λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

Similar documents
Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

meiji_resume_1.PDF

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

newmain.dvi

TOP URL 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

all.dvi

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

: , 2.0, 3.0, 2.0, (%) ( 2.

D 24 D D D

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

main.dvi

H.Haken Synergetics 2nd (1978)

Note.tex 2008/09/19( )

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

数学Ⅱ演習(足助・09夏)

Dynkin Serre Weyl

all.dvi

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

TOP URL 1

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

コホモロジー的AGT対応とK群類似

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

201711grade1ouyou.pdf

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


基礎数学I

2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

Z: Q: R: C: sin 6 5 ζ a, b

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

量子力学 問題

chap9.dvi

非可換Lubin-Tate理論の一般化に向けて

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

抄録/抄録1    (1)V

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


TOP URL 1

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


Microsoft Word - 11問題表紙(選択).docx

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

セアラの暗号

2000年度『数学展望 I』講義録

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


all.dvi

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =


無限可積分系セッションアブストラクト

p.2/76

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

untitled

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

arxiv: v1(astro-ph.co)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

本文/目次(裏白)

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

液晶の物理1:連続体理論(弾性,粘性)

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

II

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

2011de.dvi

seminar0220a.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


Z: Q: R: C:

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E


Transcription:

0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k > µ k Young Young semi-standard Young λ Young Young STab(λ), SSTab(λ) λ/µ skew Young skew Young STab(λ/µ), SSTab(λ/µ) λ numbering λ Young λ e-mail:tshun@kurims.kyoto-u.ac.jp

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T SSTab(µ) cont T = λ} λ m, µ n, ν m + n Littlewood-Richardson c ν λµ 2 c ν λµ def = #{T SSTab(ν/λ) cont T = µ word T Yamanouchi } 0.3. Littlewood-Richardson m = n = 3, λ = µ = (2, ) = ν 6 Littlewood-Richardson c ν λµ 2 2 2 2 c (5,) (2,)(2,) = 0 c(4,2) (2,)(2,) = c(4,,) (2,)(2,) = c(3,3) (2,)(2,) = c(3,,,) (2,)(2,) = 2 2 2 2 c (3,2,) (2,)(2,) = 2 c(2,2,2) (2,)(2,) = c(2,2,,) (2,)(2,) = c(2,,,,) (2,)(2,) = 0 C- C[S n ] C[S n ] Young.. Young 2 Yamanouchi reverse lattice word w Yamanouchi k l d k l k i < j =) d k i dk j 2

λ = (λ,, λ l ) n T λ STab(λ) λ T λ = λ + λ + λ 2. n λ l + n S n λ n numbering Num(λ) (σ T) ij σ S n, T Num(λ) def = σ(t ij ) λ n numbering T Num(λ) R(T) C(T) R(T) = {σ S n σ T T } C(T) = {σ S n σ T T } a T b T Young c T C[S n ] a T = σ, b T = (sgn σ)σ, σ R(T) σ C(T ) c T = a T b T λ n a λ = a Tλ, b λ = b Tλ, c λ = c Tλ, R λ = R(T λ ), C λ = C(T λ ) λ n C[S n ] S λ S λ = C[S n ]c λ λ = (λ,, λ l ) S λ def = S λ S λl S λ S n M λ = Ind Sn S λ C C T Num(λ) a T a λ.2. S, T λ, µ n numbering λ µ i, j 2 T S λ = µ p R(S), q C(S) T = p q S T S λ µ λ = µ q C(S) q S T q C(S) q S T p R(S) T = p q S 3

.3.Young λ n c C[S n ] p R λ, q C λ p c (sgn q)q = c β c = βc λ β c = βc λ R λ C λ = {} σ S n p R λ, q C λ σ = pq c = σ S n γ σ σ p R λ, q C λ p c (sgn q)q = c p R λ, q C λ, σ S n γ pσq = (sgn q)γ σ γ pq = (sgn q)γ σ S n p R λ, q C λ σ = pq γ σ = 0.2. i, j 2 σ T λ T λ p 0 = σ(i, j)σ R λ, q 0 = (i, j) C λ γ σ = γ p0 σq 0 = (sgn q 0 )γ σ = γ σ σ R λ C λ γ σ = 0.4. Young λ, µ n λ > µ c λ c µ = 0 x C[S n ] a λ xb µ = 0 σ S n a λ σb µ = 0 a λ σb µ = a λ σb µ σ σ = a Tλ b σ Tµ σ λ µ λ µ λ µ..2. i, j 2 T λ σ T µ π = (i, j) a Tλ b σ Tµ = (a Tλ π) (πb σ Tµ ) = (a Tλ ) ( b σ Tµ ) = a Tλ b σ Tµ.5. S n {S λ λ n}.3. β λ C c λ c λ = β λ c λ λ n β λ 0 c λ 0 C dim Hom C[Sn ](S λ, S λ ) = dim c λ C[S n ]c λ = dim Cc λ = S λ λ µ λ > µ.4. dim Hom C[Sn ](S λ, S µ ) = dim c λ C[S n ]c µ = dim{0} = 0 4

