D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Similar documents
Untitled

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

note1.dvi

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

KENZOU Karman) x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

sec13.dvi

i

meiji_resume_1.PDF

73

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Gmech08.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


b3e2003.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

all.dvi

gr09.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

応力とひずみ.ppt


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

量子力学 問題

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

notekiso1_09.dvi

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

B ver B

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

all.dvi

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

QMI_09.dvi

QMI_10.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

OHP.dvi

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1


T07M cm 3 cm/sec FreeFEM++ FreeFEM++

~nabe/lecture/index.html 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

all.dvi

TOP URL 1

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2


II 2 II

第5章 偏微分方程式の境界値問題

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


TOP URL 1

Part () () Γ Part ,

数値計算:有限要素法

chap03.dvi

pdf

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

TOP URL 1


Z: Q: R: C: 3. Green Cauchy

ct_root.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>



δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

PDF

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

2012専門分科会_new_4.pptx

OHP.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

all.dvi

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

液晶の物理1:連続体理論(弾性,粘性)

Microsoft Word - 11問題表紙(選択).docx

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Transcription:

post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η viscosity p (1.9) p λ p η (3.4) λ, η, p σ xx + σ yy + σ zz =3λė ll +2η (ė xx +ė yy +ė zz ) 3p =(3λ +2η)(ė xx +ė yy +ė zz ) 3p (1.9) 3p (3.5) p η (3.6) θ ė xx +ė yy +ė zz (1.25) µ =0 (3.6) θ 24

( ) (3.7) (3.8) [ - ] η 3.2 Lagrangian versus Eulerian derivatives 3.6 (3.8) 2.23 (2.23) D/Dt / t t P X u P x x (X,t)=X + u (3.9) u X x 1. u(x,t) Lagragian description 2. u(x,t)eulerian description x X P u(x) or u(x)? P P X x O O q X q(x,t) 25

Dq/Dt q x q(x(x,t),t) x / t x Dq Dt ( ) q t X dq(x(x,t),t) dt = ( ) q + t x 3 j=1 q x j x j t = q t + v j q (3.10) x j v j x j / t X x D/Dt / t x t x (3.11) v (3.12) (3.12) v 3.3 Navier-Stokes equation (2.23) ρ 2 u i t 2 = σ ji,j + f i 3.1 3.8 (3,6)3.2 (2.23) 2.2 u v 2.23 (3.13) (2.23) D/Dt / t (2.23) D/Dt u, v 1 (3.14) 26

(3.12) O(v 2 ) O(v) Dv Dt = v v + v v t t (3.15) (2.23) 3.13 (3.14) (2.23) u (3.13) v v v η (3.8) (3.13) ρ Dv ( ) i Dt = ρ vi t + v v i j = f i p + η 2 v i (3.16) x j x i ρ Dv ( ) v Dt = ρ +(v ) v = f p + η 2 v (3.17) t [] 3.16 (3.17) ρ n V S (3.18) x (3.19) [] 3.18 (3.19) [] ρv n (3.19) 27

(3.11) (3.20) [] 3.19 (3.20) (3.7) (3.20) (3.21) v 3.4 Non-dimensionalization of fluid dynamic equations (3.13) (3.17) f (3.13) (3.8) ρ Dv i Dt = σ ji x j, ( vi σ ij = pδ ij +2ηė ji = pδ ij + η + v ) j x j x i (3.22) v i x i ρ V Dv i T Dt = ηv ( 2 v i L 2 x j x + 2 v ) j j x j x i Re Dv i Dt = 2 v i x j x + 2 v j j x j x i Re Reynolds number (3.23) (3.24) 28

ν = η/ρ kinematic viscosity η (3.23) (3.22) 1. 2. L V ρ η V Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2000 (a) (d) R R R R (b) (c) (e) (f) R R (a) Re (b) Re (c) (d) Re Re > 10 (e) Re (e) (d) 29

3.23 Re L 2 V 100 m/s 5m 1 m/s VL 4 10 8 :1 ρ/η thermal convection Rayleigh number Ra Nusselt number Nu II - 10, 1997 [] 3.5 Two-dimensional incompressible fluid (3.21) v =0 v =(u, v, 0) (3.21) u v stream function x y ψ(x, y) (3.25) ψ(x, y) 30

ψ ψ(x, y) = const. dψ = ψ ψ dx + dy = vdx + udy =0 x y dx u = dy (3.26) v (a) ψ v =(u, v) stream line (a) ds dx v u dy v y O C ds (b) n^ P (c) A ψ+δψ x ψ B ψ Δψ (b) O P C ψ = dψ = ( ψ ψ dx + x y dy) = (udy vdx) = C C (b) ds ˆn ( ds x ds = s, y ) ( ) y, ˆn = s s, x s C C ( u y s v x ) ds s (3.27) u ˆn O P C ψ (c) A B rotation curl U gradient U φ(x, y) ψ(x, y) (3.25) z = x + iy f(z) φ(x, y) ψ(x, y) f(z) φ(x, y)+iψ(x, y) φ ψ u v f(z) z (2007) 31

3-5 Fowler(2005) 3.13 η (3.8) i = x σ xx = p +2η u x σ yy = p +2η v y ( v σ xy = σ yx = η x + u ) y 0= σ xx x + σ yx y = p x +2η 2 u x 2 + η 2 v x y + η 2 u y 2 (3.21) 2 v/ x y = 2 u/ x 2 i = y 0= p ( 2 ) x + η u x 2 + 2 u y 2 0= p y + η ( 2 v x 2 + 2 v y 2 ) (3.28) (3.29) [] (3.29) p (3.28) / y (3.29) / x u, v ψ (3.30) 2 = 2 / x 2 + 2 / y 2 2 ψ =0 harmonic function (3.30) biharmonic function) 32

ψ [] (3.30) post-glacial rebound Turcotte and Schubert, Geodynamics, 2nd ed., Cambridge Univ. Press, 2001, (a) h x (a) (b) (c) (d) (a) l δy x p 0,p 1 (p 1 p 0 )δy σ xy (y) σ xy (y + δ) δy σ xy (y)l + σ xy (y + δy)l dσ xy dy δyl l (p 1 p 0 )δy + dσ xy dy δyl =0 dσ xy dy = p 1 p 0 dp l dx (3.31) p p 1 >p 0 dp/dx < 0 (b) x dp/dx σ xy (3.8) u y ( u σ xy =2ηė xy = η y + v ) = η du x dy (3.31) (3.32) (3.32) dσ xy dy = η d2 u dy 2 = dp dx (3.33) dp/dx c 1,c 2 u = 1 dp 2η dx y2 + c 1 y + c 2 (3.34) 33

no-slip boundary condition (c) y = h y =0 u 0 u = 0 at y = h, u = u 0 at y =0 ( u = u 0 1 y ) h (3.35) Couette flow y =0 u =0 (d) u = 1 dp y(y h) (3.36) 2η dx [] (3.35) (3.36) [ ] ψ(x, y) (3.30) (3.34) 34