLV ASIC ASIC (Vcc) (Vdd) (Icc Idd) SCTDAQ 2 HV SCTHV KEITHLEY 6517A TAKASAGO CCP500-005R KEITHLEY 196 SYSTEM DMM ABCD MuSTARD SLOG 40 MHz LVDS LVDS MuSTARD 23

3.2 ( 2 ) 2 VME C C++ ROOT stdll CINT C++ ROOT ST.cpp stdll ROOT DCS (Detector Control System) ROOT [9] 24

4 SCT 2,000 3 700 1 1 ( 4.1) [12] 4.1 25

2 IV (INITIAL) (TC) (LT) 3 TC Temperature Cycle LT Long-Term 3 350 V 24 15 Pt100 ASIC 4 30 50 3 5 ( 4.2) ASIC 4.2 5 150 V ASIC 24 ASIC 15 ASIC (Icc Idd) 1 26

2 1 [12] ( 4.3) x ( 20 mrad ) y z (x-y) (z) 5 5 3 MITSUTOYO Quick Vision Pro Quick Vision Pro (z ) x-y x-y 1 µm z 10 µm 4 ( 23 µm 23 µm/sin0.040) x 25 µm y 5 µm x y z ( ) r-φ 3 ( ) 4 8 (x,y) 6 26 x-y 4.4 (Xm,Ym) 4 C1 C4 C1 C2 C3 C4 4.1 27

4.3 ( ) 4.4 28

x mhx [µm] -6500 30 y mhy [µm] -37000 30 x msx [µm] 38500 100 msy [µm] 37000 30 x ( ) midx [µm] 0 10 0 5 y ( ) midy [µm] ( ) sepf [µm] 64090 10 ( ) sepb[µm] 64090 10 1 a1 [mrad] 0 0.13 2 a2 [mrad] 0 0.13 3 a3 [mrad] 0 0.13 4 a4 [mrad] 0 0.13 half-stereo [mrad] 4.1-20 0.13 5 5 2 1 2 3 1 mm 200 µm z, (z = ax+ by+ c) ( 4.5) r-φ 8 µm 50 µm ( 4.2) 29

4.5 z ( ) maxzlower [µm] z ( ) maxzupper [µm] diffmodulethickness[µm] ( ) optimalmaxzerrorlower [µm] ( ) optimalmaxzerrorupper [µm] OptimalMaxZerrorLower RMS OptimalRMSZerrorLower [µm] OptimalMaxZerrorUpper RMS OptimalRMSZerrorUpper [µm] locoolingfacing a [mrad] locoolingfacing b [mrad] 4.2 0 200 0 200 0 100 0 50 0 50 0 25 0 25 0 0.5 0 3 30

2 IV 0 500 V 10 V 5 (Pt100) 15 ASIC IV IV 0 500 V 4 A 3 150 V DAC [9] Vdd Vdd 4.0 3.5 V Vdd 3.5V 4.6 2 N B 31

12 0 1 2 1. ( ) 2. ( ) ON 01X 4.0 fc 2.0 fc 50% 50% 50 1/4 0.8 nsec ( 4.7) 0 35 28 63 4.7 32

(4 mv) DAC DAC ( ) 4 DAC DAC 1.0 fc VT50 ( 50 ) DAC VT50 2.5 mv 2.5 mv 300 mv DAC DAC 1 ( 125% ) 0 1 S S 50 VT50 S ( 4.8) 4.8 S VT50 S S 1 ( ) 33

[14] 10 (0.5 8.0 fc) S VT50 10 VT50 VT50( Q) Q a b c Gain a 1+ e = + Q / b ae b(1 + e Q / b ( Q) = Q / b ( 4.9) 2.0 fc dead unbonded lost ) c 2 4.9 ( 10 ) dodgy 50 mv/fc 1 fc ( 6250 e) 4 1 1550 e ( 1500 e) 1 34

100 khz 10 6 10 6 2000 1 2000 50 1.0 fc 1.0 fc 2 (fc 2 ) (ln) ( 5.10) 1 fc 5 10 4 4.10 1.0 fc 10.0 fc 1.25 fc ( 4.11)[9] 35

