62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

Similar documents
Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

LLG-R8.Nisus.pdf

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Gmech08.dvi

Z: Q: R: C:

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

CVMに基づくNi-Al合金の

四変数基本対称式の解放

Dynkin Serre Weyl

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

16 B


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


II I Riemann 2003

量子力学 問題

meiji_resume_1.PDF

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

( )

Gmech08.dvi

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

第10章 アイソパラメトリック要素

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

koji07-01.dvi

201711grade1ouyou.pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

第5章 偏微分方程式の境界値問題

TOP URL 1

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

Note.tex 2008/09/19( )

2011de.dvi

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X


x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

液晶の物理1:連続体理論(弾性,粘性)

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

08-Note2-web

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

D 24 D D D


1

77

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

TOP URL 1

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

pdf

note1.dvi


°ÌÁê¿ô³ØII

第86回日本感染症学会総会学術集会後抄録(I)

30


TOP URL 1


~nabe/lecture/index.html 2


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

A

Korteweg-de Vries

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

proc.dvi

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

QMII_10.dvi

B ver B

Transcription:

15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard 0 Pc 0 (X) D. Mumford ([Mum, Chapter II]) [Sh, ] [Lan] [Iwa] Mumford theta (Remann ) Remann ( 6.2) Jacob 2 Jacob 3 4 Jacob 0 Abel-Jacob ( 5) theta ( 6) 7 Abel-Jacob 0 Z O X O X 0 H 1 (X, Z) H 1 (X, O X ) H 1 (X, O X ) ϕ H 2 (X, Z) Poncaré H 1 (X, Z) H 1 (X, Z) Serre H 1 (X, O X ) H 0 (X, Ω X ) Jac(X) = H 0 (X, Ω X ) /H 1 (X, Z) Ker ϕ = Pc 0 (X) COE E-mal gunj@ms.u-tokyo.ac.jp 61

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P X D Remann-Roch L(D) = {X f (f) + D 0} P n P ( deg D > 2g 2 ) L(D) X X C X = U α U α U β α, β U α U β g αβ : (1) g αα = 1. (2) g βα = g 1 αβ. (3) g αβ g βγ = g αγ (U α U β U γ ). (U α C) : U α C (x α, u α ) (x β, u β ) U β C x α = x β u α = g αβ (x α )u β. L = (U α C)/ ( ) π : L X, (x α, u α ) x α well-defned

Abel-Jacob I 63 L X {g αβ } 2 L L {g αβ } {g αβ } ( ) U α h α g αβ = h 1 α g αβ h β X Pcard Pc(X) L g αβ M h αβ g αβ h αβ L M g j 1 X C O X Γ(X, L) = {s: X hol L π s = d X } L Γ(X, O X ) X C L Γ(X, L) 0 hol Γ(X, L) = {f α : U α C f α /f β = g αβ } 2.2 D = r =1 n P X X X = k U k P U P j (j ) k U k f k : P U f P n ( n ) P / U k (1 r) f k = 1 U U j g j = f /f j O X (D) O X (D) f f f u u U g j u g j u 1 j X Dv(X) Pc(X) ϕ ϕ X f (f) Dv l (X) ker ϕ = Dv l (X) D = n P = (f) U P f U g j = f/f = 1 ϕ(d) = O X ϕ(d) = O X D = n P U P n f U h 1h j f h U U j X f (f) = n P ker ϕ = Dv l (X) ϕ Dv(X)/ Dv l (X) Pc(X) Dv(X)/ Dv l (X) Pc(X) X ( ) X f /f j = h 1 0 O X K X K X /O X 0

64 H 0 (X, K X ) H0 (X, K X /O X ) H1 (X, O X ) H1 (X, K X ) = 0 K X X 0 D = n P Dv(X) P U f P n ( n ) hol Γ(X, O X (D)) = {h α : U α C h α /h β = f α /f β } h α fα 1 X ψ (ψ) + D 0 Γ(X, O X (D)) L(D), (h ) ψ = (h f 1 ) L(D) D 2.1 (1) Dv(X)/ Dv l (X) Pc(X), D O X (D) (2) D Dv(X) Γ(X, L) L(D) Γ(X, L) C- 2.3 Pcard Jacob X Pc(X) Pc(X) ( ) Pc(X) Pc(X) Pc(X) Pc(X) L = O X (D) D deg L Pc n (X) n Pc(X) Pc 0 (X) Pc(X) = n Pcn (X) X P Pc 0 (X) Pc n (X), L L O(nP ) Pc 0 (X) Dv 0 (X)/ Dv l (X) Dv 0 (X) 0 2.2 X g C g Λ Pc 0 (X) g- C g /Λ Pc 0 (X) C g /Λ X 0 C g /Λ

