2 2 L 5 2. L L L L k.....

Similar documents
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

Chap11.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C:

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

body.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3


(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


(1) (2) (3) (4) 1

Z: Q: R: C: 3. Green Cauchy

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

DVIOUT

prime number theorem

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

29

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

KENZOU

2000年度『数学展望 I』講義録

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

2011de.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,


量子力学 問題

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


Chap9.dvi

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

function2.pdf

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

2014 S hara/lectures/lectures-j.html r 1 S phone: ,


But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

meiji_resume_1.PDF

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

gr09.dvi

Lebesgue Fubini L p Banach, Hilbert Höld

RIMS98R2.dvi

°ÌÁê¿ô³ØII

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


Part () () Γ Part ,

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Transcription:

L 528 206 2 9

2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I................................... 5 4.2 I........... 7 5 20 5...................... 2 5.2............................. 26 6 28 [](E.M.,R ( ) ) L 2 ( ) 2

ˆf(ξ) f(x)e 2πiξx dx (ξ R) f f(x) dx < L L L { ˆf : f L (R)} ([2, p. 69] ) L ( 2., 7). R ϕ(z) z < R ϕ(0) 0 L h L (R) h < R ϕ(ĥ) ĝ g L (R) ϕ(ĥ) L L( ) L ( 2.2). f(x) + x 2 k f k (x) (f f f)(x) kπk x 2 + k 2. f(x) ˆf(ξ)e 2πiξx dx (x R) ˆf(n) f(n) n Z n Z L 2 2

ζ(s) n n s (s C) ζ(2), ζ(4),.... ζ(2) π2 π4, ζ(4) 6 90 2. ζ() (n + ) (n + 2) 4 24 π (4n + ) (4n + ) π 2 L I 2 L L 4 I 5 6 4

2 L 2. L [4, ] [5] (L ). R f f f(x) dx < L (R) L f L (R) f L f L L 2 ( ). f L (R) ˆf(ξ) ˆf f L L f(x)e 2πiξx dx (ξ R) L { ˆf : f L (R)} F L (R) L L 2 ( ). [, ] f(x) { ( x ) 0 ( < x ) f(x) L ˆf(ξ) f(x)e 2πiξx dx e 2πiξx dx sin 2πξ πξ f(x) ˆf(ξ) ξ 0 ( ) 5

ˆf L (R) 2 ( ). L f L (R) ˆf L (R) f(x) ˆf(ξ)e 2πiξx dx (x R) [ ]. [2, p. 44, ] ( 9). F [ ]. α, β C f, g L (R) F(αf + βg) αf(f) + βf(g) () F(αf + βg)(ξ) () α (αf(x) + βg(x))e 2πiξx dx αf(x)e 2πiξx dx + f(x)e 2πiξx dx + β αf(f)(ξ) + βf(g)(ξ). f R ˆf(ξ) [ ]. [2, p. 2,(.5)] βg(x)e 2πiξx dx g(x)e 2πiξx dx 2. L {f n } n L (R) {f n } n f L ˆ f n ˆf R 6

[ ]. f f n 0 (n ) f ˆ n (ξ) ˆf(ξ) (f n f)ˆ(ξ) (f n f)(x)e 2πiξx dx f n f (f n f)(x) dx sup ξ R ˆ f n (ξ) ˆf(ξ) f n f 0 (n ) ˆ f n ˆf R 2.2 L L L F(L (R)) F L L 4 ( ). f L (R) ˆf(ξ) 0 ( ξ ) [ ]. [2, Theorem]. [, ] ˆf(ξ) sin 2πξ πξ sin 2πξ lim ξ πξ 0 5. L f(x) ˆf(ξ) < b < b ˆf(ξ) ξ dξ A f b 7

