A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

Similar documents
II

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

i

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

lecture

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)


2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

newmain.dvi

平成12年度 証券貯蓄に関する全国調査

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

応用数学III-4.ppt

, = = 7 6 = 42, =

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

2012 A, N, Z, Q, R, C

ランダムウォークの境界条件・偏微分方程式の数値計算

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

untitled

2011de.dvi

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

?


ii

DVIOUT

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

mugensho.dvi

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

( )

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

熊本県数学問題正解

Part () () Γ Part ,

数値計算:有限要素法

keisoku01.dvi

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

Note.tex 2008/09/19( )

A

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

6 19,,,

ii-03.dvi

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

December 28, 2018

pdf

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1 I

untitled

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

linearal1.dvi

R R 16 ( 3 )

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

K E N Z OU

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

情報理論 第5回 情報量とエントロピー

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

limit&derivative

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

入試の軌跡

1 c Koichi Suga, ISBN

untitled

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


73

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

II 2 II

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

koji07-02.dvi

30 (11/04 )

Transcription:

1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A (3) i =1 A = 3 ( 1) 1+j a 1j M 1j j=1 (4) = a 11 {a 22 a 33 a 23 a 32 } a 12 {a 21 a 33 a 23 a 31 } + a 13 {a 21 a 32 a 22 a 31 } = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 11 a 23 a 32 a 12 a 21 a 33 a 13 a 22 a 31 (5) M 11 = a 22 a 33 a 23 a 32 M 12 = a 21 a 33 a 23 a 31 (6) M 13 = a 21 a 32 a 22 a 31 1

2-2 4 4 A A = 0 1 0 0 0 0 1 0 0 0 0 1 a 41 a 42 a 43 a 44 A (7) 1 (3) 0 1 0 A = M 12 = 0 0 1 = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa = a n A n n A λ i (i =1,,n) A = n λ i (9) i=1 A λ i (i =1,,n) A si A = n (s λ i ) (10) (10) s =0 ii A =( 1) n A i=1 n ( λ i )=( 1) n i=1 2 n i=1 λ i (11)

(9) (9) 22 A 1 = 1 A adj[a] = 1 A M 11 M 21 ( 1) 1+n M n1 M 12 ( 1) 1+n M 1n M nn (12) A A = [ A 1 A 2 0 A 3 ] [, ora = A 1 0 A 2 A 3 A R (n1+n2) (n1+n2),a 1 R n1 n1,a 3 R n2 n2 A A = A 1 A 3 A 1,A 3 A [ ] A 1 A 1 1 A 1 1 A 2 A 1 3 = 0 A 1 (14) 3 ] (13) 2-3 A = 1 0 2 0 2 1 0 1 0 0 2 1 0 0 1 3 (15) A 1 = 1 5 5 0 6 2 10 5 13 6 0 0 3 1 0 0 1 2 (16) 3

2-4 (15) A A 1 0 2 0 1 0 2 0 2 1 0 1 A = 0 0 2 1, A = 2 1 0 1 0 0 2 1 0 0 1 3 0 0 1 3 (17) (17) (14) (16) 23 2 n x n n Q J J = x T Qx (18) J 2 x J = x T Qx 0 Q J = x T Qx > 0 Q 2-5 2 [ J =[x 1 x 2 ] 1 1 1 1 ][ x 1 x 2 ] (19) J J = x 2 1 2x 1x 2 + x 2 2 =(x 1 x 2 ) 2 (20) J x 1 = x 2 (19) 2-6 2 [ J =[x 1 x 2 ] 1 1 1 2 ][ x 1 x 2 ] (21) J J = x 2 1 2x 1x 2 +2x 2 2 =(x 1 x 2 ) 2 + x 2 2 (22) J (21) n n 4

Q Q n n Q i 1 i 2 i r (1 i 1 i 2 i r n) i 1 i 2 i r (1 i 1 i 2 i r n) r r Q i1,i 2 i r 2-7 Q Q = q 11 q 12 q 13 q 21 q 22 q 23 q 31 q 32 q 33 Q 1 Q 1,3 Q 1,2,3 q 11 q 12 q 13 q 11 q 12 q 13 Q(1) = q 21 q 22 q 23, Q(1, 3) = q 21 q 22 q 23 q 31 q 32 q 33 q 31 q 32 q 33 (23), Q(1, 2, 3) = q 11 q 12 q 13 q 21 q 22 q 23 q 31 q 32 q 33 Q Q 1,Q 2,Q 3,Q 1,2,Q 1,3,Q 2,3,Q 1,2,3 Q n Q(1, 2,,r) r =(1,,n) (24) 2-8 Q (24) [ Q(1) = q 11, Q(1, 2) = q 11 q 12 q 21 q 22 ], Q(1, 2, 3) = q 11 q 12 q 13 q 11 q 12 q 13 q 31 q 32 q 33 (25) Q 1 Q Q 2 Q Q 5