Abel-Jacob I 65 C g /Λ C g /Λ (C ) 2.1 g = 0 Pc 0 (X) = {1 } P 1 D = r =1 (P Q ) P 1 0 P l = P l+1 = = P r = P (1 < l), Q (1 r) C l 1 =1 ϕ(x) = (x P k) r =1 (x Q ) C {P 1,... P l 1 } {Q 1,..., Q r } r l (ϕ) = D Abel g = 1 Remann-Roch 2.2 g = 1 1 D P D P L(K X D) = 0 Remann- Roch dm L(D) = deg D 1 + g = 1 D P X X Pc 0 (X), P P Pc 0 (X) X = C/Λ X C g /Λ Jacob Jac(X) Pc 0 (X) C Sch/C Set Pc 0 X T {X T 0 } {pr T (L) L T } pr T X T T X T 0 T 0 Pc 0 X (representable) C Pc 0 (X) Pc 0 X (T ) = Hom C-Sch(T, Pc 0 (X)) ( ) Pc 0 (X) (fne modul) 2.2 : Pc 0 X Pc0 (X) C g /Λ T = Spec C X Pc 0 X(C) C g /Λ 2.2

66 0 Pc X Pc 0 (X) X ( 0 ) X Pc 0 (X) X T = X Pc 0 X( X) = Hom( X, X) X X dx b Poncaré (cf [Ko]) Jacob Albanese X X Alb(X) ι: X Alb(X) : A X A f g : Alb(X) A f = g ι Alb(X) X Albanese X Alb(X) = Jac(X) X Pcard Albanese ( Kähler X Pc 0 (X) Alb(X) ) 3 Jacob X g X 2g path α 1,..., α g, β 1,..., β g α 1 α 2 α 3 α g β 1 β 2 β 3 β g H 1 (X, Z) 2g H 1 (X, Z), X 1-cycle γ γ γ γ 1 γ, γ = 1, γ, γ = 1 α, α j = β, β j = 0, α, β j = β, α j = δ j : Poncaré H 1 (X, Z) H 1 (X, Z) 1 [Mum, P.137] α, β

Abel-Jacob I 67 H 1 (X, Z) H 1 (X, Z) Z, de Rham C- de Rham H dr (X, C) sngular H sng 1 (X, C) 3.1 (de Rham ) H dr (X, C) H sng (X, C) = H (X, C), [ω] ( ) γ ω γ dual -form -cycle H 0 (X, Ω X ) ω closed 1-form dω = 0 d = δ + δ d ω δω = 0 δω 2-form X 1 δω = 0 H 1 (X, C) 2g de Rham ω 1,..., ω g, ω 1,..., ω g ( ) : 3.2 H 1 (X, Z) H 0 (X, Ω X ), γ ( ) ω ω γ H 1 (X, Z) g- C- H 0 (X, Ω X ) 2g H 0 (X, Ω X ) C g H 1 (X, Z) Λ Λ 2g Λ 3.3 (Remann ) (1) ω, η X 1-form ( ) ( ) = 0. =1 α ω β η =1 =1 α ω α η (2) ω 0 1-form ( ) Im > 0. β ω β ω

68 X α β 4g 1-cycle α, β α +, β+ α, β β α β + α + 4g X 0 X 0 = g =1 (α+ α ) + g =1 (β+ β ) 2 X 0 X 0 f 1-form η η = df fω 1- d(fω) = 0 Green 0 = d(fω) X 0 = fω X 0 ( ) = fω fω + fω fω =1 = α + (f α + α α β + f α ) ω + (f β + β β f β ) ω. df = η X η α + = η α f α + f α β α + α 3 β η = α η f β + f β 0 = β η α ω + (1) (2) f = dω f d(fω) = ω ω + ( ω ω = 2 Im X 0 β α α β α η β ω β ω α ω ) 2 [Mum]. 3 β α