[ ]. ˆf(ξ) ˆf(ξ) ˆf( ξ) b 2πx f(x) cos(2πξx)dx 0 ˆf(ξ) i f(x) sin(2πξx)dx ˆf(ξ) dξ ξ b { } { b f(x) sin(2πξx)dx dξ ξ f(x) 2πxb sin(u) f(x) u du dx (2πxξ u ) A f(x) dx A f } sin(2πξx) dξ ξ dx 4. 0 L g(x) / log(x) (e < x) g(x) x/e ( x < e) / log( x) (x < e) g(x) b g(x) dx x b g(ξ) ξ dξ e b e ξ ξ dξ + b e ξ log(ξ) dξ + log(log(b)) (b ) e g(ξ) a ξ dξ 5 g L C 0 (R) {g(ξ) : g R g(ξ) 0 ( ξ )} L C 0 (R) L C 0 (R) 8

2. ( ). f, g L (R) f g (f g)(x) f(x t)g(t)dt (2) f g f g f f f k f k f (k 2) f k f k. f, g L (R) [ ]. () f g f g f g () f g g f (4) (f g)(x) dx f(x t)g(t)dt dx (5) x t s (5) ( f g f(x t)g(t) dtdx (5) f(s)g(t) dtds ) ( ) f(s) ds g(t) dt 9

(5) (4) (f g)(x) (4) (g f)(x) f(x t)g(t)dt f(u)g(x u)( du) (x t u ) f(u)g(x u)du 6. f, g L (R) (f g)ˆ(ξ) ˆf(ξ) ĝ(ξ) [ ]. (f g)ˆ(ξ) (f g)(x)e 2πiξx dx { { g(t) } f(x t)g(t)e 2πiξx dt dx (6) x t p { (6) g(t) ( ) ( g(t)e 2πiξt dt ˆf(ξ)ĝ(ξ) } f(x t)e 2πiξx dx dt (6) } f(p)e 2πiξ(t+p) dp dt ) f(p)e 2πiξp dp k 0

. f L (R) ˆf k (ξ) ( ˆf(ξ)) k 6 L (L (R), +, ) (L, +, ). L L L L 7. R ϕ(z) z < R ϕ(0) 0 L h L (R) h < R ϕ(ĥ) ĝ g L (R) ϕ(ĥ) L [ ]. ϕ(z) z < R R ϕ(z) a k z k (7) k (ϕ(0) 0 a 0 0) h < R ξ ĥ(ξ) h(x)e 2πiξx dx h(x) dx h < R ĥ(ξ) < R (7) z ĥ(ξ) ϕ(ĥ(ξ)) a k (ĥ(ξ))k a k (ĥk(ξ)) k k (ξ R). a k h k L n m k

(n, m Z) n m n a k h k a k h k a k h k k k km h < R n, m n a k h k km n a k h k km n a k h k km n a k h k 0 (n, m ) km L (R) L n a k h k g 0 (n ) g L (R) 2 ĝ(ξ) a k ĥ k (ξ) k a k (ĥ(ξ))k ϕ(ĥ(ξ)) k k.2 L k 7 5. f(x) + x 2 k f k (x) kπk x 2 + k 2 f 2 (x), f (x), f 4 (x),... f 2 (x) dt f(x t)f(t)dt ( + (x t) 2 )( + t 2 ) { 2 x(x 2 +4) t + x 2 +4 + (x t) 2 + 2 x(x 2 +4) t + } x 2 +4 + t 2 dt 2π x 2 + 4 2

f (x), f 4 (x),... 7 f(x) + x 2 e 2πizξ ξ > 0 Γ dz + z2 Γ Γ e 2πizξ Γ z i + z2 ( ) e 2πizξ Res + z 2 : z i e 2πξ 2i e 2πizξ ( ) e 2πizξ dz 2πi Res + z2 + z 2 : z i πe 2πξ Γ Γ [ R, R] γ R Γ e 2πizξ R + z 2 dz e 2πixξ R + x γr 2 dx + e 2πizξ + z 2 dz γ R R 0 + R 2 e 2iθ R 2 { sin θ 2 π θ + 2 (π θ 2 π) sin θ 2 π θ 4 ( 2 π < θ 2π)

