/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

Similar documents
2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

I , : ~/math/functional-analysis/functional-analysis-1.tex

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

n ( (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

January 27, 2015

tnbp59-21_Web:P2/ky132379509610002944

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =



> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

2011de.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

koji07-01.dvi


(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

1 I

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

6.1 (P (P (P (P (P (P (, P (, P.101

ii

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

6.1 (P (P (P (P (P (P (, P (, P.

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2


ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0


mugensho.dvi

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

2000年度『数学展望 I』講義録

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

入試の軌跡

2016

II Time-stamp: <05/09/30 17:14:06 waki> ii

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ii-03.dvi

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

( ) ( )

ver Web

Part () () Γ Part ,

2014 S hara/lectures/lectures-j.html r 1 S phone: ,


1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

untitled

高校生の就職への数学II

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

プリント


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,


VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

nakata/nakata.html p.1/20




7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1


December 28, 2018

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

A

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

FU-20α2無停電電源装置取扱説明書

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

K E N Z OU

数学Ⅱ演習(足助・09夏)

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

pdf

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

第10章 アイソパラメトリック要素

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

熊本県数学問題正解

meiji_resume_1.PDF

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Transcription:

1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set space R n R n x = x 1 x n y = y 1 y n distance dx, y := x 1 y 1 2 + + x n y n 2 Euclidean distance n = 3 3 2 1 2 x 1. x n = t x 1 x n t n 1 transverse 1 n t x 1 x n = x 1. x n

/ 3 R n R n equip R n x x y dx, y < dx, y x x x x 1.2 1.2.1 R n. R 2 ABCD A B B C AB = BC R A B D C AB = DC R 2. AB + BC = 2AB R AB + DC = 2 AB R 2 2 3

/ 4. R n R n R n 1.2.2 2 a + b = b + a 3 R n a b c a + b = c R n. V R vector space V1 a, b V a + b V unique V2 α R, a V αa V V3 a, b, c V, α, β R 3 1km 1km 1km 1km

/ 5 1. a + b + c = a + b + c. 2. a + b = b + a. 3. 0 V 0 + a = a + 0 = a 4. a V a V a + a = a + a = 0 5. α + βa = αa + βa. 6. αa + b = αa + αb. 7. αβa = αβa 8. 1 a = a V vector R C C R n V1-V3 R V1-V3 1 R n 2 M n R := {A = A : A n } 3 R := {a = x 1, x 2,... : x j R} 4 F := {a = x 1, x 2,... R : x j+2 = x j+1 + x j } 5 C 0 R := {f = fx : fx R R } 6 C 1 R := { f = fx C 0 R : f x C 0 R } 7 Poly := { f = fx C 1 R : fx } 8 Poly d := {f = fx Poly : fx d } C 1 R C 0 R vector subspace

/ 6 1.3 R n 1.3.1 O P O P 1. O u 1, u 2 2. u 1, u 2 2 l 1, l 2

/ 7 3. l 1, l 2 u 1, u 2 4. X l 1, l 2 OX = x 1 u 1 + x 2 u 2 x 1, x 2 R 2 5. x 1, x 2 R 2 x 1 u 1 + x 2 u 2 X = OX R 2 R 2 u 1, u 2 P OP = p 1 u 1 + p 2 u 2 p 1, p 2 p 1, p 2 OP 1.1 1.1: O P. u 1, u 2 basis

/ 8 V {u 1,..., u n } V V basis a V x 1,..., x n R n a = x 1 u 1 + + x n u n = u 1 u n. x 1 x n 1.1 R n x 1,..., x n x u 1,..., u n coordinate value V n n-dimensional 1.1 u 1 u n x 1. x n V n V R n V 4 1.4 OP Aretha u 1, u 2 OP = a 1 u 1 + a 2 u 2 = u 1 u 2 a 1, a 2 u 1, u 2 P a1 a 2 Otis v 1, v 2 OP = b 1 v 1 + b 2 v 2 = v 1 v 2 a1 a 2 b1 b 2 4 R n

/ 9 b 1, b 2 OP = u 1 u 2 a1 a 2 = v 1 v 2 {u 1, u 2 } {v 1, v 2 } a1 a 2 b1 b 2 mm, cm, m, km L L = 2cm = 20mm cm mm 2 20 cm 1 10 = mm 2 10 = 20 1 10 10 OP OP = u 1 u 2 a1. a 2 = v 1 v 2 b1 b 2 b1 b 2 = 1cm= 10mm 2cm 20mm 1 2 3.3m 2 65m 2 20 40 Otis v 1, v 2 Aretha u 1, u 2 v 1 = u 1 u 2 q11 q 21, v 2 = u 1 u 2 q12 q ij v 1 v 2 = u 1 u 2 q11 q 12 q 21 q 22 Q Q 0 v 1 v 2 q 22

