impulse_response.dvi

Similar documents
TSP信号を用いた音響系評価の研究

画像工学特論

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

数値計算:フーリエ変換

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

Gmech08.dvi

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

untitled

Microsoft Word - 信号処理3.doc

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

³ÎΨÏÀ

main.dvi

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t=

LD

main.dvi

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

PDF

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

main.dvi


(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

RIMS98R2.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

sp3.dvi

main.dvi

曲面のパラメタ表示と接線ベクトル

Note.tex 2008/09/19( )

I

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

ユニセフ表紙_CS6_三.indd

.I.v e pmd

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Untitled

振動工学に基礎

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =



,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

2007-Kanai-paper.dvi

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

: 1/ dB 1/ Hz 210mm 1/6 1/ Hz 1/3 500Hz 4 315Hz 500Hz?? Hz Hz Hz 315Hz Hz 500Hz

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

QMI_09.dvi

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

QMI_10.dvi

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

橡実験IIINMR.PDF

ds2.dvi

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

構造と連続体の力学基礎

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

untitled

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

chap1.dvi

数学の基礎訓練I


1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

ohpr.dvi

untitled

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

power.tex

MPC.dvi

Gmech08.dvi

DVIOUT

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

タイトル

Microsoft Word - ‚²‰ÆŸ_Ł¶−®’¬.doc

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i



xy n n n- n n n n n xn n n nn n O n n n n n n n n

29


V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

dx dt = f x,t ( ) t

吸収分光.PDF

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

1 I

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

ユニセフ表紙_CS6_三.indd

Transcription:

5 Time Time Level Level Frequency Frequency Fig. 5.1: [1] 2004. [2] P. A. Nelson, S. J. Elliott, Active Noise Control, Academic Press, 1992. [3] M. R. Schroeder, Integrated-impulse method measuring sound decay without using impulses, J. Acoust. Soc. Am. 66 (2), pp. 497 500, 1979. [4] D. D. Rife, Transfer-function measurement with maximum-length sequences, J. Audio Eng. Soc. 37 (6), pp. 419 444, 1989. [5], ( 4),, 43 (7), pp. 538 543, 1987. [6],,, ( 2),, 45 (1), pp. 44 50, 1989. [7] http://tosa.mri.co.jp/sounddb/tsp/tsp design.html [8],,, 58 (10), pp. 669 676, 2002. [9], Swept-Sine,, 63 (6), pp. 322 327, 2007. [10], SN TSP,, pp. 433-434, 1999,9. 1

5.1 cos(ωt) ω 1Hz 100 Hz t 0.5 +0.5 cos sum.m 1) 2) t =0 5.2 S/N x(t) y(t) y(t) =h(t) x(t) = h(t) h(t)x(t τ)dτ (1) x(t) h(t) y(t) Fig. 5.2: x(t), h(t), y(t) 2

5.2.1 x(t) y(t) 1 T R x (τ) =E[x(t)x(t + τ)] = lim x(t)x(t + τ)dt (2) T T 0 1 T R xy (τ) =E[x(t)y(t + τ)] = lim x(t)y(t + τ)dt (3) T T E[x(t)x(t + τ)] x(t)x(t + τ) R xy (τ) [ R xy (τ) =E x(t) = = 0 h(τ 1 )x(t + τ τ 1 )dτ 1 ] h(τ 1 )E [x(t)x(t + τ τ 1 )dt] dτ 1 h(τ 1 )R x (τ τ 1 )dτ 1 = h(τ) R x (τ) (4) x(t) y(t) R xy (τ) R x (τ) h(τ) R x (τ) =δ(τ) y (t) =y(t)+n(t) R xy (τ) =E[x(t)y (t + τ)] = E[x(t){y(t + τ)+n(t + τ)}] = E[x(t)y(t + τ)] + E[x(t)n(t + τ)] (5) R xy (τ) =E[x(t)y(t + τ)] = R xy (τ) 3