C[S n ]- S λ = S µ S n S n λ n β λ 0 ρ : C[S n ] C[S n ], x xc λ C[S n ] A = S λ I C[S n ]- I Im ρ S λ Trace ρ = β λ dim S λ R λ C λ = {} Trace(ρ) = (sgn q) Trace(pq) = G p R λ,q C λ G = β λ dim S λ β λ 0 S λ Specht Specht n C[x,, x n ] S n λ n S n {M λ λ n} M λ S n /R λ M λ = C[S n ]a λ S λ polytabloid dim S λ = #STab(λ) {M λ λ n} {S λ λ n} λ P + λ Verma M(λ) λ V(λ) Kac-Weyl 2.6. Young k µλ M λ M λ = S λ (S µ ) k µλ µ n,µ>λ M λ S λ a λ a λ = #R λ a λ dim Hom C[Sn ](S λ, M λ ) = dim Hom C[Sn ](M λ, S λ ) = dim a λ C[S n ]c λ = dim Cc λ = 2.3. µ < λ dim Hom C[Sn ](S µ, M λ ) = dim a µ b µ C[S n ]a λ = dim{0} = 0 S µ M λ 2 µ λ.2. b µ C[S n ]a λ = 0 k µλ Kostka K µλ 5

.7. M λ λ = (λ,, λ n ), µ = ( m,, n mn ) n M λ C(µ) n (x i + + x i n) m i x λ xλn n i= M λ tabloid Young 2 S, S 2, S n Grothendieck Z- 2.. S n V [V] Z- S n Grothendieck R n {[V] V S n } [V W] = [V] + [W] R = n 0 R n R 0 = ZS m VS n W [V] [W] def = [Ind Sm+n S m S n V C W]( R m+n ) Z-S 0 = {} R 0 [] S 0 3 R λ, µ P [S λ ], [S µ ] = δ λµ Z- 2.2. m n ϕ m,n : Z[x,, x m ] Z[x,, x n ], x i ( i n) x i 0 (n < i m) n Z[x,, x n ] S n Λ n k 0 Λ k n 3 6

ϕ m,n Λ k m ρk def m,n = ϕ Λ m,n k : Λ k m Λ k n m k 0 {ρ k m,n : Λ k m Λ k n m n} Λ k def = lim Λ k k n, Λ def = Λ k k 0 Λ Z- 4 2.3. Schur λ = (λ,, λ l ) P m λ Λ λ m λ = i,,i l x λ i x λ l i l (λ,, λ l ) n n p n Λ n h n Λ n p n = k x n k, h n = λ n m λ λ = (λ,, λ l ) P p λ = p λ p λl ( Λ λ ), h λ = h λ h λl ( Λ λ ) λ = (λ,, λ l ) P Schur m λ Λ λ 5 2.4. s λ = T SSTab(λ) x T ( x T def = x #{(i,j) T ) ij=k} k k [M] Λ k, Λ Λ k = λ k Zm λ, Λ = λ P Zm λ Λ Λ k, Λ Λ 4 the ring of symmetric functions 5 Schur Schur s (x ; ; x m ) = det((x j ) i+m-i ) i;j m = det((x j ) m-i ) i;j m Weyl 7

Λ (x + x 2 ) 2 = (x 2 + x 2 2) + 2(x x 2 ) (x + x 2 + x 3 ) 2 = (x 2 + x 2 2 + x 2 3) + 2(x x 2 + x x 3 + x 2 x 3 ) etc Λ Λ m 2 = m + 2m ^Λ ρ m,n def = ϕ m,n Λm : Λ m Λ n {ρ m,n : Λ m Λ n m n} ^Λ = lim n Λ n 2.2. Λ ^Λ ^Λ = λ P Zm λ Λ Λ k A A- 2.2. Λ Λ A Λ A = Λ Z A 2.5. λ n h λ = s λ + K µλ s µ µ n,µ λ Robinson-Schensted-Knuth RSK Young 2.5. M λ 2.6. Λ {h λ λ P}, {s λ λ P} Λ Z- {p λ λ P} Λ Q = Λ Q Q- c µλ s λ = m λ + µ<λ c µλ m µ {m λ λ P} Λ Z- {s λ λ P} Λ 2.5. {h λ λ P} Λ {p λ λ P} nh n p h n p 2 h n 2 p n = 0 8