z Re iθ (θ : 2π π) + z 2 dz 2π R π { 2 π e 4Rξθ+4πξR dθ + γr e 2πiξz R R 2 R R 2 π {e 4πξR [ 4ξR e 4ξRθ 2πξR sin θ e + R 2 e 2iθ dθ ] 2 π π 2π e 4Rξθ 8πξR dθ 2 π } + e 8πξR [ 4ξR e4ξrθ R { e 4πξR 4ξR(R 2 ( e 6πξR + e 4πξR ) + e 8πξR (e 8πξR e 6πξR ) } ) 2ξ(R 2 ) ( e 2πξR ) 0 (R ) e 2πixξ ξ > 0 + x 2 dx πe 2πξ ξ < 0 R ˆf(ξ) πe 2πξ ξ 0 dx π + x2 ξ R ˆf(ξ) πe 2π ξ ϕ(z) e z ϕ(z) (8) t ˆf(ξ) ϕ(z) k z k k! ] 2π 2 π ( z < ) (8) } ϕ(t ˆf(ξ)) (t ˆf(ξ)) k k! k k ˆf k (ξ) t k k! e tπe 2π ξ k ˆf k (ξ) t k (9) k! (9) t (πe 2π ξ )e tπe 2π ξ k2 ˆf k (ξ) (k )! tk (0) (0) t 0 ˆf 2 (ξ) πe 2π ξ 4

(0) k t 0 ˆf k (ξ) π k e 2πk ξ f k (x) kπk x 2 + k 2 4 I 4. I 4 ( I). a > 0 f I a. f S a {z C : Im(z) < a} 2. K > 0 x R y < a f(x + iy) K + x 2 I a>0 I a 8. a > 0 f I a f R L 0 b < a ˆf L ˆf(ξ) Be 2πb ξ [ ]. b 0 ˆf(ξ) f(x)e 2πiξx dx f(x) dx K dx Kπ + x2 0 < b < a ξ > 0 g(z) f(z)e 2πiξz 2 5

2 (i),(ii),(iii),(iv) R g (ii) (iv) 0 (iv) z R it (t : b 0) f(x + iy) (iv) b 0 g(z)dz 0 b b g( R it)( idt) g( R it) dt f( R it)e 2πiξ( R it) dt b K K f( R it) + x2 + R 2 K R 2 () b 0 K R 2 e 2πξt dt 0 0 f( R it)e 2πξt dt () K 2πξR 2 ( e 2πξb ) 0 (R ) (iv) 0 (ii) (i) R R f(x)e 2πiξx dx R ˆf(ξ) (iii) z x ib (x : R R) R R g(z)dz g(x ib)dx f(x ib)e 2πi(x ib)ξ dx (iii) R R g(z)dz 0 R ˆf(ξ) (i)+(ii)+(iii)+(iv) f(x ib)e 2πi(x ib)ξ dx 6

ˆf(ξ) f(x ib)e 2πi(x ib)ξ dx K + x 2 e 2πbξ dx Be 2πbξ ξ < 0 ξ < 0 4.2 I 9 ( ). f I x R f(x) ˆf(ξ)e 2πiξx dx 2 [ ]. ξ ˆf(ξ)e 2πiξx dx 0 ˆf(ξ)e 2πiξx dx + 0 ˆf(ξ)e 2πiξx dx 2 f I a 0 < b < a 8 ˆf(ξ) f(u ib)e 2πi(u ib)ξ du 7

ib L {u ib : u R} 0 ˆf(ξ)e 2πiξx dξ 0 2πi 2πi { } f(u ib)e 2πi(u ib)ξ du e 2πiξx dξ { } f(u ib) e 2πi(u ib x)ξ dξ du 0 f(u ib) 2πb + 2πi(u x) du L f(u ib) u ib x du f(ξ) dξ (2) ξ x ξ < 0 ib L 2 {u + ib : u R} 0 ˆf(ξ)e 2πiξx dξ 2πi L 2 x R γ R f(ξ) dξ () ξ x 4 γ R f(x) 2πi γ R f(ξ) ξ x dξ 8

