$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

Similar documents
3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

プログラム

日本内科学会雑誌第97巻第3号

日本内科学会雑誌第101巻第12号

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

第86回日本感染症学会総会学術集会後抄録(II)

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin


$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

24.15章.微分方程式

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

A A. ω ν = ω/π E = hω. E

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

基礎数学I

$\mathrm{c}.\mathrm{l}$ & (Naoyuki Koike) (Science University of Tokyo) 1. $[\mathrm{l}],[\mathrm{p}],[\mathrm{s}1],[\mathrm{s}

日本内科学会雑誌第98巻第3号

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

ron04-02/ky768450316800035946

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

数理解析研究所講究録 第1908巻

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

一般演題(ポスター)

$\mathrm{r}^{4}$ Yang-Mills (Tosiaki Kori) (Waseda University) 4 Yang-Mills 3 ( ) Maxwe Maxwell Poisson Ymg-Mills Symplectic red

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

eng10june10.dvi

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu


プリント

2011年10月 179号 新レイアウト/001     4C

$\mathrm{i}\mathrm{d}$ 15 ) Authorization ( ) Accounting ( ) UNIX Authentication ID Authorization Accounting $\sim-$ UNIX Authentication BSD Flat Data

112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

日本内科学会雑誌第102巻第12号

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

日本内科学会雑誌第102巻第10号

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北, 直泰 Citation 数理解析研究所講究録 (2006), 1479: Issue Date URL

第85 回日本感染症学会総会学術集会後抄録(III)

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

超幾何的黒写像


2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

DP (Katsuhisa Ohno) Nagoya Institute of Technology 1 2 OR ) (make-to-order system) (Jrr) ( G2 ) 5 G2 Jff $\Gamma\Gamma$ JIT 2) (

Centralizers of Cantor minimal systems

L \ L annotation / / / ; / ; / ;.../ ;../ ; / ;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/ ;pond/ ;ss/ ;paragraph/ ;dagger/

Title 素数判定の決定的多項式時間アルゴリズム ( 代数的整数論とその周辺 ) Author(s) 木田, 雅成 Citation 数理解析研究所講究録 (2003), 1324: Issue Date URL

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

(Kazuyuki Hasegawa) Department of Mathematics Faculty of Science Science University of Tokyo 1 ff ( ) ([2] [3] [4] [6]) $\nabla$

数論的量子カオスと量子エルゴード性

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

aso1p

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km

確率論と統計学の資料

Wolfram Alpha と数学教育 (数式処理と教育)

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

{K\kern-.20em\lower.5ex\hbox{E}\kern-.125em{TCindy}}による3Dモデル教材の作成 (数学ソフトウェアとその効果的教育利用に関する研究)

大成算経巻之十六(權術)について (数学史の研究)

『三才発秘』(陳文、1697年)と「阿蘭陀符帳」 : Napier's Bonesの日本伝来 (数学史の研究)

}\llcorner\backslash$ : (Michiyo Nakane) Seijo University St Pauls University 1 \searrow Maxwell Maxwell 1 Maxwe Maxwe $\mathrm{a}\ma

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

受賞講演要旨2012cs3

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

Transcription:

995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant 3 CMC $c$ $([\mathrm{l}])$ Lawson $\sqrt{h_{0}^{2}+c^{2}}(\geqq c)$ CMC $\sqrt{h_{0}^{2}-c^{2}}$ CMC $H0$ - Weierstrass $\mathbb{h}^{3}$(-) CMC \leqq 3 $($ $H_{0}^{2})$ $\mathrm{s}^{3}(\text{})$ CMC Gauss CMC Bryant CMC $c$ Lawson E3 Gauss CMC Lawson $0$ $\mathrm{s}^{3}(c^{2})$ CMC $H(>c)$ $\mathrm{s}^{2}$ $g$ CMC ( ) Lawson CMC Gauss $g$ ([AA1] [AA2]) Bryant $\mathbb{h}^{3}(-c^{2})=sl(2;\mathbb{c})/su(2)$ $2\cross 2$ Kenmotsu-Bryant CMC $\mathrm{s}^{2}$ [UY2] 2 Gauss \S 1 [AA1] CMC $H(>c)$ Kenmotsu-Bryant Kenmotsu 2Gauss (generalized or ) Gauss Fujioka [F] $(-c^{2})$ CMC $H(<c)$ Bryant Kenmotsu-Bryant \S 2 [AA2] $\mathrm{s}^{3}(c^{2})$ Kenmotsu-Bryant (generalized) Gauss $\mathrm{s}^{2}$ 2 CMC \S 3 2Gauss 3 Lorentz $\mathrm{s}_{1}^{3}(c^{2})$

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenmotsu ([AN]) Gauss Riemann $l\mathcal{v}i$ ( ) $\dot{\circ}$ $c$ 1 CMC 4 $\mathrm{l}^{4}$ Minkowski $\mathrm{x}=(x^{0}x^{1} x^{2} x^{3})\in \mathrm{l}^{4}$ Herm(2) $2\cross 2$ $\langle \mathrm{x} \mathrm{x}\rangle=$ Minkowski $\underline{\mathrm{x}}=$ -det-x $(\mathrm{g}\in SL(2;\mathbb{C}))$ gxg* $SL(2;\mathbb{C})$ Herm(2) 3 $\mathbb{h}^{3}(-c^{2})=\{\underline{\mathrm{x}}\in$ Herm(2) $ $ det-x=1/ $x^{0}>0$ } $\mathbb{h}^{3}(-c^{2})=sl(2;\mathbb{c})/su(2)=\{\frac{1}{c}\mathrm{g}\mathrm{g}^{*} \mathrm{g}\in SL(2;\mathbb{C})\}$ ( ) $f$ $Marrow \mathbb{h}^{3}(-c^{2})$ $C^{\infty}$ $\frac{}1}{\text{}ff^{*}=f$ $G\epsilon G^{*}$ ( $\epsilon=$ [A $f$ frame $FMarrow SL(2\cdot \mathbb{c}) $ frame $GMarrow SL(2;\mathbb{C})$ $-10]$ ) $f$ $G$ $f$ adapted frame $f$ CMC frame $F$ 2 1 $f$ $\mathit{1}\mathcal{v}iarrow \mathbb{h}^{3}(-\mathrm{c}^{2})$ CMC $H$ $\Leftrightarrow$ $f$ frame $FMarrow SL(2;\mathbb{C})$ $F^{-1}dF=\sigma_{\mathfrak{h}}+\sigma_{\mathrm{m}}$ $\epsilon \mathrm{t}(2;\mathbb{c})=\mathfrak{h}\oplus \mathrm{m}$ (Lie $\mathfrak{h}=\epsilon \mathrm{u}(2)$ ) $\mathrm{t}\mathrm{r}(\sigma_{\mathrm{m}} \sigma_{\mathrm{m}} )=0$ $\mathrm{t}\mathrm{r}(\sigma_{\mathrm{m}} \sigma_{\mathrm{m}} )\neq 0$ $d \sigma_{\mathrm{m}} +[\sigma_{\mathfrak{h}} \wedge\sigma_{\mathrm{m}} ]=-\frac{1}{c}h[\sigma_{\mathrm{m}} \wedge\sigma_{\mathrm{m}} ]$ $\sigma_{\mathfrak{h}}=\sigma_{\mathfrak{h}} +\sigma_{\mathfrak{h}} $ $\sigma_{\mathrm{m}}=\sigma_{\mathrm{m}} +\sigma_{\mathrm{m}} $