Q 1 Q Q λ i (i =1,,n) λ i 0 (i =1,,n) (26) 2 Q Q λ i (i =1,,n) λ i > 0 (i =1,,n) (27) 2-9 [ A = 1 1 1 1 ] [, B = 1 1 1 1 ], C = 1 0 1 0 2 1 1 1 2 (28) (A ) A A 1 =1 A 1,2 =0 A (B ) B B 1 =1 B 1,2 = 2 B (C ) C C 1 =1 C 2 =2 C 3 =1 C 1,2 =2 C 1,3 =1 C 2,3 =3 C 1,2,3 =3 C C 3 31 dx 1 da 11 da dt dx dt =, da 1n dt dt dt = (29) dx n da n1 da nn dt dt dt t2 t2 a t2 t1 11dt a t1 1ndt Adt = (30) t1 t2 a t2 t1 n1dt a t1 nndt 6

d[ab] dt = d[a] dt B + Ad[B] dt, t2 t1 da t2 Bdt =[AB] t2 t1 dt t1 A db dt (31) dt 32 J(x) x J(x) x x n x = x 1 x n (32) (32) 1 n b n x J(x) J(x) =b T x x = b (33) x = (b 1 x 1 +b 2 x 2 + +b nx n) x 1 (b 1 x 1 +b 2 x 2 + +b nx n) x n 2 n n A n x J(x) =x T Ax = b (34) 1 x b 1 = Ax, =2Ax (35) b T 2 = xt A 7

x = xt b 1 x + bt 2 x x f = x T Ax = x, Ax = bt 1 x x + bt 2 x x = b 1 + b 2 =2Ax (36) df x = d x, Ax dx = Ax + A T x A =(a ij ) f = x, Ax = a 11 x 1 x 1 + a 12 x 1 x 2 + + a 1n x 1 x n + a 21 x 2 x 1 + a 22 x 2 x 2 + + a 2n x 2 x n + + a n1 x n x 1 + a n2 x n x 2 + + a nn x n x n x 1,x 2,,x n f x 1 = (a 11 x 1 + a 12 x 2 + + a 1n x n ) +(a 11 x 1 + a 21 x 2 + + a n1 x n )) = (Ax 1 )+(A T x 1 ) f x 2 = (a 21 x 1 + a 22 x 2 + + a 2n x n ) +(a 12 x 1 + a 22 x 2 + + a n2 x n )) = (Ax 2 )+(A T x 2 ) f =(Ax n )+(A T x n ) x n A f x = Ax + AT x x =2Ax 8

f(x) f(x) = f 1 (x) f 2 (x) f n (x) f 11 x 1 + f 12 x 2 + f 1n x n = f n1 x 1 + f n2 x 2 + f nn x n (37) x f 1 (x) x f(x) 1 x = f 1 (x) x n f n(x) x 1 f n(x) x n = f 11 f n1 f 1n f nn (38) 3 n n A n x (38) A = Ax x = AT (39) a 11 a 1n, x = x 1 (40) Ax = a n1 a nn a 11 x 1 + + a 1n x n x n (41) a n1 x 1 + + a nn x n a 11 a n1 Ax x = a 1n a nn = A T (42) 33 x 331 n n A n b c J(x) =x T Ax + b T x + x (43) 9

(43) x n =1 x =0, 2 J(x) x 2 > 0 (44) x x = 1 2 A 1 b, 2 J(x) x 2 = A>0 (45) 3-1 x [ ][ ] [ 1 0 x 1 1 J(x) =[x 1 x 2 ] +[2 2] 0 1 x 2 [ ][ ] [ 2 1 x 1 2 J(x) =[x 1 x 2 ] +[2 2] 1 2 x 2 x 1 x 2 x 1 x 2 ] +2 ] +1 4 ( ) 41 n x( ) x := n x 2 i (46) 1 x 2 = x T x 2 x 0 3 x =0 x =0 4 ax = a x, a( 0) 5 x T y x y, x, y R n 6 x + y x + y, x, y R n i=1 10

1, 2, 3, 4 5, 6 5 y =0 y 0 2 y =0 5 y 0 1, 2 α x αy 2 =(x αy) T (x αy) =xx T 2αx T y + α 2 y T y 0 (47) α (47) α α = xt x y T y (48) (47) ( x T y ) 2 ( x T y ) 2 ( x T y ) 2 x T x 2 y T y + y T y = x T x y T y 0 ( x T y ) 2 x T xy T y (49) (49) 5 6 1, 5 x + y 2 = (x + y) T (x + y) = x T x +2x T y + y T y x 2 + y 2 +2 x T y = x 2 + y 2 +2 x T y x 2 + y 2 +2 x y = ( x + y ) 2 (50) (50) 6 42 A A := max x =1 { Ax } = { λ max [ A T A ]} 1/2 (51) 11

1 A > 0 A R n n,a 0 2 I =1 3 Ax A x, A R n n, x R n 4 A + B A + B 5 AB A B 1,2 3, 4, 5 3 x =0 3 x 0 Ax ( ) ( ) Ax = 1 ( x ) A x x = x 1 A x x (52) 1 x x =1 ( ) 1 A x x A (53) (53) (52) 3 4 (A + B)x, x =1 x x 0 A + B = (A + B)x 0 = Ax 0 + Bx 0 Ax 0 + Bx 0 (54) Ax 0 A, Bx 0 B (54) A + B A + B (55) 5 12

ABx, x =1 x x 0 AB = ABx 0 = A Bx 0 A B (56) 43 2 n n Q x 2 J(x) J(x) =x T Qx (57) λ min [Q] x 2 x T Qx λmax[q] x 2 (58) Q λ 1 λ n Q = T T ΛT, T T T = I, Λ = diag [λ 1,,λ n ] (59) T J(x) x = Tx (60) J(x) =x T Qx = x T Λ x = λ 1 x 2 1 + + λ n x 2 n (61) λ 1 x 2 1 + + λ 1 x 2 n λ 1 x 2 1 + + λ n x 2 n λ n x 2 1 + + λ n x 2 n (62) (62) λ 1 x 2 1 + + λ 1 x 2 n = λ 1 x T x = λ min [Q]x T T T Tx = λ min [Q] x 2 (63) λ n x 2 1 + + λ n x 2 n = λ n x T x = λmax[q]x T T T Tx = λmax[q] x 2 (64) (63) (64) (61) (62) (58) 13

5 14