Newton n 0 h n t n = i x i t, n 0 p n tn n = log i x i t 2.7. 2.6. Λ λ, µ P s λ, s µ = δ λµ Z- 2.8. λ, µ P h λ, m µ = δ λµ, p λ, p µ = z λ δ λµ λ = ( m,, k m k ) P z λ def = k j mj m j! 6 i,j x i y j = λ P h λ (x)m λ (y) = λ P j= z λ p λ (x)p λ (y) RSK Young i,j x i y j = λ P s λ (x)s λ (y) Cauchy-Littlewood (GL, GL)- 2.9. 2.6. λ, µ n χ λ µ, ξ λ µ Z p µ = λ n χ λ µs λ = λ n ξ λ µm λ 2.0. 2.8. 2.9. λ n s λ = µ n z µ χ λ µp µ, h λ = µ n z µ ξ λ µp µ 2.. Ψ : Λ R, s λ [S λ ] Z- Z-, 6 n #C( ) = n!=z 9

[M] [F] ^Ψ : Λ R, h λ [M λ ] Z- Z-, ^Ψ(s λ ) = [S λ ] ^Ψ = Ψ ^Ψ Z- λ = (λ,, λ l ) h λ = h λ h λl 2.6. [M (λ ) ] [M (λ l) ] = [M λ ] [M (λ ) ] [M (λ 2) ] = [C[S λ +λ 2 ] C[Sλ S λ2 ] C C C] = [C[S λ +λ 2 ] C[S (λ,λ 2 ) ] C] = [Ind S λ +λ 2 S (λ,λ 2 ) C] = [M (λ,λ 2 ) ] ^Ψ.6. {[M λ ] λ P} R Z- 2.6. ^Ψ ^Ψ ^Ψ ^Ψ, ^Ψ V S n χ C(µ) χ(c(µ)) 2.0. [M λ ] h λ = ξ λ z µp µ µ µ.7. ξ λ µ Mλ C(µ) Θ : R Λ Q, [V] µ n z µ χ(c(µ))p µ Θ Ψ : Λ Λ Q () Ψ R Θ : R Λ Θ, V, W S n f, g V, W Θ([V]), Θ([W]) = λ,µ n z λ z µ f(c(λ)) g(c(µ)) p λ, p µ 2.8. = f(c(λ)) g(c(λ)) z λ λ n = f(σ) g(σ ) = [V], [W] n! σ S n Θ ^Ψ, 0

^Ψ(s λ ) = [S λ ].6. 2.5. h λ = s λ + µ λ K µλ s µ, M λ = S λ µ>λ(s µ ) k µλ m µλ ^Ψ(s λ ) = [S λ ] + µ>λ m µλ [S µ ] ^Ψ, = s λ, s λ = ^Ψ(s λ ), ^Ψ(s λ ) = + µ>λ m 2 µλ ^Ψ(s λ ) = [S λ ] 2.2. 2.. V S n χ V Θ : R Λ, [V] µ n z µ χ(c(µ))p µ ch = Θ (characteristic map) 2.. 2.. 2.3. Young 2.5. λ n M λ = S λ µ n,µ λ (S µ ) K µλ.6. 2.4. Frobenius 2.9. 2.2. λ, µ n S n S λ C(µ)- χ λ µ S λ Gramer Murnaghan-Nakayama 2.5. Littlewood-Richardson λ m, µ n Ind S m+n S m S n S λ C S µ = ν m+n (S ν ) cν λµ

2.5. λ m, µ n Schur s λ s µ = ν m+n c ν λµs ν Young RSK Schützenberger jeu de taquin 7, Knuth 2.6. Pieri 2.5. µ = () λ n Ind S n+ S n S λ = λ µ µ Young λ Young λ µ S µ [F] William Fulton. Young Tableaux. Cambridge University Press, 997 [M] I. G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, 995 [W] Hermann Weyl. The Classical Groups. Princeton University Press, 966 7 5 2