13 11 CMC $H(>c)$ Kenmotsu-Bryant $Marrow SL(2;\mathbb{C})$ CMC $H(>c)$ Kenmotsu-Bryant frame $F$ $\mathrm{s}^{2}$ 1 (1) IHI3 $(-c^{2})$ CMC $c$ Bryant frame $F$ $Marrow SL(2;\mathbb{C})$ $F^{-1}$ df=( $\epsilon[(2;\mathrm{c})$- 1 ) $P_{1}$ $P_{2}$ $P_{1}$ $\mathrm{s}^{2}\backslash \{(001)\}arrow \mathbb{c}$ $P_{2}$ $\mathrm{s}^{2}$ $ds_{s}^{2}= \frac{4 d\xi ^{2}}{(1+ \xi ^{2})^{2}}$ $\mathrm{s}^{2}\backslash \{(00-1)\}arrow \mathbb{c}$ $\overline{\mathbb{c}}=\mathbb{c}\cup\{\infty\}$ 1 ( Kenmotsu-Bryant ) $\Lambda/I$ Riemann $Marrow \mathrm{s}^{2}$ $z_{0}$ $z$ $g$ $g_{i}=p_{i}\circ g(i=12)$ ;C $)$-1 $H_{0}$ $\mathrm{b}[(9$ $\alpha$ $\omega_{1}$ $\omega_{1}=\frac{2\overline{((g_{1})_{\overline{z}})}}{h_{0}(1+ g_{1} ^{2})^{2}}dz$ $\mathrm{o}\mathrm{n}g^{-1}(u_{1})$ $\alpha=\{$ $\omega_{2}$ $\omega_{2}=\frac{2\overline{((g_{2})_{\overline{z}})}}{h_{0}(1+ g_{2} ^{2})^{2}}dz$ on $g^{-1}(u_{2})$ $C^{\infty}$ $FMarrow SL(2;\mathbb{C})$ $F^{-1}dF= \frac{c}{2}\{\frac{2h_{0}}{\sqrt{h_{0}^{2}+c^{2}}+h_{0}-c}\alpha+\frac{\underline{9}h_{0}}{\sqrt{h_{0}^{2}+c^{2}}+h_{0}+c}\alpha^{*}\}(=\tau(c))$ $F(z_{0})=\mathrm{i}\mathrm{d}$ (1) $f= \frac{1}{c}ff^{*}$ $f$ $l\mathcal{v}iarrow \mathbb{h}^{3}(-c^{2})$ ( ) $f^{*}ds^{2}=(1+ g_{i} ^{2})^{2}\omega_{i}$ $K=H_{0}^{2}\{1-( (g_{i})_{z} / (g_{i})_{\overline{z}} )^{2}\}$ CMC $H( H >c)$ $gmarrow \mathrm{s}^{2}$ CMC $H=\sqrt{H_{0}^{2}+c^{2}}$ $f$ $\mathit{1}$} $/Iarrow Gauss \mathbb{h}^{3}(-c^{2})$ (1) $d\tau(c)+\tau(c)\wedge\tau(c)=0$ CMC $H=\sqrt{H_{0}^{2}+c^{2}}$ 1

$\Phi_{\theta}$ ) 14 $f$ $Marrow \mathbb{h}^{3}(-c^{2})$ adapted frame $GM$ $arrow SL(2;\mathbb{C})$ $hmarrow SU(2)$ frame $F=Gh^{-1}$ $h^{-1}dh= \mu=\frac{1}{2}$ $h$ $\rho$ $\Phi=\Psi\phi\cdot\phi$ $d\psi=-\sqrt{-1}\rho\wedge\psi$ $\phi$ $f^{*}ds^{2}=\emptyset\cdot\overline{\emptyset}$ 1 $\psi=-h\phi-\overline{\psi\acute{o}\prime}$ $d \rho=-\frac{\sqrt{-1}}{2}k\phi\wedge\overline{\phi}$ Hopf $d\phi=-\sqrt{-1}\rho\wedge\phi$ $d\mu+\mu\wedge\mu=0$ $Marrow \mathrm{s}^{2}$ $g=h\epsilon h^{*}$ $g$ $F^{-1}dF$ (1) $SL(2;\mathbb{C})$ $\overline{\mathbb{c}}$ $\mathrm{g}[w]=\frac{\mathrm{g}_{11}w+\mathrm{g}_{12}}{\mathrm{g}_{21}w+\mathrm{g}_{22}}(\mathrm{g}=(\mathrm{g}_{ij})\in SL(2;\mathbb{C}) w\in\overline{\mathbb{c}})$ ^ $g_{1}=h[\infty]$ $g_{2}=h[0]$ $Marrow \mathrm{s}^{2}$ $g$ $f$ 2 Gauss CMC $H( H >c)$ $f$ $Marrow \mathbb{h}^{3}(-c^{2})$ Lawson CMC Gauss \mathrm{e}^{3}$ $([\mathrm{l}])$ $f_{0}$ Lawson CMC $H_{0}(\geqq 0)$ $ds_{0}^{2}$ $\Phi_{0}$ Hopf $Marrow $\Phi_{\theta}=$ $e^{\sqrt{-1}\theta}\phi_{0}(\theta\in[02\pi))$ $H_{\text{}}=\sqrt{H_{0}^{2}+c^{2}}$ (resp $\sqrt{h_{0}^{2}-c^{2}}$) CMC $H_{c}$ Hopf $f_{(c\theta)}$ $(M ds_{0}^{2})arrow \mathbb{h}^{3}(-c^{2})$ (resp $\mathrm{s}^{3}(c^{2})$ $\{f_{(\text{}\theta)}\}$ CMC $\lceil (resp \mathrm{s}^{3}(c^{2})$ CMC $H$ $(<H_{0})$ CMC $H_{0}$ ) - 1 1 (Lawson ) $S^{1}$ $\{f_{c} =f_{(\text{}0)}\}$ $H_{c}(\geqq c)$ ) 1 9) CMC f f $\mathrm{s}^{2}$ CMC Gauss Kenmotsu CMC $\mathit{1}\mathrm{t}^{;}i$ 2 (Kenmotsu [K]) $gmarrow \mathrm{s}^{2}$ Riemann $\gamma$ $\tilde{4}0$ $\frac{\pi}{2}$ $z$ C3-1 $H_{0}$