/ 10 Q 1 v 1 v 2 = u 1 u 2 Q u 1 u 2 = v 1 v 2 Q 1 10mm=cm OP OP = u 1 u 2 a1 a 2 = v 1 v 2 b1 b 2 u 1 u 2 a1 a 2 = v 1 v 2 Q 1 Q b1 b 2 = u 1 u 2 Q b1 b 2 u 1 u 2 a1 b1 b1 = Q = Q 1 a1 a 2 b 2 Aretha u 1 u 2 Otis v 1 v 2 Q Q 1 a 1, a 2, b 1, b 2 Q Otis Aretha b 2 a 2 1.4.1 V R / V {u 1,..., u n } {v 1,..., v n } 5 1 k n v k {u 1,..., u n } q 1k v k = u 1 u n. 5 n q nk

/ 11 q 11 q 1n v 1 v n = u 1 u n..... q n1 q nn Q := q ij 1 i,j n a V a 1 1 a = u 1 u n. = v 1 v n b. a n v 1 v n = u 1 u n Q, 1 b. b n b n = Q 1 a 1. a n 1.2 1.5 U V f : U V U V U fu 6 f : U V linear map a, b U, α R L1 fa + b = fa + fb L2 fαa = αfa L1 6

/ 12 U a b a + b f V fa fb fa + fa 7 U = R m, V = R n n m A f : R m R n, x Ax n = m m = n = 1 A f : R R; fx = Ax fαx = αfx α fx + y = fx + fy. f : R R, fx = x + 1 1.5.1 f : U V isomorphism U V V U f V 3 {u 1, u 2, u 3 } a, b V a = a 1 u 1 + a 2 u 2 + a 3 u 3 V a 1, a 2, a 3 R 3 ϕ = ϕ {u1,u 2,u 3 } : V R 3 ϕ : a a 1, a 2, a 3 ϕ a 1, a 2, a 3 R 3 ϕa 1 u 1 + a 2 u 2 + a 3 u 3 = a 1, a 2, a 3 ϕ a = a 1 u 1 + a 2 u 2 + a 3 u 3 V ϕa = ϕa ϕ a i = a i a = a i = 1, 2, 3 7 L1 L2

/ 13 b = b 1 u 1 + b 2 u 2 + b 3 u 3 V α R a 1 + b 1 a 1 b 1 ϕa + b = a 2 + b 2 = a 2 + b 2 = ϕa + ϕb a 3 + b 3 a 3 b 3 αa 1 a 1 ϕαa = αa 2 = α a 2 = αϕa αa 3 a 3 8 ϕ : V R 3 V R 3 V ϕ. ϕ : V U V U cm V U ϕ V U 1.6 n = 2 3 R n a = [a 1 a n ], b = [b 1 b n ] inner product a b := a 1 b 1 + a 2 b 2 R a b := a 1 b 1 + a 2 b 2 + a 3 b 3 R a b = b a a b a b 8 ϕ

/ 14 1.6.1 R n n = 2 x = x, y R 2 xy x x x y x 1 f 1 x := x R 1 1 f 2 x := x R 2 f 1 x = 3.8 f 2 x = 5.2 1 x = x + y = 3.8 1 y 1 x = x 2y = 5.2 2 y x = 0.8, y = 3.0 R 2 R 9 1 1 1 1 2 9 R n n

/ 15 1.6.2 1 f 1 : R 2 R, f 1 x = 1 x R x x = x, y k R f 1 x = x + y = k 1 f 1 R 2 1.2 4.5 8.1 4 1.8 6.3 9-1.8 3.6 7.2 2 5.4-4.5 0 0-2.7 2.7-2 -0.9-7.2-5.4-4 -9 0.9-8.1-6.3-3.6-4 -2 0 2 4 1.2: f 1 x = x + y x k 0.9 f 1 x f 1 x x x 10 f 1 x = f 1 x f 2 f 2 x f 2 x 10