5.2.2 R x R xy S x (f) = S xy (f) = R x (τ)e jωτ dτ (6) R xy (τ)e jωτ dτ (7) (8) Eq. (4) S xy (f) =H(f) S x (f) (9) H(f) H(f) = S xy(f) S x (f) (10) S x (f) =E[X (f) X(f)] (11) S xy (f) =E[X (f) Y (f)] (12) x(t) y(t) x(n),y(n) 5.2.3 Maximum Length Sequence: MLS M (maximum length sequence signal) M 1 L =2 N 1 2 1 1 mls.m M >> xm=mls(5); 4

2 5 1=31 1) M 2) 5.2.4 y(t) =h(t) x(t) Y (f) =H(f) X(f) (13) DFT H(f) = Y (f) X(f) (14) 1) impulse data.mat ir, x, y, fs 4 ir 1,000 Hz 2,000 2 x 1 30 y y = fftfilt(ir, x); x, y ir 2) imp fft.m 1 imp fft.m Fig. repo8-1.fig repo8-2.fig subplot(2,1,1) (ir) subplot(2,1,2) 5

5.3 Swept-Sine Swept-Sine TSP: Time Stretched Pulse Swept-Sine 5.3.1 Swept-Sine Swept-Sine ( j4mπk 2 exp S(k) = N 2 S (N k), ), 0 k N 2 N 2 <k<n (15) m = N/4,N =2 n, n FFT ( j4mπk 2 exp S 1 (k) = N 2 S 1 (N k), ), 0 k N 2 N 2 <k<n (16) tsp design n s g >> [s, g] = tsp design(10); 2 10 = 1024 1) tsp design Swept-Sine 2) s g 2 7) 6

5.3.2 N L (L = N) I L >I 1. Fig. 5.3 (a) 2. 2000 2 2048 Fig. 5.3 (b) 3. Fig.5.3 (c)) 3 (d) 4 3 4. 4 3 Fig.5.3 (e)) 5. (f) 6. (e) (e) (f) N FFT 7. FFT (g) 7

(a) (b) Swept-Sine 500 1000 1500 2000 500 1000 1500 2000 (c) (d) 2000 4000 6000 8000 2000 4000 6000 8000 (e) (f) 500 1000 1500 2000 500 1000 1500 2000 (g) 200 400 600 800 1000 1200 1400 1600 1800 2000 Fig. 5.3: 8

5.3.3 N I 1. Fig. 5.4 (a) 2. 2000 2 1024 Fig. 5.4 (b) 3. Fig.5.4 (c)) 3 +300 4. N + I 1 5. 3 Fig.5.4 (e)) 6. (f) 7. (e) conv() fftfilt 8. (g) impulse data mat tsp design Fig. 5.3, 5.4 repo9-1.fig, repo9-2.fig 9

(a) (b) Swept-Sine 500 1000 1500 2000 200 400 600 800 1000 (c) (d) 2000 4000 6000 8000 2000 4000 6000 8000 (e) + α (f) 1000 2000 3000 200 400 600 800 1000 (g) 500 1000 1500 2000 2500 3000 3500 4000 Fig. 5.4: 10

5.3.4 Swept-Sine Swept-Sine Pink TSP 10) Pink S/N 1 k =0 exp(jak log k) S(k) = k, 0 <k N (17) 2 S N (N k), 2 <k<n a N ( ) N 2 log =2mπ m = N/4,N =2 n, n FFT 2 1 k =0 S 1 N (k) = k exp ( jak log k), 0 k 2 S 1 N (N k), 2 <k<n 1) tsp design Pink-Swept-Sine (18) 2) spectrogram 3) s g 5.3.5 p 2 (t) = t h 2 (t) (19) p 2 (t) h(t) t >> p2 = fliplr ( cumsum ( fliplr ( h.^ 2 ) ) ); 11

60 db 1) real ir 48000 Hz 2 ir load 2) fir1 500 Hz 3) fliplr cumsum 4) polyfit 12