$\gamma=(\gamma_{1} \gamma_{2} \gamma_{3})$ 15 $(- \frac{1}{2}(1-g_{1}^{2})\omega_{1}$ $- \frac{\sqrt{-1}}{9}(1+g_{1}^{2})\omega_{1}$ $-g_{1}\omega_{1})$ on $g^{-1}(u_{1})$ $=\{$ $(- \frac{1}{2}(1-g_{2}^{2})\omega_{2}$ $\frac{\sqrt{-1}}{2}(1+g_{2}^{2})\omega_{2}g_{2}\omega_{2})$ on $g^{-1}(u_{2})$ $\omega_{i}=\frac{2\overline{(g_{i})_{\overline{z}}}}{h_{0}(1+ g_{i} ^{2})^{2}}dz$ $C^{\infty}$ $Marrow \mathrm{e}^{3}$ $f$ $df= \frac{1}{2}(\gamma+\overline{\gamma})(=\tau(0))$ $f(z_{0})=0$ $Marrow \mathrm{e}^{3}$ $f$ ( ) $ds^{2}=$ $(1+ g_{i} ^{2})^{2}\omega_{i}$ CMC $H_{0}$ $g$ $f$ Gauss Kenmotsu-Bryant Kenmotsu 2 Gauss Umehara-Yamada [UY1] Bryant VVeierstrass 3 $H_{0}$ $gmarrow \mathrm{s}^{2}$ 1 CMC $H$ $=\sqrt{h_{0}^{2}+c^{2}}$ $f_{c}$ frame $\ovalbox{\tt\small REJECT}$ (ie $F_{c}^{-1}dF\text{}=\tau(c)$ ) 2 $F_{0}=f\mathrm{o}$ $Marrow \mathrm{e}^{3}(\subset \mathbb{c}^{3})$ (ie $<$ $df_{0}=\tau(0)$ ) CMC $H_{0}$ $\{f_{\text{}}\}$ f 1 $\mathcal{l}=\{(c a) c\in[0 \infty)$ $c=0$ $a\in \mathbb{c}^{3}$ $c>0$ $c$ $a\in SL(2;\mathbb{C})\}$ $\{\tau(c)\}(c\in[0 \infty))$ $(c F_{\text{}})$ $\mathit{1}l/iarrow \mathcal{l}(c\in[0 \infty))$ $c$ $\lim_{carrow 0}p(c)\circ f$ $=f\mathrm{o}$ ) ( $p(c)$ $\mathbb{h}^{3}(-c^{2})arrow \mathrm{e}^{3}$ 12 Gauss $f$ $\mathit{1}l/iarrow \mathbb{h}^{3}(-c^{2})$ $\mathrm{l}^{4}$ (generalized) Gauss

$\mathrm{l}^{4}$ $\overline{\mathbb{c}}\cross\overline{\mathbb{c}}$ 16 ( $\mathrm{g}\mathrm{r}_{2}(\mathrm{l}^{4})$ Grassmann ) $\mathbb{c}p_{1}^{3}$ $\mathbb{q}_{1}^{2}$ 2 ( $\{\mathrm{v}_{1} \mathrm{v}_{2}\}$ ) $[\mathrm{v}_{1}\wedge \mathrm{v}_{2}]$ $[\mathrm{v}_{1}+\sqrt{-1}\mathrm{v}_{2}]\in \mathbb{q}_{1}^{2}$ $\mathbb{c}_{1}^{4}=(\mathbb{c}^{4}\cong \mathrm{g}\mathrm{i}(2;\mathbb{c}) \langle\cdot \cdot\rangle)$ $\langle \mathrm{w} \backslash \mathrm{v}\rangle=\frac{1}{2}\mathrm{t}\mathrm{r}(\underline{\mathrm{w}}j\overline{\underline{\mathrm{w}}}j)=- w^{0} ^{2}+ w^{1} ^{2}+ w^{2} ^{2}+ w^{3} ^{2}$ $J=[_{-10}^{01}]$ $\underline{\mathrm{w}}=[_{w^{1}-\sqrt{-1}w^{2}w^{0}-w^{3}}w^{0}+w^{3}w^{1}+\sqrt{-1}w^{2}]\in \mathfrak{g}\mathfrak{l}(2_{\mathrm{j}}\mathbb{c})$ $\mathbb{c}p_{1}^{3}=$ { $[\mathrm{w}]$ $\mathrm{w}$ $0$ $\mathbb{c}_{1}^{4}$ } $\mathbb{q}_{1}^{2}=\{[\underline{\mathrm{w}}] \det\underline{\mathrm{w}}(=-(w^{0})^{2}+(w^{1})^{2}+(w^{2})^{2}+(w^{3})^{2})=0\}$ $SL(2;\mathbb{C})$ $\mathbb{q}_{1}^{2}$ $g\cdot[\backslash \mathrm{v}]=[g-\mathrm{w}s^{*}]([\mathrm{w}]\in \mathbb{q}_{1}^{2}g\in SL(2;\mathbb{C}))$ $\mathrm{g}\mathrm{r}_{2}(\mathrm{l}^{4})\cong \mathbb{q}_{1}^{2}$ $\mathrm{g}\mathrm{r}_{2}(\mathrm{l}^{4})=\{[\mathrm{g}(_{10}^{00})\mathrm{g}^{*}] \mathrm{g}\in SL(2;\mathbb{C})\}$ $=SL(2;\mathbb{C})/\mathbb{C}^{*}=\{\langle \mathrm{g}\rangle \mathrm{g}\in SL(2;\mathbb{C})\}$ $\mathbb{c}^{*}=\{(_{01/w}^{w0}) w\in \mathbb{c}\backslash \{0\}\}$ $\mathrm{g}\mathrm{r}_{2}(\mathrm{l}^{4})$ $(=(\zeta_{+} (_{-})$ $\mathrm{g}\mathrm{r}_{2}(\mathrm{l}^{4})arrow\overline{\mathbb{c}}\mathrm{x}\overline{\mathbb{c}}$ ; $(( \mathrm{g}_{ij})\rangle\mapsto(\frac{\mathrm{g}_{11}}{\mathrm{g}_{21}} \frac{\mathrm{g}_{12}}{\mathrm{g}_{22}})$ $\overline{\mathbb{c}}\cross\overline{\mathbb{c}}$ $SL(2;\mathbb{C})$ $\overline{\mathbb{c}}$ $Marrow \mathrm{l}^{4}$ $f$ (generalized) Gauss $f_{\overline{z}} $ $\mathcal{g}=[f_{x}\wedge f_{y}]=$ [ $Marrow \mathrm{g}\mathrm{r}_{2}(\mathrm{l}^{4})\cong \mathbb{q}_{1}^{2}$ $\mathcal{g}$ $\mathcal{g}_{+}=\zeta_{+}\circ \mathcal{g}$ $\mathcal{g}_{-}=\zeta_{-}$ $Marrow$ $\circ$ $\mathbb{h}^{3}$ (-) ( ) $f$ $Marrow \mathbb{h}^{3}(-c^{2})(\subset \mathrm{l}^{4})$ adapted frame $G=(G_{ij})$ $Marrow SL(2;\mathbb{C})$ $\mathcal{g}=\langle G\rangle$ (generalized) Gauss $\mathcal{g}_{+}=\frac{g_{11}}{g_{21}}=g[\infty]$ $\mathcal{g}_{-}=\frac{g_{12}}{g_{22}}=g[0]$ $\overline{\mathbb{c}}$ Gauss