R 0 f(x) f(ξ) 2πi ξ x dξ f(ξ) 2πi ξ x dξ 0 L ˆf(ξ)e 2πiξx dξ + ˆf(ξ)e 2πixξ dξ 0 L 2 ˆf(ξ)e 2πiξx dξ ( (2), () ) 0 ( ). f I n Z f(n) n Z ˆf(n) [ ]. f I a 0 < b < a 2πi f(z) e 2πiz e 2πiz z n Z n f(n) 2πi N Z γ N 5 γ N 2πi n N f(n) 2πi γ N f(z) e 2πiz dz 9

w > f(n) n Z L f(z) e 2πiz dz L 2 w w L z x ib w < w n e 2πiz e 2πi(x ib) e 2πb > e 2πiz e 2πiz w w n e 2πinz L 2 e 2πiz < e 2πiz e 2πinz f(z) e 2πiz dz (4) (4) ( ) ( ) f(n) f(z) e 2πiz e 2πinz dz + f(z) e 2πinz dz n Z L L 2 f(z)e 2πi(n+)z dz + f(z)e 2πinz dz L L 2 f(x)e 2πi(n+)x dx + f(x)e 2πinx dx ˆf(n + ) + ˆf(n) n Z ˆf(n) 5 20

5. 5 ( ). s C (Re(s) > ) ζ(s) ([, p. 72, 2.4] ) ζ(2) ζ(4). τ C Z n Z n n Z n s (τ + n) 2 π 2 sin 2 (πτ) (5) (τ + n) π cos(πτ) sin (πτ) (6) (τ + n) 4 π4 (cos(2πτ) + 2) sin 4 (πτ). τ C (Im(τ) > 0) k 2 n [ ]. ξ > 0 f(x) (τ + n) k ( 2πi)k (k )! (7) m k e 2πimτ (8) m (τ + x) k ˆf(ξ) e 2πiξx (τ + x) k dx 2

Γ Γ e 2πiξz (τ + z) k dz 6 Γ e 2πiξz z τ k (τ + z) k ( ) e 2πiξz Res (τ + z) k : z τ lim z τ Γ Γ (k )! ( 2πiξ)k e 2πiξτ (k )! e 2πiξz ( 2πi)k dz (τ + z) k (k )! Γ d k ( ) e 2πiξz dz k (τ + z)k (τ + z) k ξ k e 2πiξτ e 2πiξz (τ + z) k dz γ R e 2πiξz R (τ + z) k dz R e 2πiξx (τ + x) γr k dz + e 2πiξz (τ + z) k dz γ R R 0 τ + Re iθ (R τ ) k { sin θ 2 π θ + 2 (π θ 2 π) sin θ 2 π θ 4 ( 2 π < θ 2π) 22

z Re iθ (θ : 2π π) (τ + z) k dz 2π 2πξR sin θ R e π τ + Re iθ k dθ { 2 π e 4Rξθ+4πξR dθ + γr e 2πiξz R (R τ ) k R (R τ ) k π {e 4πξR [ 4ξR e 4ξRθ ] 2 π π 2π e 4Rξθ 8πξR dθ 2 π } + e 8πξR [ 4ξR e4ξrθ R { e 4πξR 4ξR(R τ ) k ( e 6πξR + e 4πξR ) + e 8πξR (e 8πξR e 6πξR ) } 2ξ(R τ ) k ( e 2πξR ) 0 (R ) ξ > 0 ξ < 0 ˆf(ξ) ( 2πi)k ξ k e 2πiξτ (k )! Γ ] 2π 2 π e 2πiξz (τ + z) k dz Γ } 7 Γ Γ e 2πiξz (τ + z) k Γ e 2πiξz (τ + z) k dz 0 2