/ 16 a = a, b f a : R 2 R, f a x = a x R a = 0 {ax + by = k} k R a = a, b f a f a : R 2 R f a αx+βy = αf a x+βf a y f a 0 = 0 f a x = f a x x x a. a f a a f a = f a a = a. 1.6.3 R n f : R n R R n linear functional R n f a R n 1.6.1 g : R n R a R n g = f a. n = 7 {e 1,..., e 7 } R 7 x R 7 x = x 1 e 1 + + x 7 e 7 gx = x 1 ge 1 + + x 7 ge 7 = ge 1. ge 7 a = ge 1,, ge 7 gx = a x = f a x x a x 1. x 7 a R n f a g R n a R n R n

/ 17 11 a : ge 1 x 1 gx = x 1 ge 1 + + x n ge n =.. ge n gx = x 1 ge 1 + + x n ge n = ge 1 ge n 1 n R n g ge 1 ge n R n a R n a = a 1 a n R n x R n f a x = ax a, x R n a x = t ax a x n x 1. x n 1.6.4 a, b R n α, β R αa + βb x = αa x + βb x x R n R n f αa+βb x = αf a x + βf b x x R n 11

/ 18 R n f, g R n α R f + g R n f + gx := fx + gx x R n αf R n αfx := αfx x R n R n R n R n dual space R n x R n 0 R 12 1.6.5 f, g : R 2 R e 1 = 1, 0 fe 1 ge 1 f g e 1 = 1, 0 f R n fe 1 R f : R 2 R f e 1 = 1, 0 e 1 e 2 = 0, 1 fe 1 = 3.1, fe 2 = 4.8 x = x, y R 2 fx = fxe 1 + ye 2 = xfe 1 + yfe 2 12 R n R n

/ 19 fx = 3.1x + 4.8y f e 1 e 2 f x R 2 {0}. {u 1, u 2 } R 2 fu 1, fu 2 f. f R n x R n x x R n f R n f R n R n dual space 1.6.6 V. f : V R f V linear functional x, y V α R LF1 fx + y = fx + fy R LF2 fαx = αfx R V LF1 LF2. V = R f : V R x = a 1, a 2,... V fx := a 7 R

/ 20 f LF1 LF2 7 V 7. V = Poly 2 f : V R x = xt V fx := x0 R f LF1 LF2 2 t = 0. V = Poly 2 f : V R x = xt V fx := 1 0 txtdt R f 2 x = xt 1.2. V V dual space V f, g V, α R DS1 f + g V x V fx + gx R DS2 αf V x V αfx R V. V V x y f V fx fy x y V V f g x V fx gx f g V V

/ 21 1.6.2 V {u 1,..., u n } V V {f 1,... f n } V f i u j = δ ij := { 1 i = j 0 i j dim V = dim V. {f 1,..., f n } {u 1,..., u n } dual basis. n = 6 x V x = x 1 u 1 + x 6 u 6 = u 1 u 6. x 1 x 1,..., x 6 x f i : V R i = 1,..., 6 x 1 x 6 f i : x = u 1 u 6. x i x V {u 1,..., u 6 } i f i u j = δ ij {f 1,..., f 6 } V g V α j = gu j j = 1,..., 6 gx = gx 1 u 1 + + x 6 u 6 = x 1 gu 1 + + x 6 gu 6 = x 1 α 1 + + x 6 α 6. α 1 f 1 + + α 6 f 6 x = α 1 f 1 x + + α 6 f 6 x = α 1 x 1 + + α 6 x 6. x V g = α 1 f 1 + + α 6 f 6 V g {f 1,..., f 6 } α 1,..., α 6 R 6 g = α 1 f 1 + + α 6 f 6 V u j j = 1,..., 6 gu j = α j = α j {f 1,..., f 6 } {f 1,..., f 6 } V x 6

/ 22. 13 R V, : V V R a, b, c V α R IN1 a, b = b, a IN2 a + b, c = a, c + b, c IN3 α a, b = αa, b = a, αb IN4 a, a 0 a = 0 inner product a, a a a a, b = 0 a b R n n R n a = a 1,..., a n, b = b 1,..., b n R n b n 1 a b := a 1 a n b. = a 1b 1 + + a n b n R a b canonical inner product a b a, b R n P n x P x, P : R n R n R x, y P := P x, P y R n R x P x IN1 IN4 R n I = [ 1, 1] R C 0 I f = ft, g = gt C 0 I f, g := ftgtdt R I 13 2 f : R 2 R, fx, y = xy 2 f : V V R

/ 23 V, : V V R a V f a : x a, x R V V 1.6.3 V g V a V g = f a. V V. Hint: - V {u 1,..., u n } {f 1,..., f n } f i x = u i, x g = i α if i a = i α iu i g = f a