$\mathcal{g}_{h}$ $\mathcal{g}$ 17 $\mathrm{l}^{4}$ $Marrow\overline{\mathbb{C}}$ adapted $\{[\mathrm{v}]\in \mathrm{l}^{4} \langle \mathrm{v} \mathrm{v}\rangle= 0\}$ Gauss hame $G$ (cf [B]) $\mathcal{g}_{h}=[gg^{*}+g_{-}\wedge^{\wedge}g^{*}]=[g(_{00}^{10})g^{*}]$ $=[(_{\frac{ G_{1}}{G_{11}}}1G_{21} ^{2}$ $G_{11}\overline{G_{21)}} G_{21} ^{2}]=[(\overline{G_{11}}\overline{G_{21}})]$ $rightarrow\frac{g_{11}}{g_{21}}$ $\mathcal{g}_{+}$ Gauss CMC $H$ $\mathit{1}\mathcal{v}iarrow $f$ Gr2 $(\mathrm{l}^{4})=sl(2;\mathbb{c})/\mathbb{c}^{*}$ \mathbb{h}^{3}(-c^{2})$ (generalized) Gauss $Marrow$ $\mathrm{s}^{3}(c^{2})$ $\mathbb{h}_{1}^{3}(-c^{2})$ $\mathcal{g}_{-}$ $\mathcal{g}_{+}=\mathcal{g}_{h}$ $H=c$ 2Gauss $g$ $([\mathrm{b}])$ $H>c$ 2 Gauss $\mathcal{g}_{+}=\mathcal{g}h$ $\mathcal{g}_{-}$ $gmarrow \mathrm{s}^{2}$ $\frac{(\mathcal{g}_{h})_{\overline{z}}}{(\mathcal{g}_{h})_{z}}=\sqrt{\frac{h-c}{h+c}}\frac{(g_{1})_{\overline{z}}}{(g_{1})_{z}}$ $\mathcal{g}_{h}=f[g_{1}]=\frac{\partial F_{11}}{\partial F_{21}}=\frac{\partial F_{12}}{\partial F_{22}}$ $F=(F_{ij})$ $Marrow SL(2;\mathbb{C})$ 1 ffame 13 CMC $H( H <c)$ Fujioka [F] CMC $H$ $( H_{\text{}} <c)$ $S^{1}-$ 1 1 frame $f_{c_{0}}$ $i\vee Iarrow \mathbb{h}^{3}(-c_{0}^{2})$ $ds_{0}^{2}$ $\Phi_{0}$ Hopf $\Phi_{\theta}=e^{\sqrt{-1}\mathit{9}}\Phi_{0}(\theta\in[02\pi))$ $H_{c}--\sqrt{c^{2}-c_{0}^{2}}$ $H_{c}$ CMC $\Phi_{\theta}$ Hopf $f_{(c\theta)}$ $\{f_{(c\mathit{9})}\}$ $(M ds_{0}^{2})arrow \mathbb{h}^{3}(-c^{2})$ CMC $H_{c}(<c)$ $S^{1}-$ $\{f_{c}=f_{(\text{}0)}\}_{c\geqq\text{_{}\mathrm{o}}}$ 1 1 1 $\mathbb{h}^{3}(-c_{0}^{2})$ $f_{\text{_{}\mathrm{o}}}$ 1 frame

$\mathfrak{s}1$ 18 $f$ $Marrow \mathbb{h}^{3}(-d)$ CMC $H( H <c)$ adapted frame $G$ $Marrow SL(2;\mathbb{C})$ 1 su(2)-1 $\mu$ $ H <C$ $\mu $ (2; C)-1 $ H <\mathrm{c}$ $d\mu +\mu \wedge\mu =0$ $\mu =\frac{1}{2}[_{-(h+\sqrt{c^{2}-h^{2}})\overline{\phi}-\overline{\psi}}\sqrt{-1}\rho(h-\sqrt{c^{2}-h^{2}})\phi+\psi-\sqrt{-1}\rho]$ C\infty $F_{0}$ $Marrow SL(2;\mathbb{C})$ $(F_{0})^{-1}dF_{0}=\mu $ $-k^{2}$ 1 3 frame $k=c_{0}=\sqrt{c^{2}-h^{2}}$ $f_{0}$ $Marrow \mathbb{h}^{3}(-*)$ adapted frame Hopf $f$ $\mu $ CMC $H( H <c)$ ( ) Kokubu [Kk] [Kk] $ds_{k}^{2}= \frac{ d\xi ^{2}}{ (1+ \xi ^{2})(1- \xi ^{2}) }$ $\overline{\mathbb{c}}$ ^ normal Gauss 3 normal $\mathrm{c}_{\mathrm{t}}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{s}$ $\nu$ $f$ $Marrow \mathbb{h}^{3}(-c^{2})$ adapted frame $G (G_{ij})$ $Marrow SL(2;\mathbb{C})$ $SL(2;\mathbb{C})=N\cdot SU(2)(N=\{(01/a)aw a>0 w\in \mathbb{c}\})$ $G=7lh$ $\nu=h[\infty]=\overline{\frac{g_{22}}{g_{21}}}$ Kokubu $ds_{k}^{2}$ $\mathrm{s}^{2}$ $\mathbb{h}^{2}$ Poincar\ e $\mathbb{h}^{2}$ 2 Lorentz Kenmotsu(-Bryant) \tau - -- $\mathbb{h}^{3}$ 2 $-1$ 3 $f$ $i\mathcal{v}iarrow \mathbb{h}^{3}$ $\mathrm{s}_{1}^{3}$ de Sitter 1 3 $\mathrm{s}_{1}^{3}$ $\mathbb{h}^{3}$