ξ > 0 γ R Γ e 2πiξz R (τ + z) k dz R e 2πiξx (τ + x) k dz + γ R e 2πiξz (τ + z) k dz γ R γ R γ R e 2πiξz dz 0 (R ) (τ + z) k ξ < 0 e 2πiξx (τ + x) k dx 0 ξ 0 f(x) [ dx (τ + x) k ] (τ + x) (k ) 0 (k ) (τ + x) k ( 2πi) k ˆf(ξ) (k )! ξk e 2πiξτ (ξ > 0) 0 (0 ξ) n. z < (τ + n) k ( 2πi)k (k )! z n n z z nz n n m k e 2πimτ m z z z ( z) 2 (9) 24

(9) z z n n 2 z n n (8) k 2 n z(z + ) ( z) (20) n z n z(z2 + 4z + ) ( z) 4 (2) (τ + n) 2 4π2 (9) n (τ + n) 2 4π2 k k 4 n (τ + n) ( 2πi) 2! m(e 2πiτ ) m m m(e 2πiτ ) m m 4π 2 e 2πiτ ( e 2πiτ ) 2 4π 2 (e πiτ e πiτ ) 2 π 2 sin 2 (πτ) 8π i 2 π 2 m e 2πiτ (e 2πiτ + ) ( e 2πiτ ) m 2 (e 2πiτ ) m 4π e πiτ + e πiτ i (e πiτ e πiτ ) π cos(πτ) sin (πτ) n (τ + n) 4 ( 2πi)4! 8π4 8π4 π 2 m m (e 2πiτ ) m e 2πiτ ((e 2πiτ ) 2 + 4e 2πiτ + ) ( e 2πiτ ) 4 e 2πiτ + 4 + e 2πiτ (e πiτ e πiτ ) 4 π4 (cos 2πτ + 2) sin 4 πτ 25

Im(τ) > 0 τ C Z (5) n (τ + n) 2 π 2 sin 2 (πτ) τ n Z 2 C Z (5) τ C Z (6) (7) ζ(2) ζ(4) (5) n Z {0} (τ + n) 2 π2 sin πτ 2 τ 2 π2 (τ 0) n Z {0} (τ + n) k 2 (τ + n) k (k : ) (22) ζ(2) n n n 2 π2 6 ζ(4) n Z {0} (τ + n) 4 π4 (cos(2πτ) + 2) sin 4 (πτ) τ 4 π4 45 (τ 0) ζ(4) ζ(4) n n 4 π4 90 5.2 ζ(2) ζ(4) (22) (6) 26

2. (n + ) (n + 2) 4 24 π 4 5 π (2) (4n + ) (4n + ) π 2 π 2 5 (24) [ ]. (2) (6) τ n Z ( + π cos( π ) n) sin ( π ) n (n + ) 4 24 π 4 5 π n Z n (n + ) (n + 2) (n + ) (n + 2) 4 24 π 4 (24) (6) τ 4 n n n Z (4n + ) π 2 π 2 5 (4n + ) (4n + ) 5 π (4n + ) (4n + ) π 2 π 2 5 27

6. f(x) + x 2 k f k (x) kπk x 2 + k 2 7 2. n Z n (τ + n) 2 π 2 sin 2 (πτ) (τ + n) 4 π4 (cos(2πτ) + 2) sin 4 (πτ) ζ(2) π2 π4, ζ(4) 6 90 ζ(6), ζ(8),.... (n + ) (n + 2) 4 24 π 4 (4n + ) (4n + ) π 2 π 2 5 5 π n Z (τ + n) π cos(πτ) sin (πτ) τ, 4 ζ() ζ() 28

L L L I f I L [] E.M. R 2009 [2] K,Chandresekharan Classical Fourier Transforms Springer-Verlag 987 [] Elias M. Stein, Guido Weiss Introduction to FORIER ANALYSIS ON EU- CLIDEAN SPACES Princeton University Press 97 [4] 2000 [5] 96 29