Abel-Jacob I 69 d(fω) = d f df = df dz 2 dz dz z = x + y dz dz = 2 dx dy ω 0 (1/2) fω > 0 3.4 ω 1,..., ω n H 0 (X, Ω X ) A j = α ω j B j = β ω j det(a j ),j 0 τ = A 1 B H g H g = {Z M g (C) t Z = Z, Im(Z) > 0 ( )} ω H 0 (X, Ω X ) α α ω = 0 3.3 (2) ω = 0 det(a j ) 0 H 0 (X, Ω X ) α ω j = δ j 3.3 (1) ω = ω, η = ω j τ j = τ j (2) ω = a ω a = t (a 1,..., a g ) t a Im(τ)a > 0 (a 0) H 0 (X, Ω X ) ω 1,..., ω g α ω j = δ j H 0 (X, Ω) C g H 0 (X, Ω X ) /H 1 (X, Z) = C g /Λ τ, Λ τ = Z g + τz g 3.5 Λ τ C g (lattce) ( ) 1 g τ det 0 1 g τ Λ τ R = C g 3.1 Jac(X) = C g /Λ τ X Jacob 4 Abel-Jacob X X path γ ( ) ω := ω 1,..., ω g C g γ γ γ

70 Λ τ = { ω C g γ H 1 (X, Z)} γ 4.1 D = (P Q ) Dv 0 (X) 0 (P Q ) I : Dv 0 (X) Jac(X) I(D) = P Q ω mod Λ P Q ω mod Λ τ Q P path path 1-cycle α, β Λ τ - I D = (P Q ) well-defned 4.1 D Dv l (X) I(D) = 0 I Pc 0 (X) = Dv 0 (X)/ Dv l (X) Jac(X) I X f f X P 1 t P 1 f 1 (t) = D(t) X deg D(t) t n X φ: P 1 Jac(X), t D(t) n ω mod Λ τ P 1 φ φ: P 1 C g P 1 φ φ ϕ(0) = ϕ( ) I(D) = φ(0) φ( ) 4.2 (Abel-Jacob ) I : Pc 0 (X) Jac(X) Abel Jacob 5

Abel-Jacob I 71 5.1 X g X D Dv 0 (X) P 1,..., P g X D P 1 + + P g g D + g g Remann-Roch l(d + g ) = l(k x D g ) + deg(d + g ) g + 1 g g + 1 = 1 D + g P 1 + + P g Pc 0 (X) g =1 P g J : X g := X } {{ X } Jac(X), g (P 1,..., P g ) P ω mod Λ τ Im J = Im I J P X (g) = X g /S g (S g g ) J X (g) Jac(X) 5.2 X (g) g- X (g) X X (g) j j P X t P 1 = = P g = P t σ (t) (P,..., P ) g X (g) (P,..., P ) Im I = Im J I J J J ( ) X (g) Jac(X) 5.1 ( 2 ) C 2 C y 2 = x 5 + (x, y) (x, y) (hyperellptc nvoluton) ι (x, y) x f : C P 1 x P 1 P C f 1 (x) = {P, ι(p )} C/ ι P 1 ι K C C P C Remann-Roch l(p ) l(k C P ) = deg P g + 1 = 0

72 l(p ) = 1 l(k C P ) = 1 K C P +Q Q C Q ι(p ) C (2) Pc 0 (C) C Ψ: C (2) Pc 0 (C), (P 1, P 2 ) P 1 + P 2 2 5.1 Ψ Remann-Roch l(p 1 + P 2 ) = l(k C P 1 P 2 ) + deg(p 1 + P 2 ) + 1 g = 1 + l(k C P 1 P 2 ) P 2 ι(p 1 ) l(k C P 1 P 2 ) = 0 ( 0 ) l(p 1 + P 2 ) = 1 P 1 + P 2 D = {(P, ι(p )) C (2) } C (2) D Ψ P C P +ι(p ) 2 K C Ψ(D) = {0} D C/ ι P 1 (D 2 ) = 1 Castelnuovo ([Har, Theorem 5.7, Chapter V]) D Z π : C (2) Z z 0 Z π 1 (z 0 ) = D π : C (2) D Z {z 0 } (z 0 blow-up) Ψ Ψ: Z Pc 0 (C) Z Jacob Jac(C) (D 2 ) = 1 pr: C C C (2) : C C C, x (x, x) ϕ: C C 1 ι C C pr C (2) D = ϕ( (C)) deg ϕ = 2 C C ( (C) 2 ) = 2 C C 0 I O C C O C 0 I I O C C ( (C)) ([Har, Proposton 6.18, Chapter II]) ( (C) 2 ) = deg O C C ( (C)) = deg I I 0 I 2 I O C I 0 I/I 2 O C I Ω 1 C = (I/I 2 ) I ( C O C F F = F ) ( (C) 2 ) = deg Ω 1 C = 2 2g = 2