( 0.8 nsec) 10.0 fc ON 01X 10 fc 25 nsec nsec 16 nsec 4 4.11 (TM0, TM1) (Pt100) ASIC 15 [13] 4.12 36

5 1 Mod1 (20220170200001) Mod2 (20220170200002) Mod3 (20220170200003) Mod4 (20220170200004) Mod5 (20220170200005) ID 1 Mod1 Mod2 CERN (PS) CERN Mod1 CERN 22 Mod3 Mod4 Mod5 3 2 3 5.1 350 V 15 Mod1 Mod2 24 15 Mod2 Mod3 Mod4 Mod5 Mod1 Mod2 37

5.1 350V 24 Mod2 ASIC 4 5 5 5.2 ( 5.2 ) Mod2 LT Mod1 350 V Mod3 Mod4 Mod5 ASIC ASIC 1 Confirmation Test ASIC ( 5.2 ) 38

5.2 (Vbias)150 V 350 V ASIC 24 ( ) ASIC ( ) Idet TM0 TM1 Icc Idd ASIC Mod2 39

2 1 5.3 x midf ( 5 m) 0.13 mrad 5.4 5.5 x 5.4 optimalrmszerrorlower (Upper) RMS 0 25 µm 40

5.3 41

5.4 (1) 42

5.5 (2) 43

2 IV 20 IV 3 IV 500 V 4 µa IV ( 5.6) 5.8 IV 5.6 IV 20 44

3 Vdd 3.3 4.2 V Vdd 3.3 V Vdd 3.5 V Mod1 0 ( 5.7 ) 6 ( 5.7 ) 0 16 unit 6 17 unit 5.7 45

モジュール Mod1 Mod2 Mod3 Mod4 Mod5 状態 1 fc 相当の閾値電圧マスクチャンネル [mv] ( トリム不能チャンネル ) INITIAL 87.5 2 (2) TC 87.5 2 (2) LT 87.5 3 (3) INITIAL 90.0 12 (12) TC 87.5 12 (12) LT 90.0 12 (12) INITIAL 92.5 3 (3) TC 92.5 3 (3) LT 92.5 3 (3) INITIAL 90.0 0 (0) TC 92.5 0 (0) LT 95.0 0 (0) INITIAL 87.5 4 (2) TC 95.0 4 (3) LT 95.0 4 (3) 5.1 5.1 0 3 Mod5 S LT S ( 5.8) Mod1 1 Mod2 1 fc 46

5.8 S 47

2.0 fc 5.9 5.10 5.11 5.9 ( 5.2) 55 mv/fc 1550 e ( 5.3) ( LT ) 5 36 7680 (5 ) 0.47 Mod2 0.9 1% 48

5.10 INITIAL TC LT LT INITIAL 49

5.11 INITIAL TC LT LT INITIAL 50

モジュール状態増幅率 [mv/fc] 入力ノイズ [e] Mod1 Mod2 Mod3 Mod4 Mod5 INITIAL 55.92 ± 1.20 1446 ± 65 TC 56.49 ± 1.22 1412 ± 63 LT 56.23 ± 1.22 1395 ± 62 INITIAL 55.20 ± 1.11 1493 ± 40 TC 54.33 ± 1.12 1481 ± 38 LT 54.51 ± 1.09 1419 ± 36 INITIAL 55.69 ± 1.11 1492 ± 38 TC 56.42 ± 1.15 1498 ± 37 LT 56.28 ± 1.13 1455 ± 36 INITIAL 55.56 ± 1.13 1530 ± 45 TC 55.28 ± 1.15 1504 ± 44 LT 55.43 ± 1.11 1546 ± 48 INITIAL 54.99 ± 1.09 1532 ± 46 TC 55.24 ± 1.09 1445 ± 43 LT 55.10 ± 1.08 1417 ± 42 5.2 55 mv/fc 1550 e RMS モジュール Mod1 Mod2 Mod3 Mod4 Mod5 センサーとマスク高ノイズ割合状態未接続の合計チャンネルチャンネル [%] チャンネル INITIAL 2 7 0 9 0.59 TC 2 7 1 10 0.65 LT 3 7 0 10 0.65 INITIAL 12 1 1 14 0.91 TC 12 1 1 14 0.91 LT 12 1 0 13 0.85 INITIAL 3 1 2 6 0.39 TC 3 1 0 4 0.26 LT 3 1 0 4 0.26 INITIAL 0 2 4 6 0.39 TC 0 2 0 2 0.13 LT 0 2 1 3 0.20 INITIAL 4 2 0 6 0.39 TC 4 2 0 6 0.39 LT 4 2 0 6 0.39 5.3 1 51