$\mathrm{b}[(_{\sim}9$ 19 2 $\mathrm{s}^{3}(c^{2})$ CMC $\mathrm{e}^{4}$ 4 Euclid $\mathrm{r}su(2)$ $(x_{1} x_{2} x_{3} x_{4})$ $\underline{\mathrm{x}}=$ $\det \mathrm{x}$ $\mathrm{g}_{1}\underline{\mathrm{x}}\mathrm{g}_{2}^{*}$ $(\mathrm{g}_{1} \mathrm{g}_{2}\in SU(2)$ Euclid $)$ $SU(2)\cross$ $SU(2)$ $\mathrm{r}su(2)$ 3 $\mathrm{s}^{3}(c^{2})=\{\underline{\mathrm{x}}\in \mathrm{r}su(2) \det \mathrm{x}=1/c^{2}\}$ $\mathrm{s}^{3}(\text{})$ $\mathrm{s}^{3}(c^{2})=\{\frac{1}{c}\mathrm{g}_{\mathrm{l}}\mathrm{g}_{2}^{*} \mathrm{g}=(\mathrm{g}_{1}\mathrm{g}_{2})\in SU(2)\cross SU(2)\}$ $=(SU(2)\cross SU(2))/\triangle$ $\triangle=\{(\mathrm{h}\mathrm{h}) \mathrm{h}\in SU(2)\}$ ( ) $f$ $Marrow \mathrm{s}^{3}(\text{})$ $C^{\infty}$ $F=(F_{1} F_{2})$ $Marrow$ $SU(2)\cross SU(2)$ $f= \frac{1}{c}f_{1}f_{2}^{*}$ $f$ frame $\sqrt$ -lflef2*(\check \tilde $=$ $[_{0-1}^{10}])$ $f$ $f$ adapted frame 21 $\mathrm{s}^{3}(c^{2})$ CMC Kenmotsu-Bryant $\mathrm{s}^{3}(c^{2})$ ( ) CMC CMC $H(\neq 0)$ Lawson Kenmotsu-Bryant $\mathrm{s}^{3}(c^{2})$ 4 ( Kenmotsu-Bryant $l\mathcal{v}i$ ) Riemann $Marrow \mathrm{s}^{2}$ $z_{0}$ $z$ $g$ $g_{i}=p_{i}\circ g(i=12)$ $H_{0}\geqq c(>0)$ ;C $)$-1 $\alpha$ $[_{1}^{-\sqrt{-1}g_{1}}$ $\sqrt{-1}g_{1}\mathit{9}_{1}^{2}]\omega_{1}$ $\omega_{1}=\frac{2\overline{((g_{1})_{\overline{z}})}}{h_{0}(1+ g_{1} ^{2})^{2}}dz$ on $g^{-}(u_{1})$ $\alpha=\{$ $[_{-g_{2}^{2}}^{\sqrt{-1}g_{2}}$ $-\sqrt{-1}g_{2}-1]\omega_{2}$ $\omega_{2}=\frac{2\overline{((g_{2})_{\overline{z}})}}{h_{0}(1+ g_{2} ^{2})^{2}}dz$ on $g^{-1}(u_{2})$ $C^{\infty}$ $F=(F_{1} F_{2})Marrow SU(2)\cross SU(2)$ $F^{-1}dF= \frac{c}{2}\{\kappa \alpha-\overline{\kappa}\alpha^{*}\}\oplus\frac{c}{2}\{-\overline{\kappa }\alpha+\kappa\alpha^{*}\}$ $F(z_{0})=\mathrm{i}\mathrm{d}$ $\kappa=1+\frac{\sqrt{-1}c}{h_{0}+\sqrt{h_{0}^{2}-c^{2}}}$

$f= \frac{}1}{\text{}f_{1}f_{2}^{*}$ $\mathrm{e}^{4}$ REJECT}$ 20 $f$ $Marrow \mathrm{s}^{3}(\text{})$ ( ) $f^{*}ds^{2}=(1+ g_{i} ^{2})^{2}\omega_{i}$ $K=H_{0}^{2}\{1-( (g_{i})_{z} / (g_{i})_{\overline{z}} )^{2}\}$ CMC $H=\sqrt{H_{0}^{2}-c^{2}}$ Gauss CMC $f$ $Marrow \mathrm{s}^{3}(c^{2})$ $Marrow \mathrm{s}^{2}$ $gmarrow \mathrm{s}^{2}$ $f$ 2Gauss 3 $\mathbb{c}^{3}$ $g$ $SU(2)\cross SU(2)$ Kenmotsu-Bryanat Kenmotsu CMC $f$ $Marrow \mathrm{s}^{3}(c^{2})$ 2Gauss Lawson CMC Gauss 22 (generalized) Gauss $\Xi \ovalbox{\tt\small $f$ $Marrow \mathrm{s}^{3}(\text{})$ $\mathrm{e}^{4}$ (generalized) Gauss (cf [HO]) $\mathbb{c}p^{3}$ $[\mathrm{v}_{1}\wedge \mathrm{v}_{2}]$ $\mathrm{g}\mathrm{r}_{2}(\mathrm{e}^{4})$ ( ) Grassmann $\mathbb{q}^{2}$ 2 $[\mathrm{v}_{1}+\sqrt{-1}\mathrm{v}_{2}]\in \mathbb{q}^{2}$ $\{\mathrm{v}_{1} \mathrm{v}_{2}\}$ $\mathbb{c}^{4}=(\mathbb{c}^{4}\cong \mathfrak{g}\mathfrak{l}(2;\mathbb{c}) \langle\cdot \cdot\rangle)$ $\langle \mathrm{w} \mathrm{w}\rangle=\frac{1}{2}\mathrm{t}\mathrm{r}(\underline{\mathrm{w}\mathrm{w}}^{*})= w^{1} ^{2}+ w^{2} ^{2}+ w^{3} ^{2}+ w^{4} ^{2}$ $\underline{\mathrm{w}}=[_{-w^{1}+\sqrt{-1}w^{2}w^{4}-\sqrt{-1}w^{3}}^{w^{4}+\sqrt{-1}w^{3}w^{1}+\sqrt{-1}w^{2}}]$ \in g$($2; $\mathbb{c})$ $\mathbb{c}p^{3}=$ { $[\mathrm{w}]$ $\mathrm{w}$ $\mathbb{c}^{4}$ $0$ } $\mathbb{q}^{2}=\{[\underline{\mathrm{w}}] \det\underline{\mathrm{w}}(=(w^{1})^{2}+(w^{2})^{2}+(w^{3})^{2}+(w^{4})^{2})=0\}$ $SU(2)\cross SU(2)$ $\mathbb{q}^{2}$ $g\cdot[\mathrm{w}]=[g_{1}\underline{\mathrm{w}}_{s_{2}^{*}}]([\mathrm{w}]\in \mathbb{q}^{2} \mathrm{g}=(\mathrm{g}_{1} \mathrm{g}_{2})\in SU(2)\cross SU(2))$ $\mathrm{c}_{\mathrm{t}}\mathrm{r}_{2}(\mathrm{e}^{4})\cong \mathbb{q}^{2}$ $\mathrm{g}\mathrm{r}_{2}(\mathrm{e}^{4})=\{[\mathrm{g}_{1}(_{10}^{00})\mathrm{g}_{2}^{*}] (\mathrm{g}_{1} \mathrm{g}_{2})\in SU(2)\cross SU(2)\}=SU(2)\cross SU(2)/U(1)\cross$ $U(\downarrow)$ $\cong\{(\mathrm{g}_{1}[\infty] \mathrm{g}_{2}[\infty]) (\mathrm{g}_{1} \mathrm{g}_{2})\in SU(2)\cross SU(2)\}=\mathrm{S}^{2}\cross \mathrm{s}^{2}$ $(\mathrm{s}^{2}=(\overline{\mathbb{c}} ds_{s}^{2}))$ $Marrow \mathrm{e}^{4}$ $f$ (generalized) Gauss $\mathcal{g}=[f_{x}\wedge f_{y}]=[f_{\overline{z}}]$ $Marrow \mathrm{g}\mathrm{r}_{2}(\mathrm{e}^{4})\cong \mathbb{q}^{2}$