Abel-Jacob I 73 6 Remann theta Remann theta Remann theta C g - z H g - τ z C g /Λ τ (z = 0 ) τ I Dv l (X) X X Jac(X) = C g /Λ τ X Jac(X), P P ω mod Λ τ X 4 6.1 z C g τ H g ϑ(z, τ) = l Z g exp(π t lτl + 2π t lz) C g H g C g 6.1 ϑ(z, τ) : (1) ϑ(z + m, τ) = ϑ(z, τ), m Z g ; (2) ϑ(z + τm, τ) = exp( π t mτm 2π t mz)ϑ(z, τ). (1), (2) C g ϑ(z, τ) f (1) f(z) = l Z g c l e 2πt lz Fourer (2) Fourer c n C g u 1,..., u g c l+uk = exp(2π t lτu k + π t u k τu k ) c l (1), (2) 1 ϑ(z, τ) 4 Remann theta

74 Jac(X) O X (Θ) Γ(X, O X (Θ)) 1 O X (Θ) ample Jac(X) (cf. [Ko]) Remann 6.2 X z C g X ( ) (P ) = ϑ(z + P ω, τ) Remann C g : 0 g Q 1,..., Q g Q ω z + mod Λ τ =1 (P ) P path path ϑ(z, τ) 0 (P ) 3.3 Q ( ) D d / X 0 D 1-form closed form ( ) dfz 0 = = = X 0 S D d (X 0 S D ) ( ) dfz D d + k=1 α + k α k d + k=1 β + k β k α k path α k β k β+ k path β + = k β 3 0 k path β k exp( π t u k τu k 2π P ω k + t u k z) (u k C g ), β k α + k α k path 2 { } d(log ) d(log ) = 2πω k = 2πg. α k k=1 α k α + k k=1 d.

Abel-Jacob I 75 0 = d D + 2πg g X 0 ω k = dg k g k ( ) = 0 1-form g k d / 0 = =1 D g k d + l=1 α + l α l g k d + 1 d g k = 2πg k (Q ) = 2π D 3 g k β + l d g k = δ kl β + l β l g k β l d β l l=1 Qk ω k β + l β l g k d = α l ω k = δ kl = δ kl = δ kl ( π t u l τu l 2π β l d(log ) P1 ω l 2π t u l z + 2πm l ) P 1 path α, β m l 2 g k α + g k l α l β l ω k = τ kl ) α + l α l g k d = α l [ ( dfz (g k τ kl ) = 2πτ kl n l + 2π α + l 2πω l g k ω l 2πτ kl ] d g k [ Q τ P1 kk ω k = z k + =1 2 ω k + l τ kl l α + k g k ω l ] + m k + l τ kl n l 7 Abel-Jacob Remann Abel-Jacob f z Remann f z 0 Q 1,..., Q g g D = Q J(D) = Q =1 ω mod Λ τ = z

76 { ( E = z Jac(X) f z(p ) = ϑ z + P ) } ω = 0, P X E Jac(X) U = Jac(X) E Im J U X (g) Im J J 7.1 (Jacob ) (1) J : X (g) Jac(X) = C g /Λ τ J : J 1 (U) U (2) P 1,..., P g X z C g g P =1 ω z mod Λ τ f z (P ) = ϑ( z + P ω) = 0 z U f z P P ω z mod Λ τ =1 X (g) Jac(X) W { ((P1 W =,..., P g ), z ) X (g) Jac(X) P ω z mod Λ τ, f z (P ) = 0 (1 g) } W 2 pr 1 X (g) W pr 2 Jac(X) 6.2 pr 2 : pr 1 2 (U) U z U f z {P 1,..., P g } z ( (P 1,..., P g ), z) ) pr 2 Im pr 2 U (W ) pr 2 dm W g W pr 1 W J {(x, J(x)) x X (g) } (2) (2) (1) Abel 7.2 (Abel ) P 1,..., P r, Q 1,..., Q r X I( r =1 (P Q )) = 0 {P 1,..., P r } {Q 1,..., Q r } X