( 5.4) 1 fc 5 10-4 Mod1 Mod2 10 7 10 6 モジュール平均占有率 (1 fc) ノイズ [e] Mod1 5.0 ± 4.3 10-6 1361 Mod2 1.7 ± 1.7 10-5 1463 Mod3 2.9 ± 2.1 10-5 1551 Mod4 6.0 ± 4.7 10-5 1663 Mod5 2.1 ± 1.5 10-5 1500 5.4 1 fc 5 10 4 RMS 52

( 4.12) 16 nsec 10 14 nsec 5.12 16 nsec 53

Mod1 Mod2 Mod3 Mod4 Mod5 2 3 Mod1 Mod2 4.5 Mod3 Mod4 Mod5 3.2 3.7 ASIC 12 5.3 W ( 5.5) モジュール Mod1 Mod2 Mod3 Mod4 Mod5 サーミスタ1 フェイシング ASICの状態温度差 [degc] [degc] [degc] 発熱量 [W] INITIAL 30.5 26.1 4.4 5.18 TC 30.5 25.4 5.1 5.18 LT 31.5 27.4 4.1 5.25 INITIAL 31 26.3 4.7 5.39 TC 31 28.7 2.3 5.26 LT 32 25.4 6.6 5.50 INITIAL 30 26.9 3.1 5.20 TC 30.5 27.1 3.4 5.18 LT 30 26.9 3.1 5.16 INITIAL 30 27.1 2.9 5.32 TC 31 27.6 3.4 5.33 LT 30 27.1 2.9 5.28 INITIAL 28 24.7 3.3 5.28 TC 28 24.4 3.6 5.26 LT 27 24.3 2.7 5.14 5.5 54

6 2006 LHC LHC SCT SCT Site Qualification 24 15 20 60 (5 ) 24 5 µm 15 3.7 IV 2 fc ENC 55 mv/fc 1450 e 10 4 16 nsec 1 (2002 )2 1 12 55

56

[1] Particle Data Group, Review of Particle Physics", The European Physical Journal C3 (1998) 1. [2] ATLAS Inner Detector Technical Design Report",CERN/LHCC/99-17. [3] G. Lindstrom et al., Radiation hardness of silicon detectors - a challenge from high-nergy physics " Nucl. Instrum. and Methods in Phys. Res. A426 (1999) 1-15. [4] William R.Leo, Techniques for Nuclear and Particle Physics Experiment", Springer-Verlag (1987). [5] 2000 2 [6] 2001 2 [7] T. Kondo et al., Construction and Performance of the ATLAS Silicon Microstrip Barrel Modules, submitted to the 5th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors (RD01), July 4-6, 2001, Firenze, Italy. [8] ABCD3T Chip Specification Version V1.2, July 24, 2000 [9] P. W. Phillips and L. Eklund, Electrical Tests of SCT Hybrids and Modules Version 3.01, 24.08.01 [10] M. Morrissey, SLOG, 28/08/99 [11] M. Goodrick and M. Morrissey, MuSTARD, 17/09/98 [12] ModuleQA SCT-BM-FDR-7 [13] Mechanical and Thermal Performance of Modules SCT-BM-FDR-8 [14] Electrical Performance of Modules SCT-BM-FDR-9 57