$ \frac{g_{z}}{g_{\overline{\approx}}} = \frac{(\mathcal{g}_{i})_{z}}{(\mathcal{g}_{i})_{\overline{z}}}$ $\mathit{1}\overline{\mathcal{v}}i=\mathbb{c}$ 21 $\mathrm{g}\mathrm{r}_{2}(\mathrm{e}^{4})$ $\mathcal{g}=(\mathcal{g}_{1} \mathcal{g}_{2})$ $\mathit{1}\mathcal{v}iarrow \mathrm{s}^{2}\cross \mathrm{s}^{2}$ $\mathrm{s}^{3}(c^{2})$ ( ) $f$ $Marrow \mathrm{s}^{3}(c^{2})(\subset \mathrm{e}^{4})$ adapted frame $G=(G_{1} G_{2})$ $Marrow SU(2)\cross SU(2)$ (generalized) Gauss ( $Marrow \mathrm{s}^{2}(i=12)$ $\mathcal{g}_{i}=g_{i}[\infty]$ CMC $H$ ) $\mathcal{g}_{i}$ $f$ $Marrow \mathrm{s}^{3}(c^{2})$ $\mathcal{g}_{i}$ (generalized) Gauss $Marrow \mathrm{s}^{2}(i=19)\sim$ 2Gauss $Marrow \mathrm{s}^{2}$ $g(=g_{1})$ Gauss $\frac{1}{\sqrt{h^{2}+c^{2}}}\frac{g_{z}}{g_{\overline{z}}}=\frac{1}{h+\sqrt{-1}c}\frac{(\mathcal{g}_{1})_{z}}{(\mathcal{g}_{1})_{\overline{z}}}=\frac{1}{h-\sqrt{-1}c}\frac{(\mathcal{g}_{2})_{z}}{(\mathcal{g}_{2})_{\overline{z}}}$ $\frac{ g_{\overline{z}} }{1+ g ^{2}}=\frac{ (\mathcal{g}_{i})_{\overline{z}} }{1+ \mathcal{g}_{i} ^{2}}$ $\frac{ g_{z} }{1+ g ^{2}}=\frac{ (\mathcal{g}_{i})_{z} }{1+ \mathcal{g}_{i} ^{2}}$ $\mathcal{g}_{i}=f_{i}[-\sqrt{-1}g]=\frac{\partial B_{i}}{\partial A_{i}}=-\frac{\partial\overline{A_{i}}}{\partial\overline{B_{i}}}$ $F=(F_{1} F_{2})$ $Marrow SU(2)\cross SU(2)$ 4 frame $F_{i}=$ 5 CMC $H$ $\mathcal{g}_{i}$ $f$ $Marrow \mathrm{s}^{3}(c^{2})$ (generalized) Gauss 4 CMC $H$ 2Gauss $f1$ Hopf $f_{2}$ $Marrow \mathrm{s}^{2}$ $f_{i}$ $\Phi_{1}$ $\Phi_{2}$ $f$ $\Phi_{1}=(\frac{H+\sqrt{-1}c}{\sqrt{H^{2}+c^{2}}})\Phi$ and $\Phi_{2}=(\frac{H-\sqrt{-1}c}{\sqrt{H^{2}+c^{2}}})\Phi$ $Marrow \mathrm{s}^{3}(c^{2})$ $H=0$ $fi$ $f$ 23 CMC 2 Gauss 2Gauss totally umbilic CMC $\mathrm{s}^{1}(c_{1}^{2})\cross Clifford torus $l\mathcal{v}i=$ \mathrm{s}^{1}(e)\subset \mathrm{s}^{3}(c^{2})(c_{1} c_{2}>0+_{\overline{c}_{2}}\mathrm{p}_{1}^{11}\tau=\text{^{}2}1)$ $l\mathcal{v}i$ universal covering 2Gauss

$\mathcal{g}_{1}$ $\mathcal{g}_{2}$ 22 4 CMC $f$ $Marrow \mathrm{s}^{3}(d)$ Riemannian universal covering 2Gauss $g$ $l\mathcal{v}i$ Riemann $\pi_{1}(m)$ $\gamma\in\pi_{1}(l\mathcal{v}i)$ 3 $g(\gamma(w))=\rho(\gamma)[g(w)]$ $w\in \mathit{1}\mathcal{v}\tilde{i}$ $\pi_{1}(l\mathcal{v}i)arrow SU(2)$ $\rho=\rho_{g}$ Clifford torus $\mathrm{s}^{1}(c_{1}^{2})\cross \mathrm{s}^{1}(e)$ $f$ $T^{2}= \mathbb{c}/(\mathbb{z}(\frac{2\pi}{c_{1}})\oplus \mathbb{z}(\sqrt{-1}\frac{2\pi}{\text{_{}2}}))arrow \mathrm{s}^{3}(c^{2})(\subset \mathrm{e}^{4}) $ $f(z)=( \frac{1}{c_{1}}\cos c_{1}x$ $\frac{1}{c_{1}}\sin c_{1}x$ $\frac{1}{c_{2}}\cos o_{2}y$ $\frac{1}{c_{2}}\sin c_{2}y)$ $(z=x+\sqrt{-1}y\in \mathbb{c})$ 2Gauss $g(=g_{1})$ $g\mathbb{c}arrow\overline{\mathbb{c}}$ ; $g(z)= \sqrt{-1}\tan(\frac{\sqrt{c_{1}^{2}+\xi}}{2}y)$ $\sqrt{-1\mathrm{r}}\subset\overline{\mathbb{c}}$ $\mathrm{r}^{1}\mathrm{x}\mathrm{s}^{1}(k^{2})$ Lavvson cylinder $\overline{l}\mathrm{r}_{1}(t^{2})=$ Gauss $\rho=\rho_{g}$ $\{m(\frac{2\pi}{\text{}1})+\sqrt{-1}n(\frac{2\pi}{c_{2}})\in \mathrm{i}\mathrm{s}\mathrm{o}\mathrm{m}_{+}(\mathbb{c}) mn\in \mathbb{z}\}arrow SU(2)$ $\rho(m(\frac{2\pi}{c_{1}})+\sqrt{-1}n(\frac{2\pi}{c_{2}}))=[_{\sqrt{-1}\sin\frac{\frac{}{(}\text{_{}2}n\sqrt{\text{}^{}2}1+c_{2}^{2}\sqrt{\text{_{}1}^{2}+c_{2}^{2}}}{c_{2}}n\pi)}^{\cos(\pi)}$ $\sqrt{-1}\sin\frac{\sqrt{\mathrm{c}_{1}^{2}+\mathrm{c}_{2}^{2}}}{\sqrt{c}^{2}c_{2^{+\text{_{}2}}}21c_{2}n}n\pi)\cos(\frac{(}{}\pi)]$ $\mathcal{g}=(\mathcal{g}_{1} (generalized) Gauss map \mathcal{g}_{2})$ $T^{2}arrow\overline{\mathbb{C}}$ $T^{2}arrow\overline{\mathbb{C}}$ $\mathcal{g}_{1}(z)=-e^{\sqrt{-1}(c_{1}x-\text{_{}2}y)}$ ; $\mathcal{g}_{2}(z)=e^{\sqrt{-1}(c_{1}x+c_{2}y)}$ ; 3 $\mathrm{s}_{1}^{3}(c^{2})$ $\mathbb{h}_{1}^{3}(-c^{2})$ CMC 3 Lorentz CMC $\mathrm{m}\dot{\mathrm{i}}\mathrm{n}\mathrm{k}\mathrm{o}\backslash \mathrm{v}\mathrm{s}\mathrm{k}\mathrm{i}$ 3 $\mathrm{l}^{3}$ CMC $H$ $H=0$ ( ) Weierstrass ( 1 )