Abel-Jacob I 77 (P ) = ϑ(z + P ω, τ) ϑ(z 0, τ) = 0 z 0 C g z 0 X ( ) ϕ P (x) ϕ P (x) = ϑ(z 0 + x P ω, τ) x = P f(x) = r =1 ϕ P (x) ϕ Q (x) ϕ P 0 ϕ P 2 7.3 P X { y D P = z Jac(X) ϑ(z + P } ω) = 0, y X 2 R (1 r) ϕ R ϑ z 0 D D P X P = { y ω y X} X P P + D Jac(X) ϑ dm(x P + D) g 1 dm D = g 1 D = D+X P D = D+X P = D+X P + X P + + X p = }{{} g Jac(X) (I ) dm D g 2. 7.4 z 0 C g ϑ(z 0 ) = 0 X X Φ z0 (P, Q) = ϑ(z 0 + Q ω) 0 P 2g 2 R 1,..., R g 1, S 1,..., S g 1 : {(P, Q) X X Φ z0 (P, Q) = 0} g 1 g 1 ={(P, P ) X X} ({R } X) (X {S }). =1 =1 y Φ z0 (R, y) 0 R 6.2 Φ z0 (R, y) y 1,..., y g g 7.1 (y 1,..., y g ) y ω z 0 P0 =1 R ω mod Λ τ

78 X (g) Φ z0 (R, R) = ϑ(z 0 + R R ω) = 0 y 1 = R (y 2,..., y g ) y =2 z 0 mod Λ τ X (g 1) R S = y +1 Φ z0 (, S ) 0, (1 g 1) y Φ z0 (R, y) 0 {R, S 1,..., S g } y Φ z0 (R, y) 0 R g 1 S 1,..., S g S 0 Φ(, S 0 ) 0 Φ z0 (x, S 0 ) = 0 x x = S 0 y Φ z0 (x, y) 0 x Φ z0 (x, S 0 ) = Φ z0 (S 0, x) x g S 0, R 1,..., R g 1 Φ z0 (R, ) 0 7.2 7.3 P, Q ϕ P 0 ϕ Q 0 z 0 z 0 1 X ( ) r ϕ P (x) f(x) = ϕ Q (x) =1 f(x) X x P Q x path I( (P Q )) = 0 r P r Q ( ) ω ω mod Λ τ =0 =0 P Q path γ, δ ( ) (modλ τ ) γ, δ f(x) path : x path γ δ P, Q x path x path α ω β w Λ τ theta f(x) X well-defned ϕ P (ϕ Q ) 7.4 P, S 1,..., S g 1 (Q, S 1,..., S g 1 ) g f(x) P 1,..., P r Q 1,..., Q r (f) = D [BLR] S. Bosch; W. Lütkebohmert; M. Raynaud, Néron models. Ergebnsse der Mathematk und hrer Grenzgebete (3) [Results n Mathematcs and Related Areas (3)], 21. Sprnger-Verlag, Berln, 1990.

Abel-Jacob I 79 [Har] R. Hartshorne, Algebrac geometry, Graduate Texts n Mathematcs, No. 52. Sprnger-Verlag, New York-Hedelberg, 1977. [Iwa], 1973. [Ko] [Lan] [Ml] Algebrac theory va schemes S. Lang, Introducton to algebrac and abelan functons, Second edton. Graduate Texts n Mathematcs, 89. Sprnger-Verlag, New York-Berln, 1982. J. S. Mlne, Jacoban varetes Chapter VII of Arthmetc geometry, Papers from the conference held at the Unversty of Connectcut, Storrs, Connectcut, July 30 August 10, 1984. Edted by Gary Cornell and Joseph H. Slverman. Sprnger-Verlag, New York, 1986. [Mum] D. Mumford, Tata lectures on theta I, Progress n Mathematcs, 28. Brkhäuser Boston, Inc., Boston, MA, 1983. [Ser] [Sh] J. P. Serre, Algebrac groups and class felds, Graduate Texts n Mathematcs, 117. Sprnger-Verlag, New York, 1988 1992. [Wel] A. Wel, Varétés abélennes et courbes algébrques Actualtés Sc. Ind., no. 1064 = Publ. Inst. Math. Unv. Strasbourg 8 (1946). Hermann & Ce., Pars, 1948.

80