$([\mathrm{k}\mathrm{b}])$ $\det $\mathrm{r}\mathrm{s}_{1}^{3}$ $\mathrm{s}_{1}^{3}$ 23 $H\neq 0$ Kenmotsu ([AN])3 Lorentz CMC $\mathrm{s}_{1}^{3}$ Lawson de Sitter () anti-de Sitter $\mathbb{h}_{1}^{3}(-c^{2})$ CMC Lawson CMC $(\geqq c)$ $H_{0}(\geqq 0)$ $\mathbb{h}_{1}^{3}(-c^{2})$ () CMC $\sqrt{h_{0}^{2}-c^{2}}$ 1 1 () $\mathrm{s}_{1}^{3}(d)$ CMC $\sqrt{h_{0}^{2}+c^{\underline{)}}}$ $S^{1_{-}}$ CMC $\sqrt{c^{2}-\not\in}(<c)$ $S^{1_{-}}$ 1 1 31 $\mathrm{s}_{1}^{3}(c^{2})$ CMC Kenmotsu-Bryant $c^{2}$ $\mathrm{s}_{1}^{3}(c^{2})$ 3 de Sitter Herm(2) $ $ \mathrm{x}=-1/d\}$ $\mathrm{s}_{1}^{3}(\mathrm{c}^{2})=\{\underline{\mathrm{x}}\in$ 4 $=$ Herm(2) 2 $SL(2;\mathbb{C})$ $\mathrm{s}_{1}^{3}(c^{2})=sl(2;\mathbb{c})/su(11)=\{\frac{1}{c}\mathrm{g}\epsilon \mathrm{g}^{*} \mathrm{g}\in SL(2;\mathbb{C})\}$ $\epsilon=[_{0-1}^{10}]$ $C^{\infty}$ \mathrm{s}_{1}^{3}$ ( ) () $\frac{}1}{\text{}f\epsilon F^{*}=f$ $f$ $Marrow $FMarrow SL(2;\mathbb{C})$ $f$ ffame $GG^{*}$ $f$ frame $GMarrow SL(2;\mathbb{C})$ $f$ adapted ffame $ds_{d}^{2}= \frac{4 d\xi ^{2}}{(1- \xi ^{2})^{2}}$ Poincar\ e $\mathrm{s}_{1}^{3}$ 6 ( () $\tilde{\mathcal{l}}0$ $\mathrm{d}$ $l\mathcal{v}i$ Kenmotsu-Bryant ) Riemann $z$ $gmarrow \mathrm{d}$ g(2; C)-1 $H_{0}$ $\alpha$ $\alpha=\omega$ $\omega=\frac{2\overline{(g_{\overline{z}})}}{h_{0}(1- g ^{2})^{2}}dz$ $C^{\infty}$ $FMarrow SL(2;\mathbb{C})$ $F^{-1}dF= \frac{c}{2}\{\frac{2h_{0}}{\sqrt{h_{0}^{2}+c^{2}}+h_{0}-c}\epsilon\alpha+\frac{2h_{0}}{\sqrt{h_{0}^{2}+c^{2}}+h_{0}+c}\underline{\succ^{\wedge}}\alpha^{*}\}$ $F(z_{0})=\mathrm{i}\mathrm{d}$

24 $f= \frac{}1}{\text{}fef^{*}$ $f$ $Marrow \mathrm{s}_{1}^{3}$() ( ) $f^{*}ds^{2}=(1- g ^{2})^{2}\omega\cdot\overline{\omega}$ CMC $H=\sqrt{H_{0}^{2}+c^{2}}$ $\mathrm{c}_{\mathrm{r}}\mathrm{a}\mathrm{u}\mathrm{s}s$ $K=-H_{0}^{2}\{1-( g_{z} / g_{\overline{z}} )^{2}\}$ CMC $H( H >\mathrm{c})$ $f$ $Marrow \mathrm{s}_{1}^{3}$ ( ) $gl\mathcal{v}iarrow \mathrm{d}$ $\mathrm{s}_{1}^{3}$ () CMC $c$ $\mathbb{h}^{3}$(- ) $c$ CMC Bryant ) $FMarrow SL(2;\mathbb{C})$ CMC $c$ $\mathbb{h}^{3}$ (- ) $c$ CMC frame $F^{-1}dF=$ ( g$($2; $\mathbb{c})-$ 1 $\mathrm{s}_{1}^{3}$ frame () 32 $\mathbb{h}_{1}^{3}(-c^{2})$ CMC Kenmotsu-Bryant $\mathrm{e}_{2}^{4}$ $(2 2)$ Euclid $\mathrm{r}su(11)$ $(x_{1} x_{2} x_{3} x_{4})$ $\underline{\mathrm{x}}=$ $(2 $\mathrm{g}_{1}\underline{\mathrm{x}}\mathrm{g}_{2}^{*}(\mathrm{g}_{1} \mathrm{g}_{2}\in SU(11))$ 2)$- -detx $SU(11)$ $\mathrm{r}su(11)$ $SU(11)\cross$ $\mathbb{h}_{1}^{3}$ - 3 anti-de Sitter (- ) $=\{\underline{\mathrm{x}}\in$ $\mathrm{r}su(11) \det\underline{\mathrm{x}}=$ $\mathbb{h}_{1}^{3}$ 1/ } (- ) $\mathbb{h}_{1}^{3}(-c^{2})=\{\frac{1}{c}\mathrm{g}_{\mathrm{l}}\mathrm{g}_{2}^{*} \mathrm{g}=(\mathrm{g}_{1}\mathrm{g}_{2})\in SU(11)\cross SU(11)\}$ $=(SU(11)\cross SU(11))/\triangle^{J}$ $\triangle =\{(\mathrm{h}_{-}^{\rho}\mathrm{h}_{\vee}^{\rho}) \mathrm{h}\in SU(11)\}$ ( ) $f$ $Marrow $C^{\infty}$ \mathbb{h}_{1}^{3}$(-c) $F=(F_{1} F_{2})$ $\mathrm{i}\mathcal{v}iarrow$ $SU(11)\mathrm{x}SU(11)$ $F_{1}F_{2}^{*}$ $f=$ $f$ ffame $\sqrt$ -IFI\epsilon F2* $(\epsilon=[_{0-1}^{10}])$ $f$ $f$ adapted frame 7 ( $\mathbb{h}_{1}^{3}$(-) Kenmotsu-Bryant ) $M$ Riemann $z_{0}$ $z$ $Marrow \mathrm{d}$ $g$ $H_{0}\geqq c(>0)$ $\alpha$ $\mathfrak{g}\mathfrak{l}(2$;c $)$-1 $\alpha=[_{-g^{2}}^{\sqrt{-1}g}$ $\sqrt{-1}g1]\omega$ $\omega=\frac{2\overline{(g_{\overline{z}})}}{h_{0}(1- g ^{2})^{2}}dz$

25 $C^{\infty}$ $F=(F_{1} F_{2})$ $Marrow$ $SU(2)\cross SU(2)$ $F^{-1}dF= \frac{c}{9}\{\kappa\epsilon\alpha-\overline{\kappa}\hat{c}\alpha^{*}\}\oplus\frac{c}{2}\{-\overline{\kappa}\alpha_{-}^{\rho}+\kappa\alpha^{*}\epsilon\}$ $F(z_{0})=\mathrm{i}\mathrm{d}$ $\kappa=1-\frac{\sqrt{-1}c}{h_{0}+\sqrt{h_{0}^{2}-c^{2}}}$ $f= \frac{1}{c}f_{1}f_{2}^{*}$ $\mathit{1}\mathcal{v}iarrow \mathbb{h}_{1}^{3}$ $f$ (-) $f^{*}ds^{2}=(1- g ^{2})^{2}\omega\cdot\overline{\omega}$ $K=-H_{0}^{2}\{1-( g_{z} / g_{\overline{z}} )^{2}\}$ CMC $gmarrow \mathrm{d}$ $f$ $\mathit{1}\mathcal{v}iarrow ( ) CMC $H=\sqrt{H_{0}^{2}-c^{2}}$ \mathbb{h}_{1}^{3}$ (-) Gauss Lorentz Kenmotsu-Bryant Bryant $g\underline{(}\mathrm{t}/iarrow \mathrm{d}$ 2 Gauss (generalized) Gauss Riemann 4 Lawson [L] Fujioka [F] frame Bryant $Marrow \mathrm{e}^{3}$ 3 Euclid $f$ frame ( double cover) $\mathrm{e}^{3}\cross SU(2)$ $G=(f h)$ $Marrow \mathrm{e}^{3}\cross SU(2)$ $g=h_{\hat{\mathrm{b}}}h^{*}$ lift $F=(f *)$ $Marrow \mathrm{e}^{3}\mathrm{x}su(2)$ adapted frame $Marrow \mathrm{s}^{2}$ Gauss Lawson CMC ambient space ( ) (CMC ) [F] frame (Lawson ) ambient space Bryant ( ) adapted frame

$\vee\vee \mathrm{e}^{\backslash }\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{s}\dot{\mathrm{t}} \{\lambda \mathrm{s}s\phi^{1}/_{4}\backslash _{\mathrm{f}}\backslash ^{\backslash }$ 26 CMC $H$ Lawson 1 3 [AA1] R Aiyama and K $\mathrm{a}\mathrm{k}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{g}\mathrm{a}\backslash \mathrm{v}\mathrm{a}$ Kenmotsu-Bryant type representation formulas for $\mathbb{h}^{3}(-\text{})$ constant mean curvature surfaces in and [AA2] R Aiyama and K $\mathrm{a}\mathrm{k}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{g}\mathrm{a}\backslash constant mean curvature surfaces in $\mathrm{s}^{3}(\text{})$ $\mathrm{s}_{1}^{3}(c^{2})$ preprint \mathrm{v}\mathrm{a}$ Kenmotsu-Bryant type representation formula for preprint

and 27 [AA3] R Aiyama and K Akutagawa Kenmotsu-Bryant type representation formula for constant mean curvature spacelike surfaces in $\mathbb{h}_{1}^{3}(-\text{})$ Ceometry and its Applications to appear in Differential [AN] K Akutagawa and S Nishikawa The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3 space T\^ohoku Math J 42 (1990) 67-82 [B] RL Bryant Surfaces of mean curvature one in hyperbolic space Ast\ erisque 154-155 (1987) 321-347 [F] A Fujioka Harmonic maps and associated maps from simply connected Riemann surfaces into the 3 dimensional space forms T\^ohoku Math J 47 (1995) 431-439 [HO] D A Hoffman and R Osserman The Gauss map of surfaces in $\mathrm{r}^{3}$ $\mathrm{r}^{4}$ Proc London Math Soc 50 (1985) 27-56 [K] K Kenmotsu Weierstrass formula for surfaces of prescribed mean curvature Math Ann 245 (1979) 89-99 [Kb] O Kobayashi Maximal surfaces in the 3 dimensional Minkowski space $L^{3}$ Math 6 (1983) 297-309 Tokyo J [Kk] M Kokubu Weierstrass representation for minimal surfaces in hyperbolic space to appear [L] B Lawson Complete minimal surfaces in Ann of Math 92 (1970) 335-374 $S^{3}$ [UY1] M Umehara and K Yamada A parametrization of the Weierstrass formulae and perturbation of complete minimal surfaces in $\mathrm{r}^{3}$ Angew Math 432 (1992) 93-116 into the hyperbolic 3 space J Reine [UY2] M Umehara and K Yamada Surfaces of constant mean curvature $c$ with prescribed hyperbolic Gauss map Math Ann 304 (1996) 203-224 in $\mathbb{h}^{3}